
Updating the QR decomposition of block

tridiagonal and block Hessenberg matrices

Martin H. Gutknecht

Seminar for Applied Mathematics, ETH Zurich, ETH-Zentrum HG, CH-8092
Zurich, Switzerland

Thomas Schmelzer

Oxford University Computing Laboratory, Oxford University, Wolfson Building,
Parks Road, Oxford, OX1 3UQ, United Kingdom

Abstract

We present an efficient block-wise update scheme for the QR decomposition of
block tridiagonal and block Hessenberg matrices. For example, such matrices come
up in generalizations of the Krylov space solvers MinRes, SymmLQ, GMRes, and
QMR to block methods for linear systems of equations with multiple right-hand
sides. In the non-block case it is very efficient (and, in fact, standard) to use Givens
rotations for these QR decompositions. Normally, the same approach is also used
with column-wise updates in the block case. However, we show that, even for small
block sizes, block-wise updates using (in general, complex) Householder reflections
instead of Givens rotations are far more efficient in this case, in particular if the
unitary transformations that incorporate the reflections determined by a whole block
are computed explicitly. Naturally, the bigger the block size the bigger the savings.
We discuss the somewhat complicated algorithmic details of this block-wise update,
and present numerical experiments on accuracy and timing for the various options
(Givens vs. Householder, block-wise vs. column-wise update, explicit vs. implicit
computation of unitary transformations). Our treatment allows variable block sizes
and can be adapted to block Hessenberg matrices that do not have the special
structure encountered in the above mentioned block Krylov space solvers.

Key words: block Arnoldi process, block Lanczos process, block Krylov space
method, block MinRes, block SymmLQ, block GMRes, block QMR, block
tridiagonal matrix, block Hessenberg matrix, QR decomposition, QR factorization

Email addresses: mhg@sam.math.ethz.ch (Martin H. Gutknecht),
thoms@comlab.ox.ac.uk (Thomas Schmelzer).

URLs: http://www.sam.math.ethz.ch/∼mhg (Martin H. Gutknecht),

Preprint submitted to Elsevier Science 28 March 2007

1 Introduction

We investigate algorithms for computing and updating the full QR decompo-
sition of block Hessenberg matrices and block triangular matrices with upper
triangular or upper trapezoidal subdiagonal blocks. For example, such block
Hessenberg matrices of increasing size come up in the block GMRes method
introduced by Vital [1]. Likewise, block triangular matrices are successively
built up in the block versions of MinRes and SymmLQ investigated in detail
in [2], and in the block versions of QMR 1 introduced by various authors [3–6].
We will briefly sketch this application first in order to motivate the treatment
of matrices with this structure and to fix our notation. Matrices with full sub-
diagonal blocks can be dealt with by either modifying our procedures to this
case or by (possibly parallel) preliminary computation of QR decompositions
of these subdiagonal blocks, which allow us to reduce the general case to the
one with upper triangular or upper trapezoidal blocks treated here.

Block Krylov space solvers can be used for solving linear systems of equations
with multiple right-hand sides, which we write as Ax = b with

A ∈ CN×N , x ∈ CN×s, b ∈ CN×s. (1)

We refer to x and b as block vectors and denote their columns by x(i) and b(i)

(i = 1, . . . , s), respectively. The nth approximations x(i)
n of the s solutions of

Ax(i)
n = b(i) are chosen so that

x(i)
n − x

(i)
0 ∈ Bn (A, r0) ,

where r0 := b−Ax0 is the initial block residual and

Bn (A, r0) := block span
{
r0,Ar0, . . . ,A

n−1r0

}
(2)

= Kn

(
A, r

(1)
0

)
+ · · ·+Kn

(
A, r

(s)
0

)
⊆ CN (3)

is the sum of the s individual nth Krylov subspaces

Kn

(
A, r

(i)
0

)
:= span

{
r
(i)
0 ,Ar

(i)
0 , . . . ,An−1r

(i)
0

}
.

The block algorithms mentioned above apply the block Arnoldi process (in the
non-Hermitian case) or the block Lanczos process (in the Hermitian case) to
create block vectors y0,y1, . . . ,yn−1 whose orthonormal columns are a basis
for Bn (A, r0). Here, when constructing yn, we have to delete those columns
of Ayn−1 that are already contained in Bn (A, r0). This is called deflation.
It is crucial for the stability of block Lanczos, and it saves memory space

http://web.comlab.ox.ac.uk/thomas.schmelzer (Thomas Schmelzer).
1 We assume QMR without look-ahead here.

2

and computing time in block Arnoldi. Deflation is accounted for, but not
further investigated in this paper. As a consequence, the block vector yi has
si columns, where s ≥ s0 ≥ si ≥ si+1, i = 1, 2, In practice, some rank-
revealing QR decomposition has to be applied to determine the columns that
are deleted. This decomposition implicitly determines an sn× sn permutation
matrix πn that accounts for the column pivoting.

