
On the Sizes of DPDAs, PDAs, LBAs

by Richard Beigel and William Gasarch

Abstract

There are languages A such that there is a Pushdown Automata (PDA) that recognizes A

which is much smaller than any Deterministic Pushdown Automata (DPDA) that recognizes

A. There are languages A such that there is a Linear Bounded Automata (Linear Space Tur-

ing Machine, henceforth LBA) that recognizes A which is much smaller than any PDA that

recognizes A. There are languages A such that both A and A are recognizable by a PDA, but

the PDA for A is much smaller than the PDA for A. There are languages A1, A2 such that

A1, A2, A1 ∩ A2 are recognizable by a PDA, but the PDA for A1 and A2 are much smaller

than the PDA for A1 ∩A2. We investigate these phenomema and show that, in all these cases,

the size difference is captured by a function whose Turing degree is on the second level of the

arithmetic hierarchy.

Our theorems lead to infinitely-often results. For example: for infinitely many n there

exists a language An such that there is a small PDA for An, but any DPDA for An is large. We

look at cases where we can get almost-all results, though with much smaller size differences.

1 Introduction

Let DPDA be the set of Deterministic Push Down Automaton, PDA be the set of Push Down

Automata, and LBA be the set of Linear Bounded Automata (usually called NSPACE(n)). Let

L(DPDA) be the set of languages recognized by DPDAs (similar for L(PDA) and L(LBA)). It is

well known that

L(DPDA) ⊂ L(PDA) ⊂ L(LBA).

Our concern is with the size of the DPDA, PDA, LBA. For example, let A ∈ L(DPDA). Is it

possible that there is a PDA for A that is much smaller than any DPDA for A? For all adjacent

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357305843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pairs above we will consider these questions. There have been related results by Valiant [12],

Schmidt [9], Meyer and Fischer [8], Hartmanis [3], and Hay [4]. We give more details on their

results later.

Let Σ be a finite alphabet. All of our languages will be subsets of Σ∗.

Convention 1.1 A device will either be a recognizer (e.g., a DFA) or a generator (e.g., a regular

expression). We will useM to denote a set of devices (e.g., DFAs) We will refer to an element of

M as anM-device. If P is anM-device then let L(P) be the language recognized or generated

by P . Let L(M) = {L(P) : P ∈M}.

Def 1.2 Let M and M′ be two sets of devices such that every L(M) ⊆ L(M′). (e.g., DFAs

and DPDAs). A bounding function for (M,M′) is a function f such that for all A ∈ L(M), if

A ∈ L(M′) via a device of size n then A ∈ L(M) via a device of size ≤ f(n).

Def 1.3

1. The size of a DFA or NDFA is the number of states it has.

2. The size of a DPDA or PDA is the sum of the number of states and the number of symbols

in the stack alphabet.

3. The size of a CFG or CSL is the number of nonterminals it has.

4. The size of an LBA is the sum of the number of states and the number of symbols in the

alphabet (note that the alphabet used by the Turing machine may have more symbols than in

the input alphabet).

We now give some examples and known results.

Known Upper Bounds:

2

Example 1.4

1. f(n) = 2n is a bounding function for (DFA,NDFA) by the standard proof that L(NDFA) ⊆

L(DFA).

2. f(n) = nn
nO(n)

is a bounding function for (DFA,DPDA). This is a sophisticated construction

by Stearns [10].

3. f(n) = O(nO(1)) is a bounding function for (CFG,PDA). This can be obtained by an inspec-

tion of the proof that L(CFG) ⊆ L(PDA).

4. f(n) = O(n) is a bounding function for (PDA,CFG). This can be obtained by an inspection

of the proof that L(PDA) ⊆ L(CFG).

5. f(n) = O(n) is a bounding function for (CSG,LBA). This can be obtained by an inspection

of the proof that L(CSG) ⊆ L(LBA).

6. f(n) = O(n) is a bounding function for (LBA,CSG). This can be obtained by an inspection

of the proof that L(LBA) ⊆ L(CSG).

Known Lower Bounds:

Example 1.5

1. Meyer and Fischer [8] proved that (1) If f is the bounding function for (DFA,NDFA) then

2n ≤ f(n). (2) If f is the bounding function for (DFA,DPDA) then 22O(n) ≤ f(n). (3) If f

is the bounding function for (DFA,CFG) then HALT ≤T f . The sets they used for (3) were

finite.

2. Let UCFG be the set all unambiguous context free grammars. Valiant [12] showed that if f

is the bounding function for (DPDA,UCFG) then HALT ≤T f

3. Schmidt [9] showed that if f is the bounding function for (UCFG,CFG) then HALT ≤T f

3

4. Hartmanis [3] showed that if f is the bounding function for (DPDA,PDA) then HALT ≤T

f .

5. Hay [4] showed that if f is the bounding function for (DPDA,PDA) then f 6≤T HALT . She

also showed that there is a bounding function f for (DPDA,PDA) such that f ≤T INF .

(INF is the set of all indices of Turing machines that halt on an infinite number of inputs.

