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a b s t r a c t

The objective of the paper is to propose endogenous debt constraints that rule out Ponzi schemes and
ensure the existence of equilibria in a model with limited commitment and (possible) default. We
appropriately modify the definition of finitely effective debt constraints, introduced by Levine and Zame
(1996) (see also Levine and Zame (2002)), to encompass models with limited commitment, default
penalties and collateral. Along this line, we introduce in the setting of Araujo et al. (2002), Kubler and
Schmedders (2003) and Páscoa and Seghir (2009) the concept of actions with finite equivalent payoffs.
We show that, independent of the level of default penalties, restricting plans to have finite equivalent
payoffs rules out Ponzi schemes and guarantees the existence of an equilibrium that is compatible with
the minimal ability to borrow and lend that we expect in our model.

An interesting feature of our debt constraints is that they give rise to budget sets that coincide with
the standard budget sets of economies having a collateral structure but no penalties (as defined in Araujo
et al. (2002)). This illustrates the hidden relation between finitely effective debt constraints and collateral
requirements.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

One of the main difficulties of extending financial market
economies to an infinite horizon is related to the existence of the
so-called Ponzi schemes. In the absence of a terminal date, agents
would attempt to finance unbounded levels of consumption by
renewing their credit at infinity. If such schemes are permitted, the
agent’s decision problem has no solution. Therefore, without debt
constraints that limit the rate at which agents accumulate debt,
equilibria fail to exist.
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Broadly speaking three approaches have been proposed in the
literature to deal with the specification of debt constraints in
infinite horizon sequential market models. The main difference
among these lines of research hinges on the specific assumptions
made about the enforcement of payments as well as the proposed
default punishment.

The first approach, due toMagill and Quinzii (1994), Hernández
and Santos (1996) and Levine and Zame (1996) (see also Levine
and Zame (2002)), introduces debt constraints in economieswhere
payments are fully enforced and therefore there is no default
(even on out of equilibrium paths). Magill and Quinzii (1994)
argue in favor of implicit debt constraints that restrict budget
sets to include portfolios whose value is a bounded sequence
along the event tree. An interesting property of equilibria with
implicit debt constraints is that it is always possible to find
uniform bounds on the value of short-sales which are non-binding
at those equilibria. Moreover, under reasonable assumptions on
preferences, equilibria with implicit debt constraints coincide
with equilibria with transversality type conditions that are often
imposed in macroeconomic models (see Blanchard and Fisher
(1989) and Ljungqvist and Sargent (2000)). Hernández and Santos
(1996) argue in favor of debt constraints that impose a kind of
solvency requirement. Households are allowed to borrow against
their current value of future endowment streams. When markets
are incomplete, traders may not agree on current value prices.
Hernández and Santos (1996) propose a special way of computing
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current value prices that takes into account the whole set of
non-arbitrage price systems. Levine and Zame (1996) (see also
Levine and Zame (2002)) offer an alternative formulation of the
solvency requirement. They formalize debt constraints that induce
agents to repay their debt in finite time, that is, the suggested
debt constraints are finitely effective. Stated differently, finitely
effective constraints induce agents to choose plans that are budget
compatible with the threat that, at any period, they may be
restricted to have access to borrowing only for a finite number
of periods. Finitely effective debt constraints provide a general
characterization of debt constraints that are compatible with
equilibrium. More precisely, Levine and Zame (1996) have shown
that any loose and consistent system of debt constraints that rules
out Ponzi schemes and ensures the existence of an equilibrium
reduces to be finitely effective.1

The second approach, due to Kehoe and Levine (1993) (see
also Kehoe and Levine (2001)), Zhang (1997) and Alvarez and
Jermann (2000), explores debt constraints in economies where
commitment is limited and there is a severe punishment for
default: if agents do not honor their debts, they are excluded
from participating in the asset markets in future periods. In such
a setting the authors argue for self-enforcing constraints that are
tight enough to prevent default at equilibrium but simultaneously
are loose enough to allow for as much risk sharing as possible.

The third andmost recent approach to deal with Ponzi schemes
also considers models with limited commitment. However,
contrary to self-enforcing borrowing constraints (à la Alvarez and
Jermann (2000)) that prevent default at equilibrium, this research
line addresses the issue of Ponzi schemes in economies where
default may be consistent with equilibrium. It is motivated by
the empirical observation that modern economies experience a
substantial amount of default and bankruptcy.2 One of the most
important and widespread means of securing loans and lowering
the level of default in financial markets is collateral.3 Araujo et al.
(2002) (see also Kubler and Schmedders (2003)) showed that,
without imposing any system of debt constraints or transversality
conditions, Ponzi schemes are ruled out in economies where
collateral is the only mechanism that enforces agents to (partially)
pay their debts. The intuition behind their result is as follows:
combining short-sales with the purchase of collateral constitutes
a joint operation that yields non-negative returns.4 By non-
arbitrage, at equilibrium, the price of the collateral exceeds the
price of the asset, implying that collateral costs exceed the value

