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Summary Adjuvants enhance antibody response against vaccination. We compared the
ability of MF59TM-adjuvanted and non-adjuvanted subunit influenza vaccines, containing
A/Wyoming/3/03(H3N2), to confer cross-protection against four consecutive drifted strains in
the elderly. Neutralizing and haemagglutination-inhibiting antibody were measured. MF59TM-
adjuvanted vaccine induced a stronger booster response against A/Panama/2007/99(H3N2)
than non-adjuvanted vaccine. A/Panama/2007/99(H3N2) circulated widely during the previous

5 years and was included in vaccines over four consecutive seasons. Broader serolog-
ical protection against drifted strains that circulated 1 and 2 years after vaccination
with A/Wyoming/3/03(H3N2) was observed with MF59TM-adjuvanted vaccine. Thus, MF59TM-
adjuvanted vaccine confers greater immunogenicity than non-adjuvanted vaccines in vulnerable
populations.
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ntroduction

nfluenza vaccines need to elicit an effective immune

esponse against the virus strains included in the vac-
ine and against antigenically different virus strains, as
rifted strains can appear following annual recommendation
f vaccine composition. Such drifted strains can compro-
ise vaccine-induced immunity, due to antigenic mismatch
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ith the vaccine strain, and resulting seroprotection rates
assessed as serum haemagglutination-inhibiting [HI] assay
itres ≥40 IU) can vary according to the antigenic distance
etween the vaccine strain and the circulating strain [1—4].
n elderly subjects, seroprotection rates can be as low as 20%
gainst drifted strains, dropping from ≥70% in years where
good antigenic match is observed [1—4].
Although the HI assay is considered the ‘‘gold standard’’

or evaluation of vaccine-induced antibody response, there
re some well-known limitations of this technique, in terms
f sensitivity and specificity [5]. For example, during an out-
reak caused by a drifted strain, protective HI titres against
he strain were identified in 87% of vaccinated elderly nurs-
ng home residents diagnosed with influenza. These data
uggest that such antibody levels might not be sufficient to
eutralize viral infectivity [6]. In contrast, neutralization
NT) assays may be more sensitive than the HI test, both in
etecting a higher rate of antibody increases and in detect-
ng antibody levels in individuals who are seronegative
ccording to the HI assay. Furthermore, they may provide
more functional measure of vaccine-induced immunity

2,7].
Several strategies have been proposed to address the

eed for vaccines that offer enhanced protection against
rifted strains, including the use of adjuvanted vaccines,
niversal vaccines, and vaccines that exploit mechanisms of
ross-protective immunity [8]. Studies have demonstrated
hat addition of the adjuvant MF59TM to subunit influenza
accine can lead to higher seroprotection rates against
rifted strains not included in the vaccine than are achieved
ith non-adjuvanted subunit vaccine [3,9]. These studies
ave predominantly used the HI assay for the estimation of
ntibody response, and there is currently a lack of data on
he effect of drift on the neutralization ability of antibody
licited by influenza vaccines against heterovariant strains.
o gain a more complete understanding of the effect of

TM
F59 on antibody response, we compared the ability of an
F59TM-adjuvanted vaccine and a non-adjuvanted subunit

nfluenza vaccine to confer cross-protection against four
onsecutive drifted variants, measuring both the HI and NT
ctivity of antibody. The study was conducted at a time when
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igure 1 (A) Antigenic and molecular distances between t
/California/7/04, and Wisconsin/67/05. The phylogenetic tree was b

ar head region of haemagglutinin and including the vaccine strains in
ost-vaccination haemagglutination-inhibiting (HI) and neutralizatio
accinated with an MF59TM-adjuvanted vaccine or a non-adjuvanted
o viral strain. Data expressed as mean titres. Error bars denote st
on-adjuvanted vaccine.
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new A(H3N2) strain had been recommended for vaccine
nclusion.