It is complete for the second level of the arithmetic hierarchy and hence strictly harder than

HALT .)

Note 1.6 The results above that conclude HALT ≤T f were not stated that way in the original

papers. They were stated as either f is not recursive or f is not recursively bounded. However, an

inspection of their proofs yields that they actually proved HALT ≤T f .

Def 1.7 LetM be a set of devices. A c-bounding function forM is a function f such that for all

A that are recognized by an M-device of size n, if A ∈ L(M) then it is recognized by an M-

device, of size ≤ f(n).

We now give some examples and known results.

Example 1.8

1. f(n) = 2n is a c-bounding function for NDFA. This uses the standard proofs thatL(NDFA) ⊆

L(DFA) and that L(DFA) is closed under complementation.

2. f(n) = O(n) is a c-bounding function for DPDA. This is an easy exercise in formal language

theory.

3. f(n) = O(n) is a c-bounding function for LBA. This can be obtained by an inspection of

the proof, by Immerman-Szelepcsenyi [5, 11], that nondeterministic linear space is closed

under complementation.

4

Def 1.9 LetM be a set of devices. An i-bounding function forM is a function f such that for all

A1, A2 that are recognized by anM-device of size n, if A1 ∩A2 ∈ L(M) then it is recognized by

anM- device, of size ≤ f(n).

Example 1.10

1. LetM be any of DFA, DPDA, P, DTIME(T (n)) for any reasonable T (n). f(n) = O(n)

is an i-bounding function forM. This uses the standard proofs that these classes are closed

under complementation. For that matter f(n) = O(n) is the i-bounding function for any

class we can think of that is closed under complementation.

2. f(n) = 22n is an i-bounding function for NDFAs. Convert both NDFAs to DFAs and then

use the standard proof that L(DFA) is closed under complementation.

Note 1.11 We will state our results in terms of DPDAs, PDAs, and LBAs. Hence you may read

expressions like L(PDA) and think isn’t that just CFLs? It is. We do this to cut down on the

number of terms this paper refers to.

2 Summary

We will need the following notation and facts to state our results.

Fact 2.1

1. M0,M1,M2, . . . is a standard numbering of all Turing Machines.

2. Me,s(x) is the result of running Me(x) for s steps.

3. HALT is the set {(e, x) : Me(x) halts }. HALT is Σ1-complete. Hence any ∃ question can

be phrased as a query to HALT .

5

4. INF is the set {e : (∀x)(∃y, s)[Me,s(y) halts]}. INF is Π2-complete. Hence any (∀)(∃)

question can be phrased as a query to INF . Note that any (∃)(∀) question can also be

phrased as a query; however, you will have to negate the answer.

5. A ≤T B means that A is decidable given complete access to set B. This can be defined

formally with oracle Turing machines.

6. The following is well known. If f ≤T HALT then there exists a computable g such that, for

all n, f(n) = lims→∞ g(n, s).

We also need the following informal term.

Def 2.2 (Informal) A language is unnatural if it exists for the sole point of proving a theorem.

Example 2.3

1. Languages that involve Turing configurations are not natural.

2. Languages created by diagonalization are not natural.

3. The language {ww : |w| = n} is natural.

Note 2.4 We will sometimes state theorems as follows: there exists a (natural) language such that

. . .. If we do not state it that way then the language is unnatural.

The results of Hartmanis [3] and Hay [4] mentioned above leave open the exact Turing degree

of the bounding function for (DPDA,PDA). In Section 3 we resolve this question by proving a

general theorem from which we obtain the following:

1. If f is a bounding function for (DPDA,PDA) then INF ≤T f .

2. There exists a bounding function for (DPDA,PDA) such that f ≤T INF .

6

3. If INF 6≤T f then for infinitely many n there exists a language An such that (1) any DPDA

that recognizes An requires size ≥ f(n), (2) there is a PDA of size ≤ n that recognizes An.

(This follows from Part 1.)

4. If f is a bounding function for (PDA,LBA) then INF ≤T f .

5. There exists a bounding function for (PDA,LBA) such that f ≤T INF .

6. If INF 6≤T f then for infinitely many n there exists a language An such that (1) any PDA

that recognizes An requires size≥ f(n), (2) there is an LBA of size≤ n that recognizes An.

(This follows from Part 4.)

In Section 4 and 5 we find the exact Turing degree of the c-bounding function and the i-

bounding function for PDAs. We obtain the following:

1. If f is a c-bounding function for PDA then INF ≤T f .

2. There exists a c-bounding function for PDA such that f ≤T INF .

3. If INF 6≤T f then for infinitely many n there exists a language An such that (1) An and An

are both PDA, (2) there is no PDA of size ≤ f(n) for An, but (3) there is a PDA of size ≤ n

for An. (This follows from Part 1.)

4. Results 1,2,3 but with i-bounding functions instead of c-bounding functions.

Note that we have several results of the form for infinitely many n We would like to have

results of the form for almost all n In Sections 6 and 7 we obtain the following for almost all

n result:

For almost all n there exists a (natural) language An such that

1. Any DPDA for An requires size ≥ 22n
Ω(1)

.