1 See also Hernández and Santos (1996) for a similar discussion.
2 Nowadays, there is a vast literature on default that dates back to the seminal

contributions of Shubik (1972), Shubik and Wilson (1977) and Dubey and Shubik
(1979). Default was introduced in a general equilibrium setting by Dubey et al.
(1990) and Zame (1993). Modern theoretical contributions on default include
among others, Dubey et al. (1995), Geanakoplos (1997), Geanakoplos and Zame
(2002), Araujo et al. (2002), Kubler and Schmedders (2003), Dubey et al. (2005),
Fostel and Geanakoplos (2008), Páscoa and Seghir (2009) and Ferreira and Torres-
Martínez (2010). There are also important contributions on default, collateral
and credit constraints in macroeconomics (see Bernanke et al. (1996), Kiyotaki
and Moore (1997) and Caballero and Krishnamurthy (2001)). This literature
emphasizes the feedback from the fall in collateral prices to a fall in borrowing
capacity. Recently, Chatterjee et al. (2007) and Livshits et al. (2007) have calibrated
macroeconomic models with incomplete markets and default and used them to
address various policy issues.
3 Collateral-using activities have expanded rapidly in recent years. Financial

institutions extensively employ collateral in lending, in securities’ trading and
derivativemarkets and in payment and settlement systems. Central banks generally
require collateral in their credit operations. Common examples of collateralized
lending are home mortgages, margin purchases of securities, overnight repurchase
agreements and pawn shop loans.
4 Since there is no other punishment than the seizure of collateral, borrowerswill

always deliver theminimumbetween their promises and the value of the associated
collateral requirements.
of loans. Therefore, it becomes impossible to pay a previous debt
by issuing new debt.

Inmost of the economic systems, collateral is not the onlymean
of securing loans. The default option usually entails additional
economic consequences.5 This explains the fact that even in the
midst of the most severe housing downturn on record, many
households with negative equity choose to continue meeting their
financial obligations (see, e.g., Gerardi et al. (2007, 2009) and
Gerardi et al. (2008)).

One approach to model additional enforcement mechanisms is
to introduce linear utility penalties (see Dubey et al. (1990), Zame
(1993) and Dubey et al. (2005) and the literature cited therein).
These penaltiesmight be interpreted as the consequences (directly
assessed in terms of utility) of some third party punishment such
as prison terms and pangs of conscience, and/or of some non-
modeled economic punishment such as exclusion from credit
markets and garnishing of future income.

A surprising result found by Páscoa and Seghir (2009) is that
the introduction of default penalties in the model of Araujo et al.
(2002)may induce payments besides the value of the collateral and
lead to the reappearance of Ponzi schemes. The intuition is simple:
when penalties are severe, agents have incentives to repay more
than the value of the depreciated collateral. In this case, the joint
operation of combining short-sales with the purchase of collateral
no longer yields non-negative returns. Therefore, loansmay exceed
collateral costs and agents may run Ponzi schemes.

One may think that the reappearance of Ponzi schemes is re-
lated to the particular additional enforcement mechanism (linear
utility penalties) Páscoa and Seghir (2009) have considered. How-
ever, Ferreira and Torres-Martínez (2010) showed that, for suffi-
ciently low collateral requirements, any effective additional en-
forcementmechanism implies the non-existence of physically fea-
sible optimal plans.6 That is, any effective additional enforcement
mechanism gives rise to Ponzi schemes in infinite horizon collater-
alized economies. Hence, it is the effectiveness of the mechanism
that induces agents to run a Ponzi scheme, not the mechanism per
se.

Given the findings of Páscoa and Seghir (2009) and Ferreira
and Torres-Martínez (2010) we propose to answer the following
question: what kind of borrowing constraints rule out Ponzi
schemes and ensure the existence of equilibria in models with
limited commitment and (possible) default at equilibrium? As a
first step to provide an answer to this question, it is natural to
investigate whether debt constraints that have been proposed in
models with full commitment can be compatible with equilibrium
existence in models with limited commitment. The paper is an
attempt to address this issue. It shows that finitely effective
debt constraints, similar to those proposed by Levine and
Zame (1996) in environments with full commitment, ensure
equilibrium existence in the models of Araujo et al. (2002), Kubler
and Schmedders (2003) and Páscoa and Seghir (2009) where
commitment is limited.

A direct adaptation of finitely effective debt constraints à la
Levine and Zame (1996) in those environments does not help to
control debt along time. The reason is that when commitment
is limited, an agent can always satisfy his budget restrictions
having access to financial markets for a finite number of periods.

5 For instance, if an agent files for bankruptcy under Chapter 7 of the US
bankruptcy code, the following things may happen (see Chatterjee et al. (2007)):
(1) he is not allowed to save and his existing savings will be completely garnished;
(2) he has to pay a proportion of the current income as cost of filling for bankruptcy;
(3) a proportion of his current labor income is garnished; (4) his credit history turns
bad and he is excluded from the loan market.
6 An enforcement mechanism is said to be effective if it entails payments besides

the value of the collateral at all nodes of a subtree.
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He can do this by simply defaulting on his promises. Therefore,
requiring finite-time solvency à la Levine and Zame (1996) does
not restrict budget sets. In particular, it does not exclude Ponzi
schemes. We address this issue by modifying appropriately the
definition of finitely effective debt constraints to encompass
economies with limited commitment and (possible) default at
equilibrium.Working in this direction, we impose debt constraints
by introducing in the setting of Araujo et al. (2002), Kubler and
Schmedders (2003) and Páscoa and Seghir (2009) the concept of
actions with finite equivalent payoffs.

