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Abstract 
Automatic target recognition based on range image 

d a t a  acquired with laser radar imagers is a research 
topic that is of great interest t o  both the defense and 
manufacturing industries. A hybrid approach using 
both models and features fo r  automatic target identi- 
fication/recognition within laser radar images is pre- 
sented here. The multiscale and geometrical features 
are developed and deployed  as input parameters for the 
proposed classification method. The experimental re- 
sults show that the proposed method has achieved a 
satisfactory target classification.i 

1 Introduction 
This paper presents a hybrid approach which uses 

both models and features for automatic target identi- 
fication/recognition within laser radar images. Auto- 
matic target cueing and recognition has a long history 
of research, and many algorithms and methodologies 
have been developed. This paper presents results from 
a study on target recognition based on the images ac- 
quired from infrared laser radar imagery. In our study, 
the targets are assumed to  have already been detected 
in a scene and our objective is to recognize and verify 
the identity of an individual target. 

While classification of objects is a fundamental 
component of human reasoning, automatic target 
recognition by a computer requires a task-oriented 
methodology for solving a specific application prob- 
lem. For laser radar images, the associated range in- 
formation provides a surface-geometrical description 
of an unknown object. As an intuitive approach, we 
select a number of features that more or less encapsu- 
late the features in range images. We first introduce 
the features and present the connections between a 
human’s approach to the problem of classification and 
the quantitative statistical properties of each of these 
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ORATIVE PARTICIPATION IN T H E  ADVANCED SENSORS 
CONSORTIUM SPONSORED BY THE U.S. ARMY RE- 
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features. Then we discuss feature representations for 
our automatic target recognition application. 

2 Multiresolution Features 
The laser radar imagery used in this study is rela- 

tively low resolution. A typical image size is 40 pixels 
by 20 rows, as shown in Figure 1. Because of this 
low resolution, many physical features on the objects 
are unresolved. Reliable identification of objects in- 
evitably requires a set of features that are extracted 
from the laser image of the object. The features we 
employ include moment invariants, energy and en- 
tropy, range transform invariants, cross correlation of 
scale functions, and morphological spatial spectrum. 
The object orientation features are also used for clas- 
sification. Such features include Fourier descriptors, 
curve moment invariants, bending energy, and circu- 
larity. 

Figure 1: Range images of three targets obtained from 
various angles with a laser radar. 

Moment Invariants. Let f(z, y) represent the 
grayscale function of a range image in region R. The 
moment is defined as 
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The central moments can be expressed as 

P p , q  = s , (x  - q p ( Y  - y)V(x ,  Y)dXdY, (2) 

where Z = mlo/m00, y = mol/moo. Then the normal- 
ized central area moments are defined as 

(3) 

Curve moments can be represented as setting f ( 1 )  to  
be 1 and 

mp,q = ~ X P Y q f ( w :  p , q =  01 1 , 2  ,.... (4) 

With similar definition for central moments, the nor- 
malized central curve moment are defined as 

s , q  - - PP,P/m::q+l (5) 

The moment invariants for both area and curve mo- 
ments are expressed as follows 

I1 = 7 2 0  +YO2 (6) 
1 2  = ( 7 2 0  - ~ 0 2 ) ~  + ~ Y L  (7) 

4 = (730 + Y 1 2 I 2  + (YO3 + 721)' (9) 
13 = (730 - 3 7 1 2 ) ~  + (YO3 - %1)2 (8) 

Eccentricity E is defined as[9] 

where A is the object area and the moments are de- 
fined by area moments. 

Let S(x) be the 
area of an object x ,  e h ( n ) ,  e,(n), and eb(n)  represent 
the structuring elements in horizontal, vertical, and 
both directions with scale n. Ph(n), P,(n), and Pb(n) 
are the features with scale less than n. Then, the 
Morphological Spatial Spectrum mss is defined as 

Morphological Spatial Spectrum. 

mss = hPh(n) + vPw(n) + bPb(n), (11) 

where 

and h ,  v ,  and b are the weights for features 
Ph(n), P,(n), and Pb(n), respectively. The features 
derived from boundaries and areas of objects are also 
used for the classification. They include the entries as 
follows. 