7

2. There is a PDA of size O(n) that recognizes An.

For almost all n there exists a (natural) language An such that

1. Both An and An are recognized by PDAs.

2. Any PDA for An requires size ≥ 22n
Ω(1)

.

3. There is a PDA of size O(n) that recognizes An.

For almost all n there exists a (natural) language An such that

1. Any PDA for An requires size ≥ 22n
Ω(1)

.

2. There is an LBA of size O(n) that recognizes An.

In Section 8 we obtain1 a for almost all n result for (PDA,LBA):

Let f be any function such that f ≤T HALT . For almost all n there exists a language An such

that

1. Any PDA for An requires size ≥ f(n).

2. There is an LBA of size O(n) that recognizes An.

3 Bounding Functions for (DPDA,PDA) and (PDA,LBA)

In this section we prove a general theorem about bounding functions and then apply it to both

(DPDA,PDA) and (PDA,LBA). In both cases we show that the Turing degree of the bounding

function is the second level of the arithmetic hierarchy.

We will need to deal just a bit with actual Turing Machines.

1Meyer originally claimed this result. See the discussion in Section 8.

8

Def 3.1 Let M be a Turing Machine. A configuration (config) of M is a string of the form α1
q
σα2

where α1, α2 ∈ Σ∗, σ ∈ Σ, and q ∈ Q. We interpret this as saying that the machine has α1σα2 on

the tape (with blanks to the left and right), is in state q, and the head is looking at the square where

we put the q
σ. Note that from the configuration one can determine if the machine has halted, and

also, if not, what the next configuration is.

Def 3.2 Let e, x ∈ N Let $ be a symbol that is not in the alphabet for Me. We assume that any

halting computation of Me takes an even number of steps.

1. ACCe,x be the set of all sequences of config’s represented by

$C1$CR
2 $C3$CR

4 $ · · · $CR
s $

such that

• |C1| = |C2| = · · · = |Cs|.

• The sequence C1, C2, . . . , Cs represents an accepting computation of Me(x).

2. Let ACCe =
⋃
x∈NACCe,x.

Hartmanis [3] proved the following lemma.

Lemma 3.3 For all e, x, ACCe,x ∈ L(PDA). For all e, ACCe ∈ L(PDA). In both cases it is

computable to take the parameters ((e, x) or e) and obtain the PDA.

Def 3.4 LetM andM′ be two sets of devices.

1. M⊆M′ effectively if there is a computable function that will, given anM-device P , output

anM′-device P ′ such that L(P) = L(P ′).

9

2. M is effectively closed under complementation if there is a computable function that will,

given anM-device P , output anM-device P ′ such that L(P ′) = L(P).

3. The non-emptiness problem for M is the following: given an M-device P determine if

L(P) 6= ∅.

4. The membership problem for M is: given an M-device P and x ∈ Σ∗ determine if x ∈

L(P).

5. M is size-enumerable if there exists a list of devices P1, . . . such that (1)M = {L(Pi) : i ∈

N}, (2) (∀i)[|Pi| ≤ |Pi+1|], and (3) the function from i to Pi is computable. Note that DFA,

NDFA, DPDA, PDA, LBA are all size-enumerable, however UCFG is not.

Theorem 3.5 LetM andM′ be two sets of devices such that the following hold.

• L(M) ⊆ L(PDA) ⊆ L(M′) effectively.

• At least one ofM,M′ is effectively closed under complementation.

• The non-emptiness problem forM is decidable.

• The membership problems forM andM′ are decidable.

• Every finite set is in L(M).

• M is size-enumerable.

Then

1. If f is a bounding function for (M,M′) then HALT ≤T f .

2. If f is a bounding function for (M,M′) then INF ≤T f .

3. There exists a bounding function f ≤T INF for (M,M′).

10

4. If INF 6≤T f then for infinitely many n there exists a language An such that (1) anyM-

device that recognizes An requires size ≥ f(n), (2) there is anM′-device of size ≤ n that

recognizes A. (This follows from Part 2 so we do not prove it.)

Proof:

1) If f is a bounding function for (M,M′) then HALT ≤T f .

Note that

• If Me(x) halts then ACCe,x has one string, which is the accepting computation of Me(x).

• If Me(x) does not halt then ACCe,x = ∅.

• Given e, x one can construct a PDA for ACCe,x by Lemma 3.3.

We give the algorithm. There will be two cases in it depending on which of M or M′ is

effectively closed under complementation.

ALGORITHM FOR HALT THAT USES f

1. Input(e, x)

2. Construct the PDA P for ACCe,x. Obtain the device Q inM′ that accepts ACCe,x.

3. Case 1: M is effectively closed under complementation. Compute f(|Q|). Let D1, . . . , Dt

be all of the M-devices of size ≤ f(|Q|). Create the M devices for their complements,

which we denote E1, . . . , Et.

Case 2:M′ is effectively closed under complementation. Find anM′- deviceR for L(Q) =

ACCe,x. Compute f(|R|). Let E1, . . . , Et be all of theM-devices of size ≤ f(|R|).