An interesting finding is that there is a close relation between
our proposed budget sets and the budget sets of Levine and
Zame (1996) as well as the budget sets defined through collateral
obligations and no additional punishments (Araujo et al., 2002;
Kubler and Schmedders, 2003). First, our proposeddebt constraints
provide a natural formulation of Levine and Zame (1996) solvency
requirement in thosemodels. When there is full commitment (and
payments are fully enforced), our concept of plans with finitely
equivalent payoffs coincideswith the concept of planswith finitely
effective debts introduced by Levine and Zame (1996). Second
and most important, we show that the budget feasible plans in
economies with a collateral structure and zero default penalties
have finite equivalent payoffs and vice versa. In other words,
when there are collateral requirements but no default penalties,
our budget set coincides with the standard one defined in Araujo
et al. (2002) and Kubler and Schmedders (2003). This equivalence
is valid for any price process (i.e., not only at equilibrium but
also on out of equilibrium paths) and illustrates the hidden
relation between finitely effective debt constraints and collateral
requirements.

Our approach to debt constraints is certainly not the only
one possible. Instead of adapting the restrictions proposed by
Levine and Zame (1996), one may follow another route by
considering restrictions in the spirit of Magill and Quinzii (1994)
or Hernández and Santos (1996). However, it is not clear whether
those borrowing constraints would be innocuous in models with
collateral requirements and zero default penalties as it is the case
for the constraints we propose. In that respect, we believe that
modifying the approach of Levine and Zame (1996) to control
debt is more suitable for models with limited commitment and
collateral requirements.

Proposing any kind of debt constraints raises an equally
important issue: how difficult is to implement those constraints
in anonymous and competitive markets. In the context of
full commitment, Magill and Quinzii (1994) give two possible
interpretations of their implicit debt constraints: a subjective (self-
monitoring) interpretation where agents restrict themselves to
satisfy these constraints and an objective (market based) one
where an external agent (an agency) has the ability to restrict
agents to choose plans satisfying the borrowing constraints. In
our context of limited commitment, restricting plans to have
finite equivalent payoffs can be given a similar interpretation.
This is due to the fact that, under mild conditions on primitives,
equilibriawith finite equivalent payoffs are equilibriawith implicit
(or explicit and non-binding) constraints on short-selling.7 In
particular, one can show that there exists a threshold bound related
only to primitives (aggregate resources) of the economy such that
any posted bound greater than this threshold will be non-binding
at equilibrium.

The paper is structured as follows. In Section 2, we set out
the model, introduce notation, assumptions and the equilibrium

7 Our bounds (implicit or explicit) are different than those imposed byMagill and
Quinzii (1994). Our bounds restrict short sales while theirs restrict the real value of
debt.
concept in the absence of borrowing constraints. In Section 3,
we present and discuss the new debt constraints we impose on
budget feasible plans. We also introduce an equilibrium concept
associated with those constraints and highlight its relation with
the equilibrium concepts introduced by Levine and Zame (1996)
and Araujo et al. (2002). Section 4 proves the existence of what
we term equilibrium with finite equivalent payoffs under a mild
condition on default penalties. In Section 5, we discuss equilibrium
refinement and highlight a problem that has been overlooked by
the literature. Section 6 concludes.

2. The model

The model is essentially the one developed in Araujo et al.
(2002) and extended by Páscoa and Seghir (2009) to allow for the
possibility of linear default penalties.

2.1. Uncertainty and time

Let T ≡ {0, 1, . . . , t, . . .} denote the set of time periods and let
S be a (infinite) set of states of nature. The available information
at period t ∈ T is the same for each agent and is described by a
finite partition Pt of S. Information is revealed along time, i.e., the
partition Pt+1 is finer than Pt for every t . Every pair (t, σ )where σ
is a set in Pt is called a node. The set of all nodes is denoted byD and
is called the event tree. We assume that there is no information at
t = 0 and we denote by ξ0 = (0, S) the initial node. If ξ = (t, σ )
belongs to the event tree, then t is denoted by t(ξ). We say that
ξ ′

= (t ′, σ ′) is a successor of ξ = (t, σ ) if t ′ > t and σ ′
⊂ σ ;

we use the notation ξ ′ > ξ . We denote by ξ+ the set of immediate
successors defined by
ξ+

≡ {ξ ′
∈ D: t(ξ ′) = t(ξ)+ 1}.

Because Pt is finer than Pt−1 for every t > 0, for a given node
ξ ≠ ξ0, there is a unique node ξ− in D such that ξ is an immediate
successor of ξ−. Given a period t ∈ T we let Dt ≡ {ξ ∈ D: t(ξ) =

t} denote the set of nodes at period t . The set of nodes up to period
t is denoted Dt

≡ {ξ ∈ D: t(ξ) 6 t}.

