
ADDRESS GENERATION FOR FPGA RAMS FOR EFFICIENT
IMPLEMENTATION OF REAL-TIME VIDEO PROCESSING SYSTEMS

Najeem Lawal, Benny Thörnberg, Mattias O’Nils*

Electronic Design Division, Department of Information Technology & Media,
Mid Sweden University,

SE-851 70, Sundsvall, Sweden
email: Najeem.Lawal@miun.se, Benny.Thornberg@miun.se, Mattias.Onils@miun.se

ABSTRACT

FPGA offers the potential of being a reliable, and high-
performance reconfigurable platform for the implementation
of real-time video processing systems. To utilize the full
processing power of FPGA for video processing applications,
optimization of memory accesses and the implementation of
memory architecture are important issues. This paper
presents two approaches, base pointer approach and
distributed pointer approach, to implement accesses to on-
chip FPGA Block RAMs. A comparison of the experimental
results obtained using the two approaches on realistic image
processing systems design cases is presented. The results
show that compared to the base pointer approach the
distributed pointer approach increases the potential
processing power of FPGA, as a reconfigurable platform for
video processing systems.

1. INTRODUCTION

In a Real-Time Video Processing System (RTVPS), the
operations performed on each pixel are often neighborhood
oriented [1]. A neighborhood of pixels is an operation
window about a point in the image and is usually a square or
rectangular sub-image about that point. These pixels act as
input data on which operations are performed to yield a pixel
that corresponds to the central neighborhood pixel in the
output image. The neighborhood is formed for each pixel in
the input image to produce an output image. One
consequence of this is that a large amount of data is required
to be buffered depending on the size of the video frame and
the operation window. The data flow dependencies require
data to be stored in buffers, where each buffer normally
corresponds to a row in the video frame. The size of each
element in this buffer depends on the dynamic range of the
video signal. In addition, the dimensions of the process
window affect the number of buffers required for the process

operation. For a 5x5 window, four line buffers are required
while two line buffers are required for a 3x3 window.

Due to its high processing capability, FPGA is an
attractive alternative for implementing high speed, real-time,
computation-intensive operations, as in the case of real-time
digital signal processing [2]. Also, the on-chip memories of
an FPGA allow frequently accessed data to be stored close to
the data path, thus eliminating the overheads associated with
data fetches to external memory.

The available FPGA on-chip memories are limited and
organized as Block RAMs and distributed RAMs.
Distributed RAMs are built from the logic resources and are
ideal for register files closely integrated with logic. The
Block RAMs are more suited to larger on-chip memory
storage requirements, such as buffers and caches. For Xilinx
FPGA, each Block RAM is a configurable, synchronous
block of memory [3], [4]. Additionally, it is also possible to
configure each Block RAM as a single- or dual-port
memory. For the dual port configuration, the two data ports
permit independent synchronous read/write access to the
common Block RAM. In addition, the data path widths at
each port are independent of each other. Examples of
allowable data path widths at each data port for Spartan 3
are 1, 2, 4, 8 (9), 16 (18) and 32 (36) [4]. The values shown
in brackets are available when parity bits are used for data
storage.

Attempts at optimizing energy consumption, total area
and availability of data from the memory subsystems of
FPGA and Digital Signal Processor (DSP) have attracted
many research efforts [5], [6], [7], [8], [9]. This could be
explained by the fact that the area occupied and the power
consumed by the memory subsystems are up to ten times
larger than that of the data-path [10]. Memory accesses are a
major contributor to the power consumption for RTVPS. In
addition, latency in memory accesses affects the throughput
of the RTVPS. Effective optimization can be achieved
through efficient memory architecture and addressing
procedure. The work presented by Doggett et al. is optimal
where large numbers of memory banks are used as is typical
in volume rendering in medical applications [5]. The
address generation scheme by Grant el al. is an efficient
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Fig. 1. Memory synthesis design flow.

option for accessing data with addresses within the power
range of two [6]. The scheme uses a register and optionally
an offset, to specify memory read/write addresses.