Note that at the end of step 3, regardless of which case happened, we have a set ofM-devices

E1, . . . , Et such that

11

e ∈ HALT iff

(∃1 ≤ i ≤ t)[L(Ei) is one string which represents an accepting computation of Me(x)].

4. For each 1 ≤ i ≤ t (1) determine if L(Ei) = ∅ (2) if L(Ei) = ∅ then let wi be the empty

string, and (3) if L(Ei) 6= ∅ then, in lexographical order, test strings for membership in

L(Ei) until you find a string in L(Ei) which we denote wi. If {w1, . . . , ws} contains a string

representing an accepting computation of Me(x) then output YES. If not then output NO.

END OF ALGORITHM

2) If f is a bounding function for (M,M′) then INF ≤T f .

Note that

• If e ∈ INF then ACCe /∈ L(PDA) since ACCe is infinite and every string in it begins with

$C1$CR
2 $C3$ where |C1| = |CR

2 | = |C3|.

• If e /∈ INF then ACCe ∈ L(PDA) since ACCe is finite.

• Given e one can construct a PDA for ACCe by Lemma 3.3.

We give the algorithm. There will be two cases in it depending on which of M or M′ is

effectively closed under complementation.

In the algorithm below we freely use Fact 2.1.2 to phrase (∃)-questions as queries to HALT ,

and Part 1 to answer queries to HALT with calls to f .

ALGORITHM FOR INF THAT USES f

1. Input(e)

2. Construct the PDA P for ACCe. Obtain the device Q inM′ that accepts ACCe.

12

3. There are two cases.

Case 1: M is effectively closed under complementation. Compute f(|Q|). Let D1, . . . , Dt

be all of the M-devices of size ≤ f(|Q|). Create the M devices for their complements,

which we denote E1, . . . , Et.

Case 2:M′ is effectively closed under complementation. Find anM′- deviceR for L(Q) =

ACCe. Compute f(|R|). Let E1, . . . , Et be all of theM-devices of size ≤ f(|R|).

Note that at the end of step 3, regardless of which case happened, we have a set ofM-devices

E1, . . . , Et such that

e ∈ INF =⇒ ACCe /∈ L(PDA) =⇒ ACCe /∈ L(M) =⇒ ACCe /∈ {L(E1), . . . , L(Et)}

=⇒ (∃x1, . . . , xt)(∀1 ≤ i ≤ t)[ACCe(xi) 6= Ei(xi)].

e /∈ INF =⇒ ACCe is finite =⇒ ACCe ∈ L(M) =⇒ (∃1 ≤ i ≤ t)[L(Ei) = L(Pi)]

=⇒ ¬(∃x1, . . . , xt)(∀1 ≤ i ≤ t)[ACCe(xi) = Ei(xi)].

4. Ask (∃x1, . . . , xt)(∀1 ≤ i ≤ t)[ACCe(xi) 6= Ei(xi)]. (Note that ACCe is decidable so this

is a (∃) question.) If YES then output YES. If NO then output NO.

3) There exists a bounding function f ≤T INF for (M,M′).

In the algorithm below we freely use Fact 2.1.3 to phrase (∃)(∀)-questions as queries to INF .

Algorithm for f

1. Input(n)

2. MAX=0.

3. For everyM′-device P of size ≤ n do the following

(a) Ask (∃M-device D)(∀x)[P (x) = D(x)]?

13

(b) If YES then for i = 1, 2, 3, . . . ask (∃M-device D, |D| = i)(∀x)[P (x) = D(x)]?

until the answer is YES.

(c) Let i be the value of i when the last step stopped. Note that (∃D, |D| = i)(∀x)[P (x) =

D(x)]. If i > MAX then MAX = i.

4. Output MAX.

Corollary 3.6

1. If f is a bounding function for (DPDA,PDA) then INF ≤T f .

2. There exists a bounding function for (DPDA,PDA) such that f ≤T INF .

3. If INF 6≤T f then for infinitely many n there exists a language An such that (1) any DPDA

that recognizes An requires size ≥ f(n) for An, but (2) there is a PDA of size ≤ n that

recognizes An.

4. If f is a bounding function for (PDA,LBA) then INF ≤T f .

5. There exists a bounding function for (PDA,LBA) such that f ≤T INF .

6. If INF 6≤T f then for infinitely many n there exists a language An such that (1) any PDA

that recognizes An requires size ≥ f(n), (2) there is an LBA of size ≤ n that recognizes An.

Proof: We can apply Theorem 3.5 to all the relevant pairs. since all of the premises needed are

either obvious, well known, or follow from the comments in Definition 3.7.

Note 3.7 Since deterministic time classes are effectively closed under complementation we can

also apply Theorem 3.5 to get a corollaries about any deterministic time class that containsL(PDA).

14

Let α be the least number such that two n× n Boolean matrices can be multiplied in time O(nα).