2.2. Agents and commodities

There exists a finite set L of commodities available for trade
at every node ξ ∈ D. We interpret x(ξ) ∈ RL

+
as a claim

to consumption at node ξ . We also write 1{ℓ} ∈ RL
+

for the
commodity bundle consisting of one unit of commodity ℓ ∈ L and
nothing else. We depart from the usual intertemporal models by
allowing for some commodities to be non-perishable, that is, we
allow for storable and durable goods as well as for commodities
that may serve as physical assets (i.e., Lucas trees). Transformation
of commodities is represented by a family (Y (ξ))ξ∈D of linear
functionals Y (ξ) from RL

+
to RL

+
. The bundle Y (ξ)z(ξ−) represents

what is obtained at node ξ if the bundle z(ξ−) ∈ RL
+
is purchased

at node ξ−. We say that the commodity ℓ is perishable at node ξ−

if Y (ξ)1{ℓ} is the zero vector in RL
+
, and non-perishable otherwise.

At each node there are spot markets for trading every commodity.
We let p = (p(ξ))ξ∈D be the spot price process where p(ξ) =

(p(ξ , ℓ))ℓ∈L ∈ RL
+
is the price vector at node ξ .

There is a finite set I of infinitely lived agents. Each agent i ∈

I is characterized by an endowment process ωi
= (ωi(ξ))ξ∈D

where ωi(ξ) = (ωi(ξ , ℓ))ℓ∈L is a vector in RL
+

representing the
endowment available at node ξ . Each agent chooses a consumption
process x = (x(ξ))ξ∈D where x(ξ) ∈ RL

+
. We denote by X the set of

consumption processes. The utility function U i
: X −→ [0,+∞]

is assumed to be additively separable, i.e.,

U i(x) ≡


ξ∈D

ui(ξ , x(ξ))

where ui(ξ , ·) : RL
+

−→ [0,∞).
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2.3. Assets and collateral

There is a finite set J of short-lived real financial assets available
for trade at each node. For each asset j, the bundle yielded at node ξ
is denoted by A(ξ , j) ∈ RL

+
. We let q = (q(ξ))ξ∈D be the asset price

process where q(ξ) = (q(ξ , j))j∈J ∈ RJ
+ represents the asset price

vector at node ξ . We denote by θ i(ξ) ∈ RJ
+ the vector of purchases

and by ϕi(ξ) ∈ RJ
+ the vector of short-sales at each node ξ .

Following the seminal contribution of Geanakoplos (1997) and
Geanakoplos and Zame (2002) for finite horizon models, and
Araujo et al. (2002) together with Páscoa and Seghir (2009) for
infinite horizon models, assets are collateralized in the sense that
for every unit of asset j sold at a node ξ , agents should buy a
collateral bundle C(ξ , j) ∈ RL

+
that protects lenders in case of

default. We assume that payments can be enforced through the
seizure of the collateral. At a node ξ , agent i should deliver the
promise V (p, ξ)ϕi(ξ−)where

V (p, ξ) = (V (p, ξ , j))j∈J and V (p, ξ , j) ≡ p(ξ)A(ξ , j).

However, agent i may decide to default and choose a delivery
di(ξ , j) in units of account. Since the collateral can be seized, this
delivery must satisfy

di(ξ , j) > D(p, ξ , j)ϕi(ξ−, j)

where

D(p, ξ , j) ≡ min{p(ξ)A(ξ , j), p(ξ)Y (ξ)C(ξ−, j)}.

Remark 2.1. Kubler and Schmedders (2003) propose a model
where the collateral requirements are imposed in terms of physical
assets. We show hereafter that a simplified version of their model
can be seen as a particular case of the model proposed by Araujo
et al. (2002). In that respectwheneverwe are referring to themodel
proposed by Araujo et al. (2002) we are also referring to the one
proposed by Kubler and Schmedders (2003).

If there is a specific commodity g ∈ L satisfying the following
properties, then this commodity can be interpreted as a physical
asset or a Lucas tree.

(i) At initial node ξ0, each agent i has an initial endowment
ωi(ξ0, g) > 0 of commodity g which represents his share of
the tree. At subsequent nodes ξ > ξ0, agent i has no initial
endowment in commodity g .

(ii) One unit of commodity g purchased at node ξ delivers at node
µ ∈ ξ+ the bundle

y(µ) ≡ Y (µ)1{g} ∈ RL
+
.

The g-th coordinate y(µ, g) is equal to 1, i.e., the physical asset
is long lived.

(iii) Each agent i is indifferentwith respect to commodity g , i.e., for
each agent i ∈ I , for each node ξ ∈ D, for each consumption
bundle c ∈ RL

+
, we have

ui(ξ , c + 1{g}) = ui(ξ , c).

(iv) In every successor node µ ∈ ξ+, the transformed bundle
of one unit of commodity g purchased at any node ξ , is a
desirable bundle, i.e., y(µ) is a bundle in RL

+
such that for each

consumption bundle c ∈ RL
+
, we have8

ui(µ, c + y(µ)) > ui(µ, c).