The memory exploration algorithm in [7] implements
memory allocation and array-mapping to RAMs through
tight links to the scheduling effect and non-uniform access
speeds among the RAM ports to achieve near optimal
memory area and efficient energy requirement. The
algorithm is however complex and the execution time may
slow down hardware design. Moreover the exploration
targets SRAM and DRAM as opposed to the on-chip FPGA
Block RAMs, which are the focus of this paper. The address
generation technique in [8] is based on address bit inversion
to yields effective access time to memory at the cost of up to
extra 17.4% of used memory. In [9], various high-level
optimizations were explored in order to reduce addressing
overhead. Many efficient, often heuristics based, memory
optimization algorithms have been developed similar to
those in [11], [12], however, most of these are tailored to be
efficient on DSP. Thus a memory access methodology is
required for the FPGA platform which takes advantage of
the global memory allocation architecture proposed by
O’Nils et al. for RTVPS implementation [13].

Based on this global memory allocation architecture, an
allocation algorithm has been developed and implemented to
maximize memory usage while minimizing the read/write
accesses [14]. In this paper two approaches for generating
addresses for allocation results created by the developed
allocation algorithm are presented. The design flow of
memory synthesis showing the relationship between memory
allocation and code generation is shown in Fig. 1. The result
of the Memory Allocation stage is information about
organization and allocation of the RTVPS memory objects
on FPGA and serves as the input to the work presented in
this paper. The generation of VHDL code for hardware
implementation of the RTVPS memory objects on FPGA is
the final contribution of this work. The approaches proposed
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Fig. 2. Basic architecture for the implementation
of line buffers in neighborhood oriented image

processing operations. Part a) shows an example
of a 3×3 neighborhood and b) its implementation.

in this work are also applicable to any memory access
formulation in general, where the target of the design tool is
the FPGA platform.

2. ARCHITECTURAL ASSUMPTIONS

Fig. 2 shows a 3x3 pixel neighborhood for which an image
processing operator calculates an output value for the central
pixel. Line buffers and registers are used to store the data
flow dependences and provide access to the pixel
neighborhood at taps p11 - p13, p21 - p23 and p31 - p33. Since
only one operator can use these memory objects (line
buffers) and all the memory objects are used simultaneously
in the RTVPS, O’Nils et al. proposed [13] that the memory
objects can be grouped together to form a global memory
object (GMO) for the operator. This grouping can be
achieved through:

plinesiR wnW �� (1)

where WRi is the width of the GMO, nlines is the number of
required memory objects for an operator and wp is the bit
width representing a pixel. The length of the GMO is equal
to those of the memory objects that formed it [13].

This architecture is preferable to that proposed by Norell
et al. in which each line buffer (memory module) is mapped
directly to memory [15] since GMOs require a minimal
number of required memory entities in comparison to the
direct mapping architecture. Consequently, the number of
memory accesses for an RTVPS operation is minimal for a
GMO.
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3. MEMORY ALLOCATION

A heuristics-based algorithm for efficient allocation of the
GMOs, based on the architecture stated above has been
developed and implemented [14]. The algorithm creates the
GMOs based on (1) and partitions them to ensure that their
widths conform to those specified by the FPGA. It also takes
advantage of the dual port capabilities of the Block RAMs to
achieve near optimal allocations and the possibility of
allocating a GMO to as many Block RAMs as required.
Hence it is required that the Block RAM support
independent read and write accesses at both ports. For every
Block RAM available on the FPGA, the allocation algorithm
attempts to allocate one or two GMOs to it. Final allocation
decisions requiring as few Block RAMs as possible are
made, based on the allocations offering the least amount of
unused memory space on the allocated Block RAMs. Fig. 3
depicts a model of the allocation.