We abuse notation by letting DTIME(nα) be the set of all deterministic Turing machines that run

in time O(nα). Valiant [13] showed that that L(PDA) ⊆ L(DTIME(nα)). (Lee [6] showed that

if L(PDA) ⊆ DTIME(n3−ε) then α ≤ 3 − (ε/3); therefore the problems of L(PDA) recogni-

tion and matrix multiplication are closely linked.) Hence we could obtain a corollary about the

bounding function for (PDA,DTIME(nα)).

4 c-Bounding Functions for PDA

The following theorem can be proven in essentially the same way as Theorem 3.5 hence we just

sketch the proof.

Theorem 4.1

1. If f is a c-bounding function for PDA then HALT ≤T f .

2. If f is a c-bounding function for PDA then INF ≤T f .

3. There exists a c-bounding function f ≤T INF for PDA. (This is almost identical to the

proof of Theorem 3.5.3 so we do not prove it.)

4. If INF 6≤T f then for infinitely many n there exists a language An such that (1) An, An ∈

L(PDA), (2) there is no PDA of size ≤ f(n) for An, but (3) there is a PDA of size ≤ n for

An. (This follows from Part 2 so we do not prove it.)

Proof:

1. P1, P2, . . . , is a size-enumerable of PDAs.

2. f is a c-bounding function for PDAs.

3. g (when on two variables) is the computable function such that ACCe,x is recognized by

PDA Pg(e,x).

15

4. g (when on one variable) is the computable function such that ACCe is recognized by PDA

Pg(e).

1) Let t = f(g(e, x)).

(e, x) ∈ HALT iff (∃1 ≤ a ≤ t)[L(Pa) is an accepting computation of Me(x)].

Since both the nonemptiness problem and the membership problem for PDAs is decidable this

condition can be checked.

2) Let t = f(g(e)).

e ∈ INF =⇒ ACCe /∈ L(PDA) =⇒ ACCe /∈ {L(P1), . . . , L(Pt)} =⇒

(∃x1, . . . , xt)(∀1 ≤ i ≤ t)[Pi(xi) 6= ACCe(xi)].

e /∈ INF =⇒ ACCe is finite =⇒ ACCe /∈ {L(P1), . . . , L(Pt)} =⇒

¬(∃x1, . . . , xt)(∀1 ≤ i ≤ t)[Pi(xi) 6= ACCe(xi)].

We can now use f ≤T HALT to determine if (∃x1, . . . , xt)(∀1 ≤ i ≤ t)[Pi(xi) 6= ACCe(xi)].

is true or not.

5 i-Bounding Functions for PDA

Def 5.1 We use the same conventions for Turing machines as in Definition 3.2 Let e, x ∈ N.

1. ODDACCe,x be the set of all sequences of config’s represented by

$C1$CR
2 $C3$CR

4 $ · · · $CR
s $

such that

• |C1| = |C2| and |C3| = C4 and . . . and |Cs−1| = |Cs|.

• For all odd i, Ci+1 is the next configuration after Ci. (Note that we have no comment

on, say C2 and C3 and they could even be of different lengths.)

16

• Cs represents an accepting configuration.

2. Let ODDACCe =
⋃
x∈NODDACCe,x.

3. EV ENACCe,x be the set of all sequences of config’s represented by

$C1$CR
2 $C3$CR

4 $ · · · $CR
s $

such that

• |C2| = |C3| and |C4| = |C5| and . . . and |Cs−2| = |Cs−1|.

• For all even i, Ci+1 is the next configuration after Ci. (Note that we have no com-

ment on, say C3 and C4 and they could even be of different lengths. And we have no

restriction on C1.)

4. Let EV ENACCe =
⋃
x∈NEV ENACCe,x.

Note that

1. (e, x) ∈ HALT iff ODDACCe,x ∩EV ENACCe,x contains only one string and that string

is an accepting computation of Me(x).

2. e ∈ INF iff ODDACCe ∩ EV ENACCe /∈ L(PDA).

Using these two facts you can prove the theorem below in a manner similar to the proof of

Theorem 4.1.

Theorem 5.2

1. If f is an i-bounding function for PDA then HALT ≤T f .

2. If f is an i-bounding function for PDA then INF ≤T f .

17

3. There exists an i-bounding function f ≤T INF for PDA.

4. If INF 6≤T f then for infinitely many n there exists languages An,1 and An,2 such that (1)

An,1, An2 ∈ L(PDA), (2) there is no PDA of size ≤ f(n) for An,1 ∩ An,2, but (3) there is a

PDA of size ≤ n for An,1 ∩ An,2.

6 A Double-Exp For-Almost-All Result Via a Natural Language for (DPDA,PDA)

We show that for almost all n there is a (natural) language An such that An has a small PDA but

An requires a large PDA. We then use this to show that for almost all n there is a language An that

has a small PDA but requires a large DPDA.

Lemma 6.1 Let X, Y, Z be nonterminals. Let Σ be a finite alphabet.