8 Since each agent i is indifferent with respect to commodity g , the bundle
delivered by the tree must satisfy y(µ, ℓ) > 0 for at least one commodity ℓ ≠ g .
If at every node ξ ∈ D, the collateral bundle C(ξ , j) is only in terms
of commodity g , then the collateral structure of ourmodel (and the
one in Araujo et al. (2002) and Páscoa and Seghir (2009)) reduces
to the one considered by Kubler and Schmedders (2003).

Following Dubey et al. (1990) (and Dubey et al. (2005)), we
assume that agent i feels a disutility λi(ξ , j) ∈ [0,+∞] from
defaulting.9 More precisely, if an agent defaults at node ξ , then he
suffers at t = 0, the disutility
j∈J

λi(ξ , j)
[V (p, ξ , j)ϕi(ξ−, j)− di(ξ , j)]+

p(ξ)v(ξ)

where (v(ξ))ξ∈D is an exogenously specified process in RL
++

that
is uniformly bounded away from 0.10 In that case, agent i may
have an incentive to deliver more than the minimum between his
debt and the depreciated value of his collateral, i.e., we may have
di(ξ , j) > D(p, ξ , j)ϕi(ξ−, j).

As in Dubey et al. (2005) assets are thought as pools. At each
node ξ the sales ϕi(ξ , j) are pooled at the market for asset j. The
deliveries di(ξ , j) on asset j are also pooled and the buyers of
pool j receive a pro rata share of all its different sellers’ deliveries.
We assume that lenders rationally anticipate that every borrower
delivers at least D(p, ξ , j) on each unit of asset j sold at node ξ−.
Therefore, agents anticipate that each share of pool j delivers a
fraction V (κ, p, ξ , j) of its promise V (p, ξ , j) defined by
V (κ, p, ξ , j) = κ(ξ, j)V (p, ξ , j)+ (1 − κ(ξ, j))D(p, ξ , j)
where κ(ξ, j) ∈ [0, 1] will be determined at equilibrium such that
deliveries match payments.11 The buyer of asset j does not need to
know the identities of the sellers or the quantities of their sales. All
that matters to him is the price q(ξ , j) and the anticipated delivery
rates (κ(µ, j))µ∈ξ+ .

2.4. Budget set without debt constraints

Let A be the space of adapted processes a = (a(ξ))ξ∈D with12

a(ξ) = (x(ξ), θ(ξ), ϕ(ξ), d(ξ)) ∈ RL
+

× RJ
+ × RJ

+ × RJ
+.

Given a process (p, q, κ) of commodity prices, asset prices and
delivery rates, agent i’s choice ai = (xi, θ i, ϕi, di) ∈ Amust satisfy,
in each decision node ξ ∈ D, the following constraints:
(a) solvency constraint:

p(ξ)xi(ξ)+


j∈J

di(ξ , j)+ q(ξ)θ i(ξ)

6 p(ξ)ωi(ξ)+ p(ξ)Y (ξ)xi(ξ−)

+ V (κ, p, ξ)θ i(ξ−)+ q(ξ)ϕi(ξ); (2.1)
(b) collateral requirement:

C(ξ)ϕi(ξ) 6 xi(ξ); (2.2)
(c) minimum delivery:

∀j ∈ J, D(p, ξ , j)ϕi(ξ−, j) 6 di(ξ , j). (2.3)

The set of plans a = (x, θ, ϕ, d) ∈ A satisfying constraints (2.1)–
(2.3) is called the (unconstrained) budget set and is denoted by
Bi(p, q, κ).

9 Models with non-pecuniary penalties for default also include Diamond (1984);
Rea (1984),who considers contracts involving ‘‘arm-breaking’’, Zame (1993), Araujo
et al. (1998), Bisin and Gottardi (1999), Santos and Scheinkman (2001), Lacker
(2001) and Páscoa and Seghir (2009).
10 More precisely, we assume that there exists v > 0 such that for every node
ξ ∈ D and every commodity ℓ ∈ L, we have v(ξ, ℓ) > v.
11 If all the sellers of asset j at node ξ− fully deliver on their promises at the
successor node ξ then κ(ξ, j) = 1, while if all sellers fully default on their promises
then κ(ξ, j) = 0.
12 By convention we pose a(ξ−

0 ) = (x(ξ−

0 ), θ(ξ
−

0 ), ϕ(ξ
−

0 ), d(ξ
−

0 )) = (0, 0, 0, 0).



V.F. Martins-da-Rocha, Y. Vailakis / Journal of Mathematical Economics 48 (2012) 1–13 5
2.5. The payoff function

Consider that agent i has chosen the plan a = (x, θ, ϕ, d) under
a process of prices and delivery rates π = (p, q, κ).13 He enjoys
the utility

U i(x) =


ξ∈D

ui(ξ , x(ξ)) ∈ [0,∞]

but he suffers the disutilityW i(p, a) ∈ [0,∞] defined by

W i(p, a) ≡


ξ>ξ0


j∈J

λi(ξ , j)
[V (p, ξ , j)ϕ(ξ−, j)− d(ξ , j)]+

p(ξ)v(ξ)
.