ethods

tudy population

rior to the 2004—2005 influenza season, healthy,
lderly subjects (n = 50; ≥65 years of age) were ran-
omly assigned (1:1) to receive either a single dose of
F59TM-adjuvanted subunit influenza vaccine (FLUAD®;
ovartis Vaccines, Siena, Italy) or a non-adjuvanted
ubunit influenza vaccine (Agrippal®; Novartis Vaccines,
iena, Italy). Sera were collected immediately before
nd 21 days after vaccination. Both vaccines contained
5 �g of each of the influenza strains recommended for
he Northern hemisphere 2004—2005 influenza season
A/New Caledonia/20/99(H1N1); A/Wyoming/3/03(H3N2);
/Shanghai/361/02). All subjects provided written,

nformed consent prior to participation in the study, and
nstitutional guidelines were followed.

ssessment of immune response and statistical
nalysis

I and NT antibodies were titred, as previously described
5,10], against four consecutive drifted A(H3N2) variants:
/Panama/2007/99 (Pan/99); A/Wyoming/3/03 (Wyo/03);
/California/7/04 (Cal/04); and A/Wisconsin/67/05
Wisc/05), representing vaccine composition changes for
(H3N2) during the last decade. The A(H3N2) subtype was
hosen because it is most associated with disease burden
n the elderly. The antigenic and molecular distances
etween the vaccine strain (Wyo/03) and Pan/99, Cal/04,
nd Wisc/05 are shown in Fig. 1A. Pan/99, Cal/04, and

isc/05 presented 16, 10, 11 amino acid changes with

espect to Wyo/03 on the globular head of haemagglutinin,
espectively. Purified strains were kindly supplied by Alan
ay, World Health Organization Influenza Centre, London,
nited Kingdom.

he vaccine strain (A/Wyoming/3/03), A/Panama/2007/99,
ased on sequence analysis of the region codifying for the globu-

the last decade. The strains used in this study are in bold and (B)
n (NT) titres, corrected for pre-vaccination status, in subjects
vaccine, each containing A/Wyoming/3/03 antigen, according
andard deviation. **P < 0.01, *P < 0.05, MF59TM-adjuvanted vs.
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Table 1 Antibody response determined using HI and NT assays after vaccination with an MF59TM-adjuvanted vaccine and
non-adjuvanted vaccine, according to viral strain

Test and parameters MF59TM-adjuvanted vaccine (n = 25) Non-adjuvanted vaccine (n = 25)

Pan/99 Wyo/03 Cal/04 Wisc/05 Pan/99 Wyo/03 Cal/04 Wisc/05

HI test
Pre-vaccination GMT 99.0 75.7 18.4 13.0 110.0 64.0 15.3 11.3
Post-vaccination GMT 422.3a 347.7a,b 50.5a,b 38.3a,b 205.3a 129.9a 21.9a 23.2a

MFI 4.26 4.59 2.74 2.95 1.86 2.02 1.43 2.05
Seroprotection rate (%) 100 100 80b 64b 100 96 28 20
Seroconversion rate (%) 60b 68b 48b 44 24 28 8 20

NT test
Pre-vaccination GMT 117.9 28.6 13.2 16.0 131.8 20.6 15.2 9.7
Post-vaccination GMT 588.0a 194.2a,b 47.2a 80.0a 357.5a 62.3a 36.8a 45.9a

MFI 4.99 6.79 3.57 5.00 2.71 3.02 2.42 4.73

mean
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HI, hemagglutination-inhibiting; GMT, geometric mean titer; MFI,
a P < 0.05, compared with pre-vaccination GMT.
b P < 0.05, compared with non-adjuvanted vaccine.

Immunogenicity was determined by: geometric mean
titre (GMT); mean-fold increase (MFI; ratio of post- to pre-
vaccination titre); seroprotection rate (the percentage of
subjects achieving an HI titre ≥40 IU); and seroconversion
rate (the percentage of subjects with at least a 4-fold
increase in HI titre from a non-negative pre-vaccination titre
or a rise from <10 to ≥40 IU in those who were seroneg-
ative). The results were evaluated against the Committee
for Medicinal Products for Human Use (CHMP) criteria for
approval of influenza vaccines in the elderly, which require
that at least one of the following criteria be met: MFI > 2;
seroprotection rate >60%, or seroconversion rate >30%.