1. For all n ≥ 2 there is a PDA of size O(log n) that generates {Y n}.

2. For all n ≥ 2 there is a PDA of size O(log n) that generates {a, b}n.

3. For all n ≥ 2 there is a PDA of size O(log n) that generates {Y ≤n}.

4. For all n ≥ 2 there is a PDA of size O(log n) that generates {a, b}≤n.

Proof:

We present CFGs of size O(log n). By Example 1.4 this suffices to obtain PDAs of size

O(log n).

1) We show that there is a CFG of size ≤ 2 lg n that generates {Y n} by induction on n.

If n = 2 then the CFG for {Y Y } is

S → Y Y

which has 2 = 2 lg 2 nonterminals.

If n = 3 then the CFG for {Y Y Y } is

S → Y1Y | Y1 → Y Y

18

which has 3 ≤ 2 lg 3 nonterminals.

Assume that for all m < n there is a CFG of size ≤ 2 lgm for {Y m}. We prove this for n.

• n is even. Let G′ be the CFG for {Y n/2} with the start symbol replaced by S ′. The CFG G

for {Y n} is the union of G′ and the one rule S → S ′S ′. This CFG has one more nonterminal

than G′. Hence the number of nonterminals in G is

≤ 2 lg(n/2) + 1 = 2(lg n− 1) + 1 = 2 lg n− 1 ≤ 2 lg n.

• n is odd. Let G′ be the CFG for {Y (n−1)/2} with the start symbol replaced by S ′. The CFG

G for {Y n} is the union of G′ and the two rules S → Y S ′′ and S ′′ → S ′S ′. This CFG has

two more nonterminals than G′. Hence the number of nonterminals in G is

≤ 2 lg((n− 1)/2) + 2 = 2(lg(n− 1)− 1) + 2 = 2 lg(n− 1)− 2 + 2 = 2 lg(n− 1) ≤ 2 lg n.

2) Add the the productions Y → a and Y → b to the grammar from Part 1.

3,4) These can be obtained in a manner similar to Parts 1,2.

Theorem 6.2 For almost all n there exists a (natural) language An such that the following hold.

1. An, An ∈ L(PDA).

2. Any PDA that recognizes An requires size ≥ 22n
Ω(1)

.

3. There is a PDA of size O(n) that recognizes An.

Proof: We show there is a language An such that (1) An, An ∈ L(PDA), (2) any PDA that rec-

ognizes An requires size≥ 2n
Ω(1) , (3) there is a PDA of sizeO(log n) that recognize An. Rescaling

this result yields the theorem.

19

Let Wn = {ww : |w| = n}. Let An = Wn.

1) An is cofinite, so both An and An are in L(PDA).

2) Filmus [2] showed that any CFG for Wn requires size ≥ 2Ω(n). Hence by Example 1.4 any PDA

for Wn = An requires size ≥ 2n
Ω(1) .

3) We present a CFG for An of size O(log n). By Example 1.4 this suffices to obtain a PDA of size

O(log n).

Note that if x ∈ An then either |x| ≤ 2n− 1 or there are two letters in x that are different and

are exactly n− 1 apart.

The CFG is the union of two CFGs. The first one generates all strings of length ≤ 2n− 1. By

Lemma 6.1 there is such a CFG of size O(log n).

The second one generates all strings of length≥ 2nwhere there are two letters that are different

and exactly n− 1 apart.

By Lemma 6.1 there is a CFG G′ of size O(log n) that generates all strings of length n−1. Let

S ′ be its start symbol. G′ will be part of our CFG G, though S ′ will not be the start symbol.

Our CFG has all of the rules in G′ and also the following:

S → UaS ′bU | UbS ′aU

U → aU | bU | e

This CFG clearly generates what we want and is of size O(log n).

We can now obtain a double exponential result about (DPDA,PDA).

Theorem 6.3 For almost all n there exists a (natural) language An such that the following hold.

1. Any DPDA that recognizes An requires size ≥ 22n
Ω(1)

.

2. There is a PDA of size O(n) that recognizes An.

20

Proof: Let An be as in Theorem 6.2. We already have that An has a PDA of size O(n). We

show that any DPDA for An is large. Let P be an DPDA for An. By Example 1.4 there is a DPDA

P ′ for An of size O(|P |). By Theorem 6.2 |P ′| ≥ 22n
Ω(1)

, hence |P | ≥ 22n
Ω(1)

,

7 A Double-Exp For-Almost-All Result Via a Natural Language for (PDA,LBA)

We show that for almost all n there is a (natural) language An that has a small LBA but requires a

large PDA.

Theorem 7.1 For almost all n there exists a (natural) language An such that the following hold.

1. Any PDA that recognizes An requires size ≥ 22n
Ω(1)

.

2. There is an LBA of size O(n) that recognizes An.

Proof: We show there is a language An such that (1) any PDA for An requires size ≥ 2n
Ω(1) and

(2) there is an LBA of size O(log n) for An. Rescaling this result yields the theorem.

Let #σ(w) be the number of σ’s in w. Let

An = {w | #a(w) = #b(w) = #c(w)}.

1) Filmus [2] showed that any CFG for An requires size ≥ 2Ω(n). Hence, by Example 1.4, any

PDA for An requires size ≥ 2n
Ω(1) .