We would like to define the payoff Π i(p, a) of the plan a as the
following difference
Π i(p, a) = U i(x)− W i(p, a).
Unfortunately, Π i(p, a) may not be well defined if both U i(x) and
W i(p, a) are infinite. We propose to consider the binary relation
≻i,p defined on A bya≻i,p awhen

∃ε > 0, ∃T ∈ N, ∀t > T , Π i,t(p,a) > Π i,t(p, a)+ ε

where
Π i,t(p, a) ≡ U i,t(x)− W i,t(p, a), U i,t(x) ≡


ξ∈Dt

ui(ξ , x(ξ))

and
W i,t(p, a) ≡


ξ∈Dt\{ξ0}


j∈J

λi(ξ , j)

×
[V (p, ξ , j)ϕ(ξ−, j)− d(ξ , j)]+

p(ξ)v(ξ)
.

According to this definition, a plana is strictly preferred to a if the
difference of payoffsΠ i,t(p,a)−Π i,t(p, a) between the two plans
is uniformly strictly positive for every period t large enough.14

Observe that if Π i(p,a) and Π i(p, a) are finite thena≻i,p a if
and only ifΠ i(p,a) > Π i(p, a). We denote by Prefi(p, a) the set of
plans strictly preferred to plan a by agent i.

2.6. Assumptions

For each agent i, we denote by Ω i the process of accumulated
endowments, defined recursively by Ω i(ξ) = Y (ξ)Ω i(ξ−) +

ωi(ξ) where Ω i(ξ0) = ωi(ξ0). The process


i∈I Ω
i of

accumulated aggregate endowments is denoted by Ω . The
following assumptions on the characteristics of the economy are
standard in the literature of infinite horizonmodels with collateral
requirements.

Assumption 2.1 (Agents). For every agent i,
(H.1) the process of accumulated endowments is strictly positive

and uniformly bounded from above, i.e.,

∃Ω
i
∈ RL

++
, ∀ξ ∈ D, Ω i(ξ) ∈ RL

++
and Ω i(ξ) 6 Ω

i
;

(H.2) for every node ξ , the utility function ui(ξ , ·) is concave,
continuous and strictly increasing,15 with ui(ξ , 0) = 0;

(H.3) the infinite sum U i(Ω) is finite.

Assumption 2.2 (Financial Assets). For every asset j and node ξ , the
collateral C(ξ , j) is not zero.

13 Inmany instances in the paper, we will interchangeably use the notation π and
(p, q, κ).
14 The sequence of differences (Π i,t (p,a)−Π i,t (p, a))t>1 need not be converging.
15 Assuming that the function ui(ξ , ·) is strictly increasing is not compatible with
the interpretation of a commodity as a Lucas tree. This assumption is made only
for expositional purposes and can be weakened as follows: for every ξ the function
ui(ξ , ·) is non-decreasing and there exists a commodity ℓ that is strictly desirable
in the sense that for every pair x, y in RL

+
, we have ui(ξ , x + y) > ui(ξ , x) provided

that y(ℓ) > 0.
It should be clear that these assumptions always hold
throughout the paper.

2.7. Equilibrium without debt constraints

We denote by Ξ the set of prices and delivery rates (p, q, κ)
normalized as follows: for every node ξ , we have p(ξ) ∈ R++,
κ(ξ) ∈ [0, 1]J and (p(ξ), q(ξ)) belongs to the simplex ∆(L × J).16
Given a process (p, q, κ) of commodity prices, asset prices and
delivery rates, we denote by di(p, q, κ) the demand set defined by

di(p, q, κ) ≡ {a ∈ Bi(p, q, κ): Prefi(p, a) ∩ Bi(p, q, κ) = ∅}.

Definition 2.1. A competitive equilibrium for the economy E is a
family of prices and delivery rates (p, q, κ) ∈ Ξ and an allocation
a = (ai)i∈I with ai ∈ A such that

(a) for every agent i, the plan ai is optimal, i.e.,

ai ∈ di(p, q, κ);

(b) commodity markets clear at every node, i.e.,
i∈I

xi(ξ0) =


i∈I

ωi(ξ0) (2.4)

and for all ξ ≠ ξ0,
i∈I

xi(ξ) =


i∈I

[ωi(ξ)+ Y (ξ)xi(ξ−)]; (2.5)

(c) asset markets clear at every node, i.e., for all ξ ∈ D,
i∈I

θ i(ξ) =


i∈I

ϕi(ξ); (2.6)

(d) deliveries match at every node, i.e., for all ξ ≠ ξ0 and all j ∈ J ,
i∈I

V (κ, p, ξ , j)θ i(ξ−, j) =


i∈I

di(ξ , j). (2.7)

The set of allocations a = (ai)i∈I in A satisfying the market
clearing conditions (2.4)–(2.6) is denoted by F . Each allocation in
F is called physically feasible. A plan ai ∈ A is called physically
feasible if there exists a physically feasible allocation b such that
ai = bi. The set of physically feasible plans is denoted by F i. We
denote by Eq(E) the set of competitive equilibria for the economy
E .