Let us denote by tn (A, r0) the dimension of Bn (A, r0), so that

tn (A,v0) =
∑n−1

i=0
si .

Then, assuming exact deflation only, we can summarize the action of n steps
of the block Arnoldi process as

AYn = Yn+1Hn, (4)

where Yn := (y0 y1 . . . yn−1) ∈ CN×tn contains the orthonormal basis

vectors of Bn (A,y0), and Hn is an extended block Hessenberg matrix with an
additional block row:

Hn :=




Hn

0 . . . 0 ηn,n−1




:=




η0,0 η0,1 · · · η0,n−1

η1,0 η1,1 · · · η1,n−1

η2,1
. . .

...
. . . ηn−1,n−1

ηn,n−1




∈ Ctn+1×tn . (5)

Here the above mentioned permutation matrices are encapsulated in the block
coefficients ηn,n−1. If we let Pn := block diag (π1, . . . , πn) be the permuta-
tion matrix that describes all these permutations, the block Hessenberg ma-

trix HnPn has subdiagonal blocks ηn,n−1πn =: (ρn ρ2
n

) of upper trapezoidal

shape, with a square, upper triangular ρn.

We assume here that the block Arnoldi process generates the block vectors
yn at once and not column by column. This has two important advantages: it
allows us to compute in the nth step sn−1 matrix-vector products at once and
to permute the columns of the newly constructed block vector — a prerequisite
for applying a rank-revealing QR decomposition for determining yn.

If A is Hermitian and either none or only exact deflation occurs, all the blocks
ηk,m with k < m − 1 in Hn are zero blocks, and the square part Hn of Hn

turns out to be Hermitian too. So, Hn is a Hermitian block tridiagonal matrix
now called Tn, and Hn becomes Tn. This reduces the cost of generating the
basis dramatically, but it also causes a strong propagation of roundoff errors.

3

For summarizing the resulting symmetric block Lanczos process the Arnoldi
relation (4) is replaced by the Lanczos relation

AYn = Yn+1Tn , (6)

where

Tn :=




Tn

0 . . . 0 βn−1




:=




α0 βH
0

β0 α1
. . .

.

. βH
n−2

βn−2 αn−1

βn−1




∈ Ctn+1×tn (7)

and αi = αH
i for all i = 1, 2, . . . n− 1.

Nonsymmetric block Lanczos algorithms also make use of relation (6), but the
columns of Yn are in general no longer orthonormal and the square part of
the block tridiagonal matrix Tm is no longer Hermitian. Nevertheless the QR
updating scheme developed in the following section would apply also to this
case, since, as we will see, the symmetry is not capitalized upon.

The symmetric block Lanczos algorithm was the first block Krylov space
method that was introduced [7–10]. The aim was to compute multiple eigen-
values and corresponding eigenspaces. The nonsymmetric block version was
defined in [11] and has since been addressed in a number papers, e.g., [12]. For
the symmetric case the column-wise version was proposed by Ruhe [13], for
the nonsymmetric block Lanczos method it was advocated in various papers
in the 1990ies, in particular [4,6,14]. The column-wise “Ruhe version” of block
Arnoldi was stated in [15]

In this paper we describe in detail a block update procedures for the QR de-
composition of TnPn and Q

n
Pn based on Householder reflections and block

operations. We will see — not unexpectedly — that the block-wise construc-
tion of the block Krylov space basis is not only preferable due to the possible
parallelization of matrix-vector products and the option of pivoting, but that
the corresponding block update procedure for the QR decomposition is far
faster than column-wise updates. The best results are obtained with House-
holder reflections that are block-wise assembled to a unitary matrix applied at
once (instead of applying a sequence of single Householder reflections). Typ-
ically, in the application of a block Krylov method the QR decomposition of
TnPn or Q

n
Pn is only a small cost factor, but when the block size is large,

the savings may be substantial.

4

2 An update scheme for the QR decomposition of block tridiagonal
matrices and upper block Hessenberg matrices

We turn now to the main subject: an efficient recursive QR decomposition
of the extended block tridiagonal and block Hessenberg matrices Tn and Hn.
While in the case of a single system an extremely efficient update algorithm
exists that needs only one new Givens rotation per step, the block case requires
O(s2) rotations per block step. We will show that for this block-wise update it
is more efficient to apply Householder reflections instead. The major portion
of the computing time reduction comes from the usage of BLAS2 or even
BLAS3 block operations and is both software and hardware dependent. Using
BLAS3 operations requires explicitly computing the unitary transformations
incorporating the Householder reflections of whole blocks.

In the next four sections we describe in full detail this block update procedure
that uses, in general, complex Householder reflections. The underlying ideas
are quite straightforward generalizations and modifications of the QR update
algorithms for the non-block cases, but the details are quite tedious and require
a careful implementation. Finally, in Section 5, accuracy and timing experi-
ments that confirm the superiority of the new approach will be presented.