Fourier Descriptors. A boundary function is 
defined by the Cartesian coordinates {(x(l), y(l)), 1 = 
1 , 2 ,  ..., L } ,  where L is the length of the boundary 
curve. Then the Fourier coefficients for the boundary 
function are represented as 

1=1 

Based on the Fourier coefficients, the Fourier Descrip- 
tors can be defined as follows 

where r(n)  = d\/Ia(n)12 + Ib(y) l2 ,  n = 1 ,2 ,  .... These 
Foiirier DescriDtors are invariant to  rotation. trans- ~~ ~ 

lation, dilatioi, symmetric transform, and starting 
point. 

Energy (E,) and Entropy 
(E,) are selected in our feature list. Energy corre- 
sponds to each pixel graylevel value weight in the ob- 
ject, and entropy is to  calculate information measure 
of each pixel. They present meaningful parameters in 
our object classification. 

The 
scale function f( t )  is defined as the object size in hor- 
izontal direction against the vertical coordinate. For 
each row t of the image, f ( t )  is the size of the ob- 
ject of along the row t .  Then, the cross correlation is 
expressed as 

Energy and Entropy. 

Cross Correlation of the Scale Function. 

r(T = 0 )  = f ( t ) g ( t  + .r)dt, (18) I' 
where Y is the image size in y direction and g ( t )  is the 
scale function of the model image. 

Let X I ,  2 2 ,  ..., X N  be the free- 
man chaincode (8-neighbor) of the boundary, the nor- 
malized bending energy EN is defined as 

Bending Energy. 

- 4 w 2  

where L is the perimeter of the object, k ( i )  = 
for even xi and P ( z i )  = P(zn)tP(x,-1 f 

for odd zi [9]. Bending energy is perimeter- 
independent. 

The normalized circularity is de- 
fined as 

, and P(z i )  = Xn-X7L-1 

Circularity. 

where A is the object area and L is its perimeter [9]. 
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3 Object Recognition 
To be useful, an automatic target recognition algo- 

rithm must be able to identify a target regardless its 
orientation. Our feature set includes entries that en- 
able an algorithm to distinguish a target from others. 
Our feature selection includes (1 the target has one or 

guish it from other objects at different poses, (2) the 
target has one or more feature measures that can be 
used to  uniquely determine the pose of the target, and 
(3) the target has one or more feature measures that 
separate it from other possible objects at  the same 
pose. For this purpose, we examine the features from 
three different targets and compare them at various 
angles. Figure 2 illustrates the feature measures un- 
der a certain condition: the target is 1,100 meters from 
the sensor, and the angles are separated by an equal 
increment of 5" from -90" to 90". 

The classification algorithm works as follows. First 
a random target, T ,  is selected using the prior prob- 
ability TT = Prob(T = t ) .  The feature vector, X, 
is produced by the unknown probability distribution 
hxITZt(z).  The joint probability distribution vector 
( T , X )  is TT(t)hXIT,t(z). A user would choose the 
prior distribution to represent the expected frequency. 
The product t T  could be region and mission specific. 
The optimization takes advantage of any knowledge 
about the distribution of targets. This study used 
equal priors, TT(t) = 1/3 for t = 1 , 2 ,  or 3. The clas- 
sifier, D ,  is a function of range and the range feature 
vector X. The preliminary form of the classifier is 
a range bin specific algorithm. For purposes of this 
study, a range bin was defined as a range plus or mi- 
nus 50 meters. Feature data was generated for the 
range bins of 1300 and 1600 meters. The classifier, 
D ,  maps a feature vector, X, into the set of targets 

Once one has a classifier the question arises on how 
well the classifier works. The decision theory answer 
requires a lost function. Given a decision a ,  a true 
target t ,  and the cost of obtaining a feature, we define 
the lost function as l ( a , t ) .  This study used the lost 
function 

more feature measures that can L e employed to distin- 

{1,2,3).  

i ( a , t ,  n )  = (1 - X{t} ( . ) )  + (21) 

where x { ~ ) ( u )  = 1 if t = a and zero otherwise, and n is 
the number of features required to compute the clas- 
sification and c is the cost of computing each feature. 
If D ( z )  identifies the correct target the lost is 1 + en. 