HI and NT titres were also transformed into binary loga-
rithms, corrected for pre-vaccination status, as described
by Beyer et al. [11] and were expressed as mean titres,
with the corresponding standard deviation. The observed
distributions were confirmed to be normally distributed by
the one-sample, Kolmogorov—Smirnov goodness-of-fit test
procedure.

Comparisons between the MF59TM-adjuvanted and the
non-adjuvanted subunit influenza vaccines were analyzed
by Student’s t test for paired and unpaired data (titres) and
by chi-square test (seroprotected subject proportions).

Results

Pre- and post-vaccination HI and NT GMTs, seroprotection
rates, and seroconversion rates for both vaccines are shown
in Table 1, according to viral strain. Pre-vaccination titres
were not significantly different between vaccine groups, for
all four strains (Table 1).

Both vaccines met CHMP requirements for MFI (>2)
and seroprotection rate (>60%) against the vaccine strain
(Wyo/03); however, the requirement for seroconversion rate
(>30%) was only met for the MF59TM-adjuvanted vaccine

TM
group. Subjects vaccinated with the MF59 -adjuvanted vac-
cine showed significantly higher post-vaccination HI and NT
GMTs P = 0.01 and P = 0.03, respectively) and a significantly
(P < 0.01) higher seroconversion rate against the vaccine
strain (Wyo/03) than those in the non-adjuvanted vaccine

c
c
T
l
1

fold increase; NT, neutralization.

roup. Seroprotection rates were high (≥96%) for both vac-
ine groups.

For the drifted strains, only the MF59TM-adjuvanted vac-
ine induced a substantial immune response, meeting all
HMP requirements against Pan/99, Cal/04, and Wisc/05.
gainst Cal/04 and Wisc/05, the MF59TM-adjuvanted vaccine

nduced significantly higher HI GMTs (P < 0.01 and P = 0.05,
espectively) and seroprotection rates (P < 0.01 and P < 0.01,
espectively), compared with the non-adjuvanted vaccine.
he MF59TM-adjuvanted vaccine also induced significantly
igher seroconversion rates against Pan/99 (P < 0.01) and
al/04 (P < 0.01), compared with the non-adjuvanted vac-
ine (Table 1).

Following correction for pre-vaccination status, both
I and NT titres were significantly (P < 0.05) higher for
he MF59TM-adjuvanted vaccine, when evaluated against
an/99, Wyo/03, and Cal/04, compared with the non-
djuvanted vaccine (Fig. 1B).

iscussion

he ability of both of the subunit influenza vaccines used
n this study to confer seroprotection against a homologous
train, and of MF59TM to enhance the immune response,
s consistent with other findings reported during the last
ecade [3,12,13]. Together, these data confirm that, against
omologous strains, MF59TM-adjuvanted vaccine elicits a
tronger immune response than non-adjuvanted vaccine.

When the immune response was evaluated against drifted
trains, however, the immunogenicity profile of the two vac-
ines differed markedly. In subjects vaccinated with the
F59TM-adjuvanted vaccine, CHMP requirements for sero-
rotection and seroconversion rates and MFI were reached
or Pan/99, Cal/04, and Wisc/05, while the non-adjuvanted
accine failed to achieve the CHMP seroprotection rate

riterion against Cal/04 and Wisc/05 or the CHMP sero-
onversion rate criterion against all of the drifted strains.
hus, the MF59TM-adjuvanted vaccine offered broad sero-

ogical protection against drifted strains that circulated
and 2 years after vaccination with Wyo/03. The adju-
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Table 2 Influenza vaccine strains and circulating strains, 1997—2007 [19]
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ote: Cal/04, California/04; HK/01, Hong Kong/01; Mal/04, Malay
atch; ( ) partial mismatch; ( ) match.