As we mentioned before, the subdiagonal blocks of HnPn and TnPn are up-
per trapezoidal, a fact we will capitalize upon. We treat the block tridiagonal
matrices Tn generated by the symmetric Lanczos process first since their struc-
ture is more special. The generalization to the block Hessenberg matrices Hn

will be easy.

Let TnPn = Qn+1Rn be the full QR decomposition of TnPn so that Qn+1 is
a unitary tn+1 × tn+1 matrix and Rn is an upper triangular tn+1 × tn matrix
with full column rank. Recall that

TnPn =




α0π1 βH
0 π2

β0π1 α1π2
. . .

β1π2
.

. βH
n−2πn

. . . αn−1πn

βn−1πn




∈ Ctn+1×tn , (8)

where

αiπi+1 is an si × si block and

βiπi+1 is an si+1 × si upper trapezoidal block, βiπi+1 =:
(

ρi+1 ρ2
i+1

)

5

with a square, upper triangular ρi+1. Rn has the form

Rn :=




α̃0 β̃0 γ̃0

α̃1 β̃1
. . .

. γ̃n−3

. . . β̃n−2

α̃n−1

0sn×tn




∈ Ctn+1×tn , (9)

where

α̃i is an si × si upper triangular block with full rank,
β̃i is an si × si+1 block, and
γ̃i is an si × si+2 lower trapezoidal block.

Examples are depicted in Figs. 1 and 2. Note that the matrix TnPn is, in
general, not even structurally symmetric, but all subdiagonal blocks are upper
trapezoidal. When some permutations πi differ from the identity, the upper
edge of the band need not decrease monotonously.

0 5 10 15 20

0

5

10

15

20

Fig. 1. The block tridiagonal
structure of a matrix TnPn.

0 5 10 15 20

0

5

10

15

20

Fig. 2. The corresponding block
structure of the matrix Rn.

We determine the unitary matrix Qn+1 in its factored form. Starting from
Q1 = Is0 we apply the recurrence relation

Qn+1 :=




Qn 0tn×sn

0sn×tn Isn


 Un , (10)

6

where

Un :=




Itn−1 0tn−1×(sn−1+sn)

0(sn−1+sn)×tn−1 Ûn


 . (11)

Here Ûn is a unitary matrix of order sn−1 + sn matrix, which still needs to
be determined. Once the sequence of unitary transformations Û1, . . . , Ûn will
be known, it will be possible to compute Qn+1 with a simple scheme. Assume
that the tn × tn matrix Qn has the form

Qn =:
(

q0 q1 . . . qn−2 q̃n−1

)
,

where qi ∈ Ctn×si , and that

Ûn :=




Ûn,u

Ûn,d


 , (12)

where Ûn,u is an si−1× (si−1 +si) matrix and Ûn,d is an si× (si−1 +si) matrix.
Then

Qn+1 =




q0 . . . qn−2 q̃n−1Ûn,u

0 . . . 0 Ûn,d


 . (13)

In particular, the matrix Qn+1 has a trapezoidal structure.

In most applications the explicit computation of Qn+1 is neither needed nor
recommended. However, if for some reason it is desired, the following update
algorithm, which follows from (13) and is here described using Matlab no-
tation, could be used.

Algorithm 1 (Explicit computation of Qn+1)

Let Û1, . . . , Ûn be the sequence of unitary matrices appearing in (11), and let
Qn+1 := Itn+1. For recursively constructing Qn+1 apply, for i = 1, . . . , n,

• the upper part of Ûi:

Qn+1 (1 : ti, ti−1 + 1 : ti+1) := Qn+1 (1 : ti, ti−1 + 1 : ti) Ûi,u , (14)

• the lower part of Ûi:

Qn+1 (ti + 1 : ti+1, ti−1 + 1 : ti+1) := Ûi,d . (15)

In view of (10) and (11) the multiplication of TnPn by block diag (QH
n , Isn)

annihilates all subdiagonal elements except those below the diagonal of the

7

last sn−1 columns; or if we regard TnPn as a matrix with n block columns, it
does not annihilate the subdiagonal elements in the last block column, i.e.,




QH
n 0

0 Isn


 TnPn = UnRn =




α̃0 β̃0 γ̃0

α̃1 β̃1
. . .

.

. γ̃n−3

α̃n−2 β̃n−2

µn

βn−1πn




. (16)

For the entries in the last block column or the entries in the last sn−1 columns,
respectively, we have in particular




γ̃n−3

β̃n−2

µn

βn−1πn




=




Isn−3 0 0

0 ÛH
n−1 0

0 0 Isn







ÛH
n−2 0 0

0 Isn−1 0

0 0 Isn







0sn−3×sn−1

βH
n−2πn

αn−1πn

βn−1πn




. (17)

For annihilating all subdiagonal elements we have to construct a unitary ma-
trix Ûn of order sn−1 + sn such that




µn

νn


 :=




µn

βn−1πn


 = Ûn




α̃n−1

0sn×sn−1


 , (18)

where α̃n−1 is an upper triangular nonsingular sn−1 × sn−1 block. This is just
another QR decomposition. Potentially the left-hand side of (18) could be
rank-deficient. For βn−1πn this is true in case of deflation, but for the whole
left-hand side this can be seen to be impossible as TnPn has full column rank.
Altogether, the relations (17) and (18) yield the following algorithm.