Given the conditional distribution of the random 
feature vector X and the lost function, we can defined 
the expected risk when the target is t as 

R ( D ,  t )  = ExlT=ti(D(z) ,  t ,  N(D(X)). (22) 

The function R ( X )  is called the conditional risk. 
The function R ( D ,  t )  is the conditional probability of 
misclassification given the target is t plus the expected 
number of features required for the classification func- 
tion D. This function is useful in characterizing the 
behavior of a decision rule for a specific target. The 

risk function, T ,  is defined for a randomly selected tar- 
get as 

r (D)  = E,R(D,T).  (23) 
This shows the expected risk of using the classifier 

with a randomly selected target. The function r (D)  
is the probability of misclassification plus c times the 
average number of features required by D. The clas- 
sification function D is defined in an iterative fashion 
adding a the best (with respect to the risk function r )  
feature and threshold. The parameter e ,  the cost of 
obtaining a new feature, in the risk function, r ,  plays 
a major role in the classification formulation. Suppose 
that in the iterative procedure so far has a misclassi- 
fication probability of 0.04. Suppose that by adding 
new features this probability can be reduced to  0.03. 
If c > 0.01, the risk is increased because the cost of a 
new feature outweighs the benefit gained by lowering 
the error probability. Conversely if c < 0.01 the risk 
is decreased by the addition of the new feature. 

4 Experimental Results 
The experiments were based on a group of three 

targets. For each target, a collection of 37 different 
angles for the ranges from 1230 meters to 1380 meters 
with 10-meter increments in between, and from 1530 
meters to 1680 meters with 10-meter increments in 
between. The features are listed as follows 

1. Area moment invariant (range) 
2. Area moment invariant (binary) 
3. Curve moment invariant 
4. Fourier descriptor 
5. Range transform invariant 
6. Autocorrelation 
7. Morph Spatial Spectra (convex) 
8. Morph Spatial Spectra (concave) 
9. Eccentricity 1 (with range) 

10. Eccentricity 2 (with binary) 
11. Circularity 
12. Elongation 
13. Energy 
14. Entropy 
15. Bending energy 
16. standard deviation 

Each of the listed features is associated with a group 
of parameters. For example, Morph spatial spectra has 
parameters of structuring element sizes, the directions 
of horizontal, verticle, and diagonal. The feature data 
set was used to construct two classification programs. 
One for each of the bins of 1300 and 1600 meters. 
Both the 1300 and the 1600 meter algorithm obtained 
100% classification on the development set. The index 
algorithm is an ordered list of features and thresholds. 
The index algorithm applies each test until one is true 
at  which time it exits with the classification. Each test 
is of the form 
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rameterd) being larger (>) or less (<) than the thresh- 
old, the proportion of training set covered by that test 
and what the classification is if the test is true. 

5 Conclusions 1"- 

lam-, 

102. 

We developed a variety of features for laser radar 
imagery which will be useful in automatic target recog- 
nition. The index procedure was applied to a set of 
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Figure 2: Selected feature measures with an angle 
range (-go", 90"). 
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three targets with 37 angles (from -90 to 90 degrees) 
at two different range bins. A 100% correct classifi- 
cation was achieved in the development set. The ex- 
periment showed that the 90 features (a combination 
of feature functions and parameters) can be combined 
into a multi-feature target classifier. 

The views and conclusions contained in this document 
are those of the authors and should not be interpreted as 
presenting the official policies either expressed or implied, 
of the Army Research Laboratory or the U.S. Government. 
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