anted vaccine was also able to induce a stronger booster
ffect against Pan/99, a strain that widely circulated in
he previous 5 years and was in the vaccine composition
or four consecutive seasons, than the non-adjuvanted vac-
ine, as demonstrated by higher post-vaccination GMTs and
higher seroconversion rate. Although these results are

onsistent with those of previous studies using MF59TM-
djuvanted vaccine [3,14,15], they are not completely in
greement with the findings of other studies using non-
djuvanted vaccine [3,9]. Both a non-adjuvanted subunit
nfluenza vaccine and a non-adjuvanted split-virus influenza
accine containing Pan/99 were able to confer good sero-
ogical protection against the heterovariant strain Wyo/03
n the vast majority (75.9 and 80%, respectively) of elderly
accinated subjects [3], and the seroprotection rate and
FI of antibody response induced by a non-adjuvanted sub-
nit vaccine against the drifted variant Wisc/05 were higher
han those against the vaccine strain A/New York/55/2004,

Cal/04-like virus [9]. The reason for the discrepancy
etween the findings of Baldo et al. and Del Giudice et al.
nd our own results could be the distance between vaccine
nd heterovariant strains: the antigenic distance between
he vaccine strains Wyo/03 and Cal/04, measured by HI test
sing ferret antisera (Fig. 1A), is higher than that between
an/99 and Wyo/03 or between Cal/04 and Wisc/05. Thus,
I titre against Cal/04 in ferrets infected with Wyo/03 was

-fold lower than that against homologous strains, while a
- to 4-fold decrease in HI titre against the drifted strains
yo/03 and Wisc/05 was observed after Pan/99 and Cal/04

nfections, respectively [16] (Fig. 1A). This point is sup-
orted by epidemiological and virological surveillance data:

i
d
o
a
d

4; NewCal, New Caledonia/99; Wisc/05, Wisconsin/05. ( ) mis-

he drift variant Cal/04 that appeared during the 2004—2005
nfluenza season exerted a heavy burden on the Italian popu-
ation, with a high disease incidence reported in the elderly,
ven among vaccinated subjects [17].

Finally, NT titre evaluation confirmed the increased
ntibody response in subjects vaccinated against Pan/99
nd Cal/04 with MF59TM-adjuvanted vaccine compared with
hose vaccinated with non-adjuvanted vaccine, suggest-
ng the protective role of neutralizing antibodies that can
ross-react with antigenically different strains. The broader
nd neutralizing serological response elicited by MF59TM-
djuvanted vaccine against A(H3N2) viruses, and the strong
ooster effect, is consistent with the high cross-reactivity
o different A(H5N1) strains after primary vaccination
ith two doses of MF59TM-adjuvanted vaccine containing
/Dk/Sing/97(H5N3) and a booster dose after 16 months
18].

In conclusion, the appearance of drifted strains with an
ntigenic pattern highly different from the vaccine strain,
uch as Cal/04 and Wisc/05, highlights a limitation of the
bility of non-adjuvanted vaccine to elicit an effective
mmune response. There is, therefore, a great need to
evelop drift-resistant vaccines, such as adjuvanted vac-
ines. As antigenic mismatch and/or partial mismatch occurs
requently (Table 2) [19], and the annual impact of anti-
enic drift on vaccine effectiveness is difficult to predict, it

s necessary to continuously monitor the impact in order to
evelop a more comprehensive understanding of the benefit
f vaccination. For the strains examined during this study,
nd for mismatched or partially mismatched strains during
ifferent seasons [3,14,15], addition of MF59TM to subunit
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influenza vaccine allows for a broader serological response
than is achieved by non-adjuvanted subunit vaccine in the
elderly, who are at high risk of influenza-related compli-
cations. This is of particular importance during periods of
antigenic drift, when vaccine efficacy may be compromised
due to antigenic mismatch.
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