The allocation algorithm takes the sets of Block RAMs
and GMOs as input to generate information about
allocations of the GMOs. To illustrate the function of the
algorithm, if an operator in an RTVPS requires a
neighborhood of 5x5 window with 12-bit gray scale and 640
by 480 frame size as the input video stream this would result
in four memory objects each of length L (=640) and width 12
being created. The memory objects would be combined to
create a GMO Ri of width 48. Fig. 4 depicts this illustration
and op_id represents the operator requiring the GMO.
Partitioning and allocation of GMOs are potentially
complicated tasks depending on the length and width of
GMOs in RTVPS applications and the FPGA Block RAM
size. Thus an efficient technique for tracking the position of
the GMO to be accessed is required. If the GMO in Fig. 4
were to be allocated on a Xilinx Spartan 3 FPGA, it would
be partitioned into two segments, of widths 32 and 16, since
it would be not possible to have a data path width of 48 on a

L by 12

L by 12

L by 12

L by 12

L by 48

Ri

op_id = 1

Fig. 4. Creating a GMO.

Xilinx Spartan 3 FPGA. In addition, since each Block RAM
is 16KBit (excluding parity feature), the first segment, of
width 32, would require 2 Block RAMs, thus creating two
partitions. The second segment would require a single
partition on a Block RAM. Fig. 5a illustrates the partitioning
of a GMO and Fig 5b depicts the allocations of the partitions
on two Block RAMs and unused memory space. The major
objective of the allocation algorithm is to ensure that the
amount of unused memory is minimal. The unused memory
in Fig. 5b is however unavoidable since the memoryrequired
by the GMO is less than that provided by two Block RAMs.

Hence organizing a GMO into many segments and
partitions for allocation purposes would be usual encounters
in RTVPS applications. Implementation of accesses to these
GMOs irrespective of their organization, and the Block
RAM constraints is the focus of the work presented in this
paper.

4. ADDRESS GENERATION

The allocation software ensures that each entry of a Block
RAM data object stores information about width and length
of the GMO segment allocated to it, the port used for
allocation and the hierarchy of its segment in the GMO. In
addition, each partition stores information about the Block
RAM to which it is allocated, the port of allocation and its
start address on the Block RAM, the GMO and segment to
which it belongs.

The advantage of sequential accesses to memory for
RTVPS applications can lead to improved memory
performance by using pointers that increase incrementally
when there are valid pixel values. Using the GMO
architecture further reduces the number of such pointers to
one for each RTVPS operator. The pointers may be
implemented by using a single register for each GMO,
further referred to as base pointer, or by using a register for
each partition in a GMO, further referred to as distributed
pointers.

To this end, the results of the memory allocation stage in
Fig. 1. are imported into the address generation module.
From these allocation results GMOs are reconstructed, and
address spans for each partition in a Block RAM are
generated. The start and end addresses of each partition are
calculated. Offsets are considered where dual ports are used
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Fig. 5. Organization and Allocation of a GMO.

for the allocation on Block RAMs for different partitions in
order to avoid memory overlap. The generated addresses are
used to determine the location of each GMO element. The
descriptions for accessing the GMO elements using two
approaches, namely the base pointer approach and the
distributed pointer approach are presented as follows.

4.1. Base Pointer Approach

In this approach, a single pointer is used to track the
location of the element to be accessed in the GMO. The
pointer starts at zero and increases to one less than the
length of the GMO and then resets to zero. Since the
memory accesses are clocked, the value of the pointer
increases with clocked access to the Block RAM when there
are valid data. Address spans for each partition of the GMO
are used to determine the relevant Block RAM relating to
the element accessed, depending on the value of the pointer.
Hence, only the relevant Block RAMs are enabled while the
other related Block RAMs are disabled. Fig. 6a depicts this
approach for a simplified case in which a GMO consists of a
single segment with two partitions.