2) We present a CSG forAn of sizeO(log n). By Example 1.4 this yields an LBA of sizeO(log n).

LetGA (GB,GC) be the grammar for the language {An} ({Bn}, {Cn}) from Lemma 6.1. Note

that GA, GB, GC are all of size O(log n). Let SA (SB, SC) be the start symbol for GA (GB, GC).

Make sure that all of the nonterminals in GA, GB, GC are disjoint.

The CSGG forAn has start symbol S, all of the productions inGA, GB, GC , and the following

rules

21

S → SASBSC

AB → BA

AC → CA

BA→ AB

BC → CB

CA→ AC

CB → BC

A→ a

B → b

C → c

Since GA, GB, GC are of size O(log n), the CSG G is of size O(log n).

8 A Ginormous For-Almost-All Result for (PDA,LBA)

Meyer and Fisher [8] say the following in their Further Results Section:

. . . context-sensitive grammars may be arbitrarily more succinct than context-free grammars . . .

The reference given was a paper of Meyer [7]. That paper only refers to Turing Machines. We

exchanged emails with Meyer about this and he informed us that his techniques could be used to

obtain the result that is Theorem 8.1 below. Rather than work through his proof we provide our

own which is probably similar.

Let P1, P2, . . . be an easily accessible list of all PDAs. They are in order of size. We assume

that Pe is of size ≥ e.

Theorem 8.1 Let f ≤T HALT . For almost all n there exists An such that the following hold.

1. Any PDA that recognizes An requires size ≥ f(n).

2. There is an LBA of size O(n) that recognizes An.

22

Proof: We construct the language An by describing an NSPACE(|x|) algorithm. The idea is

thatAn will be equivalent (up to a finite number of strings) to a large PDA and will be diagonalized

against all small PDAs.

Since f ≤T HALT , by Fact 2.1.5, there exists a computable g such that (∀n)[f(n) =

lims→∞ g(n, s)].

ALGORITHM for An

1. Input(x). Let s = |x|. Carry out the algorithm given below unless the computation uses

more than s space, in which case reject and stop. Note that all steps but the last depend on s

but not on x.

2. Compute g(n, s). We denote it by t.

3. Compute An on all strings of length ≤ lg lg s.

4. Simulate deterministically P1, P2, . . . , Pt on all inputs of length ≤ lg lg s. Using the mem-

bership information about An that was calculated in the last step we find some 1 ≤ i ≤ t and

z ∈ Σ≤lg lg s (there may not be any) such that Pi(z) 6= An(z). Let ACTIV E be the set of i

such that no z was found hence it is still possible that L(Pi) = An.

5. Search for (a, {xi : i ∈ ACTIV E}) such that a ≥ t and for all i ∈ ACTIV E, Pi(xi) 6=

Pa(xi). When one is found goto the next step. We describe the search carefully since it will

help in our proof later.

For a = t, t+ 1, t+ 2, . . . , 2t do the following.

(a) ELIM = {1, . . . , a− 1}−ACTIV E. The set ELIM will be all of the indices i such

that we have a witness to L(Pi) 6= An.

(b) For y ∈ Σ≤s in lexographical order, (1) Simulate Pa(y), (2) Simulate all {Pi(y) :

i ≤ a − 1, i /∈ ELIM}, (3) Add to ELIM all i found such that there exists y with

23

Pi(y) 6= Pa(y).

(c) If after you’ve gone through all such y you have ELIM = {1, 2, . . . , a− 1} then goto

the next step with this value of a. Else proceed to the next a.

6. Simulate nondeterministically the PDA for Pa on x.

END OF ALGORITHM for An

By the definition of g there exists s0, t such that, for all s, s′ ≥ s0, g(n, s) = g(n, s0) = t. Let

a be the least number ≥ t such that L(Pa) differs from L(P1), . . . , L(Pt−1). It is easy to show that

there exists an s1 ≥ s0 such that (1) for all s ≥ s1, on inputs of length s1, the algorithm will find

the value a, and (2) for all s ≥ s1 the algorithm will finish, i.e., the algorithm will not terminate

via using too much space.

We do not have that L(Pa) = An. We do have that L(Pa) and An differ on only a finite number

of strings, hence L(Pa) ∈ L(PDA).

We show that for all i < a, An 6= L(Pi). Assume by way of contradiction that there exists

i < a such that L(Pi) = An. Let s ≥ s1 be very large (we’ll say how large later). Lets look at what

happens on an input of length s. Since L(Pi) = An the index i will be put in the set ACTIV E.

Since a is chosen the index i was put into the set ELIM . Hence L(Pi) and L(Pa) differ on some

string of length ≥ lg lg s. We take s large enough so that An and L(Pa) agree on strings of length

≥ lg lg s. Hence the disagreement of L(Pi) and L(Pa) means a disagreement of L(Pi) and An.

Therefore L(Pi) 6= An.

The machine operates in nondeterministic linear space since (1) for all but the last step we do

not allow it to use more than |x| space, and (2) the last step is a nondeterministic simulation of a

PDA which is nondeterministic linear space.