3. Debt constraints

In this section, we show how to adapt the finitely effective
debt constraints proposed by Levine and Zame (1996) to infinite
horizon models with limited commitment and default penalties.
While keeping the minimal ability to borrow and lend that we
expect in our model, we prove that the proposed constraints
are compatible with equilibrium (precluding agents to run Ponzi
schemes). Moreover, our constraints appear to have an additional
appealing feature: we show that the budget sets associated
with those constraints coincide with the standard budget sets
of economies having a collateral structure but no penalties (as
defined in Araujo et al. (2002) and Kubler and Schmedders (2003)).

3.1. Infinite default penalties

When default penalties are infinite and the collateral require-
ments are zero, ourmodel reduces to the one studied byMagill and
Quinzii (1994) and Levine and Zame (1996). In the absence of debt

16 In the sense that p(ξ) ∈ RL
+
, q(ξ) ∈ RJ

+ and


ℓ∈L p(ξ , ℓ)+


j∈J q(ξ , j) = 1.
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constraints, an equilibrium may not exist: all traders would at-
tempt to finance unbounded levels of consumption by unbounded
levels of borrowing. To rule out Ponzi schemes, Levine and Zame
(1996) (see also Levine and Zame (2002)) formalize the concept of
plans with finitely effective debts by requiring agents’ actions to be
budget compatible with the threat that, at any period, agents may
be restricted to have access to borrowing for only a finite number
of periods. In other words, an agent’s debt is finitely effective if at
any period, the debt is repayable within a finite horizon. More for-
mally, we consider the following definition due to Levine and Zame
(1996).

Definition 3.1. A plan a ∈ Bi(p, q, κ) is said to have finitely
effective debts, if for each period t > 0, there exist a period T > t
and a plana also in the budget set Bi(p, q, κ) such that

(i) up to period t both plans coincide, i.e.,

∀ξ ∈ Dt , a(ξ) = a(ξ);

(ii) at every node after period T , there is solvency without
borrowing, i.e.,

∀ξ ∈ D, t(ξ) > T H⇒ ϕ(ξ) = 0.

The intuition behind Definition 3.1 can be better understood if
we think about the role of those restrictions in the finite horizon
framework. No short selling at the terminal date implicitly imposes
a solvency requirement at earlier dates. That is, at any node agents
should hold an amount of debt that they will be able to repay
by the end of the terminal date. In the absence of a terminal
date, it is necessary to impose explicitly or implicitly that solvency
requirement.

Remark 3.1. Consider the following notation. For each period t ,
we denote by At the set of plans a ∈ A where a(ξ) = (0, 0, 0, 0)
for each ξ such that t(ξ) > t . If a is a plan in A and t is a period,
we denote by a1[0,t] the plan in At which coincides with a for
every node ξ ∈ Dt .17 Following this notation, a plan a has finitely
effective debts if for each period t > 0, there exists a subsequent
period T > t and a plana such thata ∈ Bi(p, q, κ) ∩ CT and a1[0,t] =a1[0,t]

where CT is the set of plans a in A without borrowing after period
T in the sense that

∀ξ ∈ D, t(ξ) > T H⇒ ϕ(ξ) = 0.

Instead of restricting plans to be finitely effective, one may
consider the following alternative restriction.

Definition 3.2. A budget feasible plan a ∈ Bi(p, q, κ) is said to
have finite equivalent utilitieswhen for every period t > 0 and every
ε > 0 there exists a subsequent period T > t and a plana such that

(i) the plans a anda coincide up to period t , i.e., a1[0,t] =a1[0,t];
(ii) the plana is budget feasible and there is no borrowing after

period T , i.e.,a ∈ Bi(p, q, κ) ∩ CT ;
(iii) the utility of the plana may be lower than the payoff of a but

not more than ε, i.e.,

inf
τ>T

[U i,τ (p,a)− U i,τ (p, a)] > −ε.

17 The plan a1[0,t] can be interpreted as a ‘‘truncation’’ of a up to period t .
In other words, a budget feasible plan a has finite equivalent
utilities if in case where at some period t the agent is restricted to
have access to borrowing for finitelymanyperiods, thenhe can find
an alternative plana doing the job, i.e., satisfying (i) and (ii); but at
the same time the utility loss can be made as small as desired.

The following proposition shows the equivalence between
plans with finitely effective debts and plans having finite equiv-
alent utilities. This alternative characterization will be proven
particularly useful in the process of modifying finitely effective
constraints to encompass models with limited commitment.

Proposition 3.1. Assume that the default penalty is infinite and
consider a budget feasible plan a ∈ Bi(p, q, κ) with a finite utility
U i(x) < ∞. The plan a has finitely effective debts, if and only if, it has
finite equivalent utilities.

Proof of Proposition 3.1. Let a ∈ Bi(p, q, κ) be a budget feasible
plan with a finite utility U i(x) < ∞. It is obvious that if a has
finite equivalent utilities, then it has finitely effective debts. The
converse deserves more attention. Assume that the plan a has
finitely effective debts. Fix a period t > 0 and ε > 0. If we apply the
definition to the period t , we get the existence of a period T > t
and a plana such thata ∈ Bi(p, q, κ) ∩ CT and a1[0,t] =a1[0,t].