In the figure, partitions p1 and p2 are allocated to Block
RAMs BR1 and BR2. From Fig. 6a, when the value of base
is within the span of p1, the appropriate port on BR1 is
enabled and accessed while the relevant port on BR2 is
disabled. The reverse is the case when base is no longer
within the span of p1, i.e. within the span of p2. This simple
example could be extended to cases in which more than one
segment makes up a GMO and each segment has more than
2 partitions. A formal description of this approach is shown
in Fig. 6b. Fig. 6c depicts the base pointer implementation of
the GMO shown in Fig. 5. In the figure, BR1_EN_A,
BR2_EN_A and BR2_EN_B represent the enable signals on
port A of BR1, port A of BR2, and port B of BR2
respectively. Likewise, BR1_A_Adr, BR2_A_Adr and
BR2_B_Adr are the address signals on port A of BR1, port A
of BR2, and port B of BR2 respectively. A Block RAM is
enabled or disabled by assigning ‘1’ or ‘0’ to its enable
signal.

GMO 1
Length = L
L = p1 + p2

Partition 1
Length = p1

Partition 2
Length = p2

Base Pointer
base = 0 – L - 1

0 p1 - 1 0 p2 - 1

BR1 BR2

if base < p1
access BR1

else
access BR2

offset

(6a)

(6b) For each GMO:
� create Address Table from segments and partitions that make up the

GMO to determine when to enable Block RAMs among related
partitions

� create an incrementable pointer of length � �� �L2log which increases

when there are valid pixel values
� using Address Table and pointer value enable appropriate Block

RAMs and set the values of address signals.

(6c)
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512 	 bp 	 639
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0 	 bp 	 511
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Fig. 6. Base Pointer Approach.

4.2. Distributed Pointer Approach

In this approach, each partition is handled separately,
starting with the first partition in a segment. Local pointers
equal in length to the length of each partition are created. As
long as the enable signal of Block RAM for a partition is
high, memory access is started at its first position using its
pointer and continues incrementally when there are valid
data until its full length is reached. During this period, the
partition ensures its enable signal is re-asserted while the
enable signals of the neighboring partitions of the same
segment are kept low. Controls are transferred to the next
partition of similar segment when the upper limit of the
partition is reached. If however, the partition is the last in
the segment, controls are transferred to the first partition.
Since the address buses of partitions on Block RAMs provide
appropriate bit vectors to cover their entire lengths, they are
used as the local pointer. In this approach, the enable signals
of all the first partitions are set to high at start-up to ensure
that memory accesses start with the first partitions. Fig. 7a
depicts this approach. A simplified case of a GMO
consisting of a single segment with two partitions p1 and p2
allocated on Block RAMs BR1 and BR2 respectively is
considered in Fig. 7a. Fig. 7b and 7c show formal
description and implementation of the GMO depicted in Fig.
5 using this approach. Signals in Fig. 7c have similar
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� start memory access with the first partition with start address of 0
� enable Block RAM of currently active partition and disable Block

RAMs of related partitions while pointer is less than partition’s length
� if pointer of active equals partition’s length less one, reset it to 0,

disable it and enable next (or first partition if this is the last partition).
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Fig. 7. Distributed Approach.

meanings as in Fig. 6c. Since the 640-by-16 partition is the
only one in its segment, it is always enabled and the address
is reset to 0 when it reaches its the upper limit.

5. EXPERIMENTAL RESULTS

The work presented in this paper incorporates address
generation using the two approaches described above. The
address generation and VHDL code generation were
implemented in C++ which takes FPGA technologyfiles and
allocation results (described in Section 3) as input. The
implementation was simulated using the memory
requirements of real-time video processing design cases [13].
The first design case was a spatio-temporal median filter
with a neighborhood of seven frames and two line buffers.
Two instances of this design case were considered. The first,
(1-1), being a VGA frame with 24-bit RGB pixels and a 640
frame length, while the second, (1-2), was a PAL frame with
an 8-bit gray scale pixel and a 708 frame length. The second
design case was a machine vision system with a median
filter, segmentation and three 1-bit morphological
operations. Also, in this design case two instances were

Table 1. Memory requirement for design cases.

considered. The first, (2-1), being an 8-bit gray scale with
VGA resolution as the input video stream while the second
(2-2) had a 12-bit gray scale with 1.3 MPixel resolution as
the input video stream. Table 1 shows the summary of the
memory requirements for the design cases considered.