The machine is of size O(n) since the only parameter it uses that is not constant is n. In fact,

we could even write the machine down with O(log n) space but this does not help us.

24

What was it about PDAs and LBAs that made this proof work? The fact that we could simulate

PDAs with LBAs with very little overhead is all we needed. We could formulate a much more

general theorem; however, we do not.

9 Open Problems

In Corollary 3.6 we obtained many results of the form for infinity many n there is a language An

such that (1) any BLAH that recognizes An requires size≥ f(n), (2) there is a BLAH’ of size≤ n

that recognizesAn. The languagesAn were not natural. For that matter, they were not explicit. Can

we obtain such results, or perhaps slightly weaker results, with explicit and/or natural languages?

Recall Theorem 6.3: for almost all n there exists a (natural) language An such that (1) Any

DPDA that recognizes An requires size ≥ f(n), (2) there is a PDA of size O(n) that recognizes

An, where f(n) = 22n
Ω(1)

. Is the same theorem true with a faster growing f? If we used a non-

natural language then can we get a faster growing f? One obstacle is that there are very few

techniques available to get lower bounds on DPDAs. In fact we used lower bounds on PDAs, and

closure of DPDA under complementation, to get our results. Another obstacles is that PDAs are

too weak to allow for a diagonalization proof in the spirit of Theorem 8.1.

Recall Theorem 7.1: for almost all n there exists a (natural) language An such that (1) Any

PDA that recognizes An requires size ≥ f(n), (2) there is an LBA of size O(n) that recognizes

An, where f(n) = 22n
Ω(1)

. Is the same theorem true with a faster growing f? If we allow non-

natural An then we can do much better as shown in Theorem 8.1. How well can we do with natural

sets? One obstacle is that there are very few techniques available to get lower bounds on PDAs.

We’ve used the lower bounds of Filmus [2]; however, it is unlikely they can be pushed further.

Recall Theorem 8.1: Let f ≤T HALT . For almost all n there exists (unnatural) An such that

(1) any PDA that recognizes An requires size ≥ f(n), (2) there is an LBA for An of size O(n). Is

the same theorem true with a faster growing f? One possible result would be to look at f <T INF .

Valiant [12] showed that if f is the bounding function for (DPDA,UCFG) then HALT ≤T f

25

and Schmidt [9] showed that if f is the bounding function for (UCFG,CFG) then HALT ≤T f .

Both of these bounding functions can easily be shown to be computable-in-INF ; however, it is

open to determine the exact Turing degree of these bounding functions. On difficulty is that UCFG

is not size-enumerable.

We have shown that it is possible to have large size differences between (say) DPDAs and

PDAs. But what happens in the typical case? It is open to even state the question and what the

answer is.

10 Acknowledgment

We thank Albert Meyer for help with Theorem 8.1 and for pointing us to Schmidt’s paper. We thank

Karthik Gopalan and Rebecca Kruskal for help with some of the proofs and for proofreading. We

thank Sam Zbarsky for help with Lemma 6.1. We thank Jefferey Shallit whose paper [1] inspired

this paper,

References

[1] K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular expressions: new results and open

problems. Journal of Automata, Languages, and Combinatorics, 9(2):233–256, 2004.

[2] Y. Filmus. Lower bounds for context-free grammars. Information Processing Letters,

111(18):895–898, 2011.

[3] J. Hartmanis. On the succinctness of different representations of languages. SIAM Journal

on Computing, 9(1):114–120, 1980.

[4] L. Hay. On the recursion-theoretic complexity of relative succinctness of representations of

languages. Information and Computation, 52(1):1–7, 1982.

26

[5] N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal on

Computing, 17(5):935–938, 1988. Prior version in Conf. on Structure in Complexity Theory,

1988.

[6] L. Lee. Fast contex-free grammar parsing requires fast boolean matrix multiplication. Journal

of the ACM, 49(1):1–15, 2002.

[7] A. Meyer. Program size in restricted programming languages. Information and Control,

21(4):382–394, 1972.

[8] A. Meyer and M. Fischer. Economy of description by automata, grammars and formal sys-

tems. In Proceedings of the 12th Annual symposium on Switching and Automta Theory, pages

188–191, Washington, DC, 1971. IEEE.

[9] E. Schmidt. Succintness of descriptions of unambigous context-free languages. Technical

Report Technical Report 76-277, Cornell University, Dept of Computer Science, April 1976.

http://ecommons.library.cornell.edu/handle/1813/7319.

[10] R. E. Stearns. A regularity test for pushdown machines. Information and Control, 11(2):323–

340, 1967.

[11] R. Szelepcsenyi. The method of forced enumeration for nondeterministic automata. Acta

Informatica, 25(3):279–284, 1988.

[12] L. Valian. A note on the succintness of descriptions of deterministic languages. Information

and Control, 32(2):139–145, 1976.

[13] L. Valiant. General context-free recognition in less than cubic time. Journal of Computer

and System Sciences, 10(2):308–315, 1975.

27