Algorithm 2 (Block update scheme for QR decomposition of Tm)

By applying a sequence of unitary matrices Û1, . . . , Ûm to the block tridiagonal
matrix TmPm of (8) the upper triangular matrix Rm of (9) is recursively
constructed as follows. For n = 1, . . . , m:

(1) Let α̃ := αn−1πn, and let β̃ := βH
n−2πn if n > 1.

8

If n > 2, apply ŨH
n−2 to two blocks of the new last block column of Tn:




γ̃n−3

β̃


 := ÛH

n−2




0sn−3×sn−1

β̃


 ;

if n > 1, apply ŨH
n−1 to two blocks of the last block column of UH

n−2Tn:




β̃n−2

µn


 := ÛH

n−1




β̃

α̃


 .

(2) Compute Ûn and α̃n−1 by the QR decomposition (18) (as described in
Section 4).

(3) If needed, construct Qn+1 according to Algorithm 1.

There are various ways to construct the QR decomposition (18). Assuming
sn−1 = sn = s and a parallel computer, Vital [1, pp. 115-116] suggests to
distribute the necessary s2 Givens rotations in such a way on s processors
that at most 2s − 1 are done on a single processor; but results need to be
broadcast after each rotation, so for today’s parallel computers the tasks are
much too small, that is, the parallelism is much too fine grain to be effective.
Freund and Malhotra [4] apply Givens rotations column by column since they
construct Tn column by column, and since they want to solve a problem with
a single right-hand side as a special case of the general block problem [16]. As
mentioned above, in the case of a single right-hand side it is enough to apply
one Givens rotation per iteration. However, as we show next, when several (or
even many) right-hand sides are treated, it is more efficient to use a product
of possibly complex Householder reflections.

For block GMRes we need to QR-decompose a block Hessenberg matrix how-
ever, but the modification needed in the above treated procedure is minor. The
block matrix that needs to be QR-decomposed is no longer TnPn of (8) but

HnPn =




η0,0π1 η0,1π2 · · · η0,n−1πn

η1,0π1 η1,1π2 · · · η1,n−1πn

η2,1π2
. . .

...
. . . ηn−1,n−1πn

ηn,n−1πn




∈ Ctn+1×tn , (19)

9

and the resulting upper triangular factor Rn is now full:

Rn :=




η̃0,0 η̃0,1 · · · η̃0,n−1

η̃1,1 · · · η̃1,n−1

. . .
...

η̃n−1,n−1

0sn×tn




∈ Ctn+1×tn . (20)

In Algorithm 2 is was enough to apply at most two transformations ÛH
n−1 and

ÛH
n−2 each step. Here we have to apply all previously constructed transforma-

tions ÛH
1 , . . . , ÛH

n−1 in every step.

Algorithm 3 (Block update scheme for QR decomposition of Hm)

By applying a sequence of unitary matrices Û1, . . . , Ûm to the block Hessenberg
matrix HmPm of (19) the upper triangular matrix Rm of (20) is recursively
constructed as follows. For n = 1, . . . , m:

(1) Set η̃k,n−1 := ηk,n−1πn (k = 0, . . . , n − 1). If n > 1, apply each of the

n − 1 unitary transformations ŨH
1 , . . . , ŨH

n−1 to two blocks of the new
last block column of Tn: for k = 1, . . . , n− 1, redefine




η̃k−1,n−1

η̃k,n−1


 := ÛH

k




η̃k−1,n−1

η̃k,n−1


 .

(2) Let µn := η̃n−1,n−1, νn := ηn,n−1πn, and compute Ûn and α̃n−1 by the
QR decomposition (18) (as described in Section 4).

(3) If needed, construct Qn+1 according to Algorithm 1.

3 Complex Householder reflections

In this section, following Wilkinson [17, pp. 49-50], we summarize the basic
formulas for complex Householder reflections and mention some of the imple-
mentation options.

For any nonzero v ∈ Cn the matrix

Hv := In − 2
v vH

〈v,v〉 = In + β v vH (21)

10

with β = −2/ 〈v,v〉 ∈ R, is called a Householder reflection. It describes a
reflection at the complimentary subspace orthogonal to v. We note that Hv

is Hermitian and unitary, i.e. HH
v = Hv and HvH

H
v = In. A vector y ∈ Cn is

mapped to
Hvy = y + βv 〈v,y〉 . (22)

Householder’s goal — extended to the complex case — was to choose v de-
pending on y such that

Hvy = αe1 (23)

for some α ∈ C. As Hv is unitary, |α| = ‖y‖2. We can exclude that y is a
multiple of e1, since the choice v := 0, Hv := I would suffice in this case.
Inserting (22) yields

y − αe1 = −β 〈v,y〉v. (24)

In particular v ∈ span {y − αe1}. As Hv = Hλv for all λ ∈ C\ {0} we can
choose v = y − αe1 without loss of generality. By (24) this choice implies

〈v,y〉 = −β−1 ∈ R.