Table 2 shows the resources required to access the
allocated memory objects for the design cases in Table 1, the
number of Block RAM required for the allocations and the
hardware operating frequency for the two approaches. Xilinx
Spartan 3 FPGA was the target platform for implementing
both approaches.

6. DISCUSSIONS

Depending on the number of partitions relating to a GMO,
address look-up tables are required to set the enable signals
and the values of the address signals to the appropriate
Block RAMs on which the element of the GMO currently
being pointed at is allocated, while also disabling related
Block RAMs. In the Base Pointer Approach, these accesses
to the Block RAMs are centrally controlled at the GMO level
using a pointer. Hence only one set of address look-up tables
is required for each GMO. By contrast, in the Distributed
Approach, each partition has its separate address look-up
table that is unrelated to those of related partitions. The use
of a partition’s address look-up table depends on the value of
its enable signal. Hence the total number of address look-up
tables for one GMO depends on the number of partitions
making up the GMO. This is evident by comparing Figures
6c and 7c. The first row of Table 2 confirms this. Thus the
Base Pointer Approach yields more efficient use of hardware
resources than does the Distributed Approach. The
differences in resource requirements are however marginal
amounting to less than 3% of the available resources, for
example, Xilinx Spartan 3 XC3S400 series [3].

Delays associated with the distribution of a single base
pointer caused by long delays in the FPGA are eliminated in
the Distributed Pointer Approach since each Block RAM
partition will have one local pointer. The use of separate

Design
Case

# Rows Widt
h

Lengt
h

Size
(kbit)

Case 1-1 7 2 24 640 210
Case 1-2 7 2 8 708 77.4
Case 2-1 1

1
3

4
1

16

8
19

1

640
256
640

20.0
4.75
30.0

Case 2-2 1
1
3

4
1

16

12
21

1

1300
4096
1300

60.94
84.0

60.94
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Table 2. Comparison of the two approaches.

address look-up table for each partition in the Distributed
Pointer Approach increases the speed of memory accesses
and consequently, increases operating frequency. This is
because all signals required for memory accesses are
calculated simultaneously at the clock edge. As the third row
in Table 2 shows, the Distributed Approach yields more
rapid access to data than does the Base Pointer Approach.

7. CONCLUSIONS

In this paper two approaches for generating addresses of
memory objects grouped at the operator level in real-time
video processing system has been presented. This work
makes the implementation of accesses to memorydata trivial
irrespective of their allocation. The two approaches, Base
Pointer Approach and Distributed Pointer Approach were
compared with respect to used hardware resources and speed
performance. The results indicate that the Base Pointer
Approach, which is the straightforward method, requires
fewer resources than does the Distributed Pointer Approach.
This resource reduction is however marginal when compared
to the total capacity of the device. The Distributed Approach
is at least 50% faster than the Base Pointer Approach for all
the design cases considered. Hence, the Distributed
Approach improves the processing power of FPGA as a
reconfigurable platform for RTVPS implementation.
Additionally, the automatic generation of addresses and
VHDL code will simplify the implementation of real-time
video processing systems.
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Case 1-1 Case 1-2 Case 2-1 Case 2-2

BP Dist BP Dist BP Dist BP Dist

No. of 4 input LUTs: 653 994 334 356 155 191 560 804

No. of BRAMs: 14 14 6 6 5 5 13 13

Max. Frequency (MHz): 116 186 106 183 140 214 91 173

Frequency Comparison (%): 100 160 100 173 100 153 100 190
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