What remains is to determine the argument of α. Assume y1 6= 0 first, and let
y1 = |y1|eiθ and α = ‖y‖2e

iθα . Then

〈v,y〉 = 〈y − αe1,y〉 = ‖y‖2
2 − ‖y‖2e

−iθαeiθ|y1|.

So either α = +‖y‖2e
iθ or α = −‖y‖2e

iθ. With the first choice cancellation
may occur in the first component of v. The second choice is better and yields

−β−1 = 〈v,y〉 = ‖y‖2 (‖y‖2 + |y1|) .

If y1 = 0, then αe1 ⊥ y and the value of α has no effect on 〈v,y〉 = ‖y‖2
2. So

choosing, e.g., eiθ = 1 is fine. Finally, a straightforward but lengthy calculation
shows that the just determined values of α and β yield indeed (23).

Algorithm 4 (Implicit construction of Hv)

Given y =
(

y1 . . . yn

)T

∈ Cn\{0} that is not a multiple of e1, a Householder

reflection Hv satisfying Hvy = αe1 is constructed as follows:

• If y1 6= 0, let eiθ := y1/|y1|; otherwise let eiθ := 1.
• Compute α and β according to

α := −‖y‖2e
iθ, β :=

−1

‖y‖2 (‖y‖2 + |y1|) . (25)

• Compute v := y − αe1.

For evaluating Hvy for some y it is not necessary to compute the actual matrix
Hv. It might be more economical and accurate to store only v and β and to

11

apply (22). Parlett [18] presents a thorough discussion of the choice of the sign
of α when computing Householder reflections. Lehoucq [19] compares different
variants for the choice of the vector v and the corresponding coefficient β.
He specifically compares the different ways of computing Hv in EISPACK,
LINPACK, NAG and LAPACK. Golub and van Loan [20] also discuss the
real case at length.

4 QR decomposition of a lower banded matrix

In this section we describe a particularly efficient way of computing the QR
decomposition (18) of two blocks from the diagonal and subdiagonal of TnPn

or HnPn. It capitalizes on the trapezoidal structure of the matrix νn :=
βn−1πn. Recall that µn is sn−1 × sn−1, while νn is sn × sn−1. For example, if
sn−1 = 5 and sn = 4,




µn

νn


 =




◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦




.

We determine sn−1 Householder reflections H1,n, . . . ,Hsn−1,n such that




α̃n−1

0sn×sn−1


 = Hsn−1,n . . .H1,n︸ ︷︷ ︸

ÛH
n




µn

νn


 , (26)

where α̃n−1 is an upper triangular matrix. Assume that reflections H1,n,H2,n

have been computed such that

H2,nH1,n




µn

νn


 =




◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
• ◦ ◦
• ◦ ◦
• ◦ ◦
• ◦ ◦
• ◦ ◦
• ◦ ◦
◦ ◦




.

12

The highlighted section of the third column determines the next Householder
reflection. In step i this vector has the size

li,n = sn−1 − i + 1︸ ︷︷ ︸
size of upper part

+ min (i, sn)︸ ︷︷ ︸
size of lower part

,

and the last entry is in row ei,n = li,n + i − 1. In this example we have i = 3
and l3,n = 5− 3 + 1 + 3 = 6 and e3,n = 6 + 3− 1 = 8. Hence the Householder
reflection that has to be applied to the ith column is given by

Hi,n := diag
(
Ii−1, Ĥi,n, Isn−min(i,sn)

)
,

where Ĥi,n is a Householder reflection in the sense of our original definition
(21): a reflection at a hyperplane but in a space of dimension li,n only. When
applying this reflection we only compute those entries that are not invariant.
In this example the first two and the last row will not be influenced at all.
All we have to do is to apply the reflection Ĥi,n on the submatrix whose left

column is exactly given by the vector generating Ĥi,n. Here this submatrix is
highlighted: 



◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

α • •
• •
• •
• •
• •
• •
◦ ◦




After this submatrix has been updated we proceed with the construction of
the next reflection.

Algorithm 5 (QR decomposition of a lower banded matrix)

Let µn be an sn−1× sn−1 block, νn an upper trapezoidal sn× sn−1 block, U the
identity matrix of dimension sn + sn−1 and

M :=




µn

νn


 . (27)

For implicitly constructing sn−1 Householder reflections such that (26) holds
we proceed for i = 1, . . . , sn−1 as follows:

• Compute li,n and ei,n:

li,n := sn−1 − i + 1 + min (i, sn) , ei,n := li,n + i− 1. (28)

13

• Construct by Algorithm 4 the Householder reflection Ĥi,n that generates
zeros in the ith row of M below the diagonal: i.e., compute β and v using
the vector

y := yi,n := M (i : ei,n, i) . (29)

• Apply Ĥi,n to the corresponding submatrix of M:

M (i : ei,n, i + 1 : sn−1)

= M (i : ei,n, i + 1 : sn−1) + βv
(
vHM (i : ei,n, i + 1 : sn−1)

)
.

(30)

• Apply Ĥi,n to the corresponding submatrix of U:

U (i : ei,n, i : i + li,n − 1)

= U (i : ei,n, i : i + li,n − 1) + βv
(
vHU (i : ei,n, i : i + li,n − 1)

)
.

(31)

Finally we let α̃n−1 := M(1 : sn−1, 1 : sn−1) and ÛH
n := U.

In practice, whenever QH
n+1 has to be applied to a vector or a block vector, we

can apply it in the factored form defined by (10) and (11) with the matrices Ûn

constructed here with the recursion (31) of Algorithm 5; see Step (1) of Algo-
rithm 3. Of course, we could split up Ûn further into a product of Householder
operations or, likewise, in a product of Givens rotations. But by applying QH

n+1

in the factored form with explicitly computed factors Ûn to several column
vectors at once we can make use of BLAS3 operations, while splitting up Ûn

into Householder reflections would lead to BLAS2 operations only. Using a
product of Givens rotations we would even end up with BLAS1 operations.
The unitary matrix Ûn, which is a product of sn−1 Householder reflections, is
an example of a block reflector. The efficiency of such block reflectors, in par-
ticular on parallel computers, has been pointed out and investigated before:
see, e.g., Schreiber and Parlett [21], where similar block reflectors are used for
the reduction to block Hessenberg form and Bischof and van Loan [22], where
a special representation for block reflectors was introduced.

5 Numerical experiments on Householder reflections vs. Givens
rotations

In this section we present numerical experiments performed with Matlab on
an IBM ThinkPad T42 with a 1.7 GHz Centrino processor and 512 MByte
of RAM running Windows XP and Matlab 6.5. Given an upper trapezoidal
matrix M defined by (27) with sn−1 = sn = w, a total of w Householder
reflections, applied as described in Section 4, are an efficient way to construct
the QR decomposition of M. An alternative is to apply in a double loop a set

14

0 20 40 60 80 100
0

2

4
x 10

−15 Frobenius norm of QR−M

no
rm

0 20 40 60 80 100

1

2

3
x 10

−15 Frobenius norm of QH Q−I
no

rm

Fig. 3. Experiment 1: Accuracy of the QR decomposition of 100 random 10 × 5
upper trapezoidal matrices M. The solid line represents results gained by using
Householder reflections. The dashed line corresponds to Givens rotations.

of w Givens rotations per column, that is a total of w2. In a first experiment
we compare the accuracy of both approaches.

Experiment 1 We apply both methods for the QR decomposition — House-
holder reflections and Givens rotations — to a set of 100 random 10×5 upper
trapezoidal matrices M. The results are shown in Fig. 3. The accuracy of both
methods turns out to be on the same level: except in a few cases the Frobe-
nius norms of M − QR and of QHQ − I are for both methods of the same
magnitude. The norm of QHQ− I is typically slightly smaller if Householder
reflections are used. For the explicit computation of Q we have applied the
unitary transformations to I10×10 as in (31).

The time spent for the decomposition of the matrices Hn or Tn is in many
but not all cases almost negligible compared with the duration of the Arnoldi
process dominated by the matrix vector multiplications and the inner prod-
ucts to orthogonalize the basis vectors. In fact the decomposition takes place
completely in the projected coordinate space and hence solely depends on the
dimension of the block Krylov space rather than the size or structure of A. The
relative cost of the QR decomposition clearly depends strongly on the problem
and the implementation of its solution method, as well as on the hardware.
Therefore, we only quantify the acceleration of the QR decomposition, and
for this we work with matrices Hn and Tn filled with random entries.

In Algorithm 3 we have to apply each of n−1 unitary transformations ÛH
1 , . . . ,

ÛH
n−1. These unitary transformations are available as products of Householder

reflections or Givens rotations and could be applied in this way. However, it
is more efficient to compute them explicitly by applying the unitary transfor-

15

mations to an identity matrix as in (31). Storing these unitary transformation
requires about four times the space needed for storing just the Householder
transformations, but this is still much less than storing the product Qn+1 of
all so far computed Householder reflections. In other words, we want to apply
the factorization of Qn+1 described in Algorithm 1.

Experiment 2 Given a block upper Hessenberg matrices Hn of size 51w ×
50w with w = 10 we apply Algorithm 3 with and without explicit construction
and application of the matrices ÛH

i . The following average times in seconds
have been measured for a set of (random) matrices.

Householder reflectors, explicit construction of ÛH
i 0.21 sec.

Householder reflectors, implicit construction of ÛH
i 0.96 sec.

Givens rotations, explicit construction of ÛH
i 0.26 sec.

Givens rotations, implicit construction of ÛH
i 1.41 sec.

The results show that the multiplication by individual Givens or Householder
transformations is not as effective as the explicit construction of the matrices
ÛH

1 , . . . , ÛH
n−1.

The experiment above also gives a first indication that Householder reflec-
tors are indeed faster than Givens rotations. Using explicit construction we
compare both methods for upper block Hessenberg matrices of different size.

Experiment 3 Given block upper Hessenberg matrices Hn of size 51w×50w
we apply Algorithm 3 with both methods for the QR decomposition for variable
w. In both cases we construct the matrices ÛH

i explicitly. The results are shown
in Figure 4.

The difference between both methods is not very pronounced as a large fraction
is spent in the first step of Algorithm 3 where both methods do not differ at
all — as we apply the explicit construction. The situation is a bit different for
block tridiagonal Lanczos matrices where the first step is less pronounced.

Experiment 4 Given block tridiagonal Lanczos matrices Tn of size 51w ×
50w (for variable w) we apply Algorithm 2 with both methods for the QR de-
composition. In both cases we use the explicit construction of ÛH

i . See Figure 5.

In all experiments so far we have assumed a block-wise construction of Hn

and Tn as opposed to the column-wise construction of Ruhe [13] or Freund
and Malhotra [4]. This block-wise construction enables us to update the QR
decomposition of Hn and Tn block-wise and to apply pivoting in the Arnoldi
or Lanczos process that yields these matrices.

16

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

width w

cp
u

tim
e

in
 s

ec
on

ds

Householder reflections
Givens rotations

Fig. 4. Experiment 3: Computation time for the QR decomposition of 51w × 50w
block Hessenberg matrices Hn. The solid line represents results gained by using
Householder reflections. The dashed line corresponds to Givens rotations. In both
cases the matrices ÛH

i were constructed explicitly.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

width w

cp
u

tim
e

in
 s

ec
on

ds

Householder reflections
Givens rotations

Fig. 5. Experiment 4: Computation time for the QR decomposition of 51w × 50w
block tridiagonal Lanczos matrices Tn. The solid line represents results gained by
using Householder reflections. The dashed line corresponds to Givens rotations. In
both cases the matrices ÛH

i were constructed explicitly.

In our last experiment we mimic this column-wise approach by replacing every
operation acting on various columns by an explicit loop over the columns in
which the operation is applied to just one column at a time.

Experiment 5 Given block tridiagonal Lanczos matrices Tn of size 51w ×
50w we mimic, for variable block width w, the column-wise computation or
update of the QR decomposition using either one of the two methods. The
results are shown in Figure 6.

17

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

width w

cp
u

tim
e

in
 s

ec
on

ds

Householder reflections, column−wise
Givens rotations, column−wise

Fig. 6. Experiment 5: Computation time for the column-wise QR decomposition of
51w× 50w block tridiagonal Lanczos matrices Tn. The solid line represents results
gained by using Householder reflections. The dashed line corresponds to Givens
rotations.

We see that here Householder reflections are much faster than Givens rota-
tions; e.g., by a factor of about 8.5 for w = 20. However, noting that the scale
on the y-axes in Figures 5 and 6 differs by a factor of 20, we also see that the
efficiency gain by using the block method of Algorithm 2 (or of Algorithm 3
in case of a block Hessenberg matrix) is of the same order of magnitude: e.g.,
if w = 20, we gain a factor of about 20 when using Givens rotations, and a
factor of about 4 when using Householder reflections. In total, by replacing
column-wise Givens rotations by block-wise assembled Householder rotations
we gain a factor of more than 30 if w = 20.

The performance differences we noticed will be even much more pronounced
if we have block sizes of the order of 100 or even more, as in some of Langou’s
examples [23].

6 Conclusions and generalizations

The standard approach for computing or updating the QR decomposition of a
block tridiagonal matrix TnPn = QnRn or a block Hessenberg matrix has been
a column-wise update algorithm based on Givens rotations, a generalization
of the well known update algorithm for tridiagonal or Hessenberg matrices. In
the literature on block Krylov space methods it has also been recommended
to compute Tn column by column.

As is well known, QR factorizations based on either Givens rotations or House-
holder reflections produce the Q-factor successively in factored form. We show

18

here that for highest efficiency one should not use the fully factored forms, as
one loses parallel efficiency due to small grain parallelism. Explicitly multi-
plying together certain partial products of Householder or Givens transforma-
tions allows us to apply BLAS3 operations instead of BLAS2 (Householder)
or BLAS1 (Givens) operations.

So we promote here a block-wise construction of Tn and, for the QR decom-
position, a block-wise update algorithm based on assembling the Householder
reflections that belong to every block. It turns out that our QR decomposition
is equally accurate as the one based on Givens rotations and that even on a
serial computer it is much faster than column-wise updates with Givens ro-
tations, the difference becoming more and more pronounced as the block size
grows. For example, for a block size of 20, the computing time for the decom-
position was reduced by a factor of more than 30 in our simulations. Moreover,
the block-wise execution of the block Arnoldi or block Lanczos process allows
us to profit from the parallel computation of matrix-vector products.

Our approach can be generalized quickly from the symmetric block Lanczos
to the unsymmetric block Lanczos and the block Arnoldi processes, and from
the QR decomposition of banded symmetric block tridiagonal matrices to the
one of banded unsymmetric block tridiagonal matrices or block Hessenberg
matrices as they come up in block QMR and block GMRes, respectively.

Acknowledgment. The authors are indebted to Walter Gander for pointing
out the references [21] and [22].

References

[1] B. Vital, Etude de quelques méthodes de résolution de problèmes linéaires de
grande taille sur multiprocesseur, Ph.D. thesis, Université de Rennes (1990).

[2] T. Schmelzer, Block Krylov methods for Hermitian linear systems, Diploma
thesis, Department of Mathematics, University of Kaiserslautern, Germany
(2004).

[3] W. E. Boyse, A. A. Seidl, A block QMR method for computing multiple
simultaneous solutions to complex symmetric systems, SIAM J. Sci. Comput.
17 (1) (1996) 263–274.

[4] R. W. Freund, M. Malhotra, A block QMR algorithm for non-Hermitian linear
systems with multiple right-hand sides, Linear Algebra Appl. 254 (1997) 119–
157.

[5] V. Simoncini, A stabilized QMR version of block BICG, SIAM J. Matrix Anal.
Appl. 18 (2) (1997) 419–434.

19

[6] J. I. Aliaga, D. L. Boley, R. W. Freund, V. Hernández, A Lanczos-type method
for multiple starting vectors, Math. Comp. 69 (232) (2000) 1577–1601.

[7] J. Cullum, W. E. Donath, A block generalization of the symmetric s-step
Lanczos algorithm, Tech. Rep. RC 4845, IBM T.J. Watson Research Center
(May 1974).

[8] R. Underwood, An iterative block Lanczos method for the solution of large
sparse symmetric eigenproblems, Ph.D. thesis, Stanford University, Stanford,
CA (1975).

[9] W. Kahan, B. N. Parlett, How far should you go with the Lanczos process, in:
J. Bunch, D. Rose (Eds.), Sparse Matrix Computations, Academic Press, New
York, 1976, pp. 131–144.

[10] G. H. Golub, R. Underwood, The block Lanczos method for computing
eigenvalues, in: Mathematical Software, III (Proc. Sympos., Math. Res. Center,
Univ. Wisconsin, Madison, Wis., 1977), Academic Press, New York, 1977, pp.
361–377. Publ. Math. Res. Center, No. 39.

[11] D. P. O’Leary, The block conjugate gradient algorithm and related methods,
Linear Algebra Appl. 29 (1980) 293–322.

[12] Z. Bai, D. Day, Q. Ye, ABLE: an adaptive block Lanczos method for non-
Hermitian eigenvalue problems, SIAM J. Matrix Anal. Appl. 20 (4) (1999) 1060–
1082 (electronic), sparse and structured matrices and their applications (Coeur
d’Alene, ID, 1996).

[13] A. Ruhe, Implementation aspects of band Lanczos algorithms for computation
of eigenvalues of large sparse symmetric matrices, Math. Comp. 33 (146) (1979)
680–687.

[14] R. W. Freund, Computation of matrix Padé approximations of transfer
functions via a Lanczos-type process, in: Approximation Theory VIII, Vol. 1
(College Station, TX, 1995), World Sci. Publishing, River Edge, NJ, 1995, pp.
215–222.

[15] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston,
1996.

[16] R. W. Freund, QR Zerlegung im Lanczos Prozess, private note (2004).

[17] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press,
1965.

[18] B. N. Parlett, Analysis of algorithms for reflectors in bisectors, SIAM Review
13 (1971) 197–208.

[19] R. B. Lehoucq, The computations of elementary unitary matrices, ACM Trans.
Math. Software 22 (1996) 393–400.

[20] G. H. Golub, C. F. van Loan, Matrix Computations, 3rd Edition, Johns Hopkins
University Press, Baltimore, MD, 1996.

20

[21] R. Schreiber, B. Parlett, Block reflectors: theory and computation, SIAM J.
Numer. Anal. 25 (1) (1988) 189–205.

[22] C. Bischof, C. Van Loan, The WY representation for products of Householder
matrices, SIAM J. Sci. Statist. Comput. 8 (1) (1987) S2–S13, parallel processing
for scientific computing (Norfolk, Va., 1985).

[23] J. Langou, For a few iterations less, talk presented at the Eighth Copper
Montain Conference on Iterative Methods, Copper Mountain (CO), March 28
- April 2, 2004.

21