Unfortunately, we do not know if U i,T (x ) > U i,T (x)− ε. However,
weknow that the utilityU i(x) is finite. Therefore, there exists t ′ > t
such that
s>t ′


ξ∈Ds

ui(ξ , x(ξ)) 6 ε. (3.1)

Now, applying the definition of finitely effective debt for the period
t ′, there exist a period T > t ′ and a plana such thata ∈ Bi(p, q, κ) ∩ CT and a1[0,t ′] =a1[0,t ′].

Now fix τ > T . Since T > t ′, we have

U i,τ (x ) > U i,t ′(x ) = U i,t ′(x)

> U i,τ (x)−


t ′<s6τ


ξ∈Ds

ui(ξ , x(ξ)).

It follows from (3.1) that U i,τ (x ) > U i,τ (x)− ε. �

3.2. Finite default penalties

The concept of finitely effective debt constraints makes perfect
sense in models with full enforcement and perfect commitment
(i.e., no default). However, with limited commitment, imposing
finitely effective debt constraints does not help to control debt
along time. We provide an explanation below. Let a = (x, θ, ϕ, d)
be a plan in Bi(p, q, κ) and t be any period. Consider the plana
defined by

a(ξ) =


a(ξ) if t(ξ) 6 t
(ωi(ξ), 0, 0,D(p, ξ)ϕ(ξ−)) if t(ξ) = t + 1
(ωi(ξ), 0, 0, 0) if t(ξ) > t + 1.

This plan belongs to the set Bi(p, q, κ)∩ C t+1 and coincides with a
on every node up to period t . That is, under limited commitment,
any plan a ∈ Bi(p, q, κ) has finitely effective debts according to
Definition 3.1. Agents can always default up to theminimum value
between their debt and the depreciated value of their collateral.
Therefore, there is no hope to bound debt along time.

We introduce hereafter an endogenous restriction on trades
that allows to encompass models with limited commitment
and finite default penalties. The point of our departure is
Proposition 3.1 where it is shown that, when default penalties
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are infinite, restricting plans to have finitely effective debts is
equivalent to restricting plans to have finite equivalent utilities.
This equivalence breaks down in the presence of finite default
penalties. In this case,we proceed by replacing ‘‘utility’’ by ‘‘payoff’’
and we introduce the concept of plans with finite equivalent
payoffs. We claim that requiring plans to have finite equivalent
payoffs provides an appropriate adaptation of finitely effective
debt constraints to models with limited commitment and finite
default penalties. The formal definition is as follows.

Definition 3.3. A plan a in the budget set Bi(p, q, κ) has finite
equivalent payoffs if for every period t > 0 and every ε > 0 there
exist a subsequent period T > t and a plana such that
(i) the plans a anda coincide up to period t , i.e., a1[0,t] =a1[0,t];
(ii) the plana is budget feasible and there is no borrowing after

period T , i.e.a ∈ Bi(p, q, κ) ∩ CT ;
(iii′) the payoff of the plana may be lower than the payoff of the

initial plan a but not more than ε, i.e.,

inf
τ>T

[Π i,τ (p,a)−Π i,τ (p, a)] > −ε.

The interpretation of a plan with finite equivalent payoffs is
similar to the one of a plan with finite equivalent utilities. The
only difference is that we replace ‘‘utility’’ by ‘‘payoff’’. This is very
intuitive since agents may suffer a loss in utility when defaulting.

3.3. Equilibrium with finite equivalent payoffs

Wedenote by Bi
⋆(p, q, κ) the set of all plans in Bi(p, q, κ) having

finite equivalent payoffs and we let di⋆(p, q, κ) be the associated
demand set.18

Definition 3.4. A competitive equilibrium with finite equivalent
payoffs for the economy E is a family of prices and delivery rates
(p, q, κ) ∈ Ξ together with an allocation a = (ai)i∈I with ai ∈ A
such that the conditions ofmarket clearing (b)–(d) in Definition 2.1
are satisfied and the unconstrained optimality condition (a) is
replaced by
(a′) for every agent i, the plan ai has finite equivalent payoffs and is

optimal among all budget feasible plans with finite equivalent
payoffs, i.e., ai ∈ di⋆(p, q, κ).

We denote by Eq⋆(E) the set of competitive equilibria with
finite equivalent payoffs for the economy E . We prove in
Section 4.3 that the set Eq⋆(E) is non-empty under amild condition
on default penalties. Before addressing the existence issue, we
explore hereafter the relation between the equilibrium concept
that we have just introduced and the one found in Araujo et al.
(2002).

3.4. No default penalty

We consider the case where collateral repossession is the
only enforcement mechanism and that default penalties are equal
to zero as in Araujo et al. (2002) and Kubler and Schmedders
(2003). One may expect Bi

⋆(p, q, κ) to be a strict subset of
Bi(p, q, κ). However, as the following proposition shows, the two
sets coincide. In fact, in the model proposed by Araujo et al.
(2002), any budget feasible allocation with a finite utility has finite
equivalent payoffs. This is a consequence of the absence of default
penalties or explicit economic punishments.

Proposition 3.2. Assume that there is no default penalty and let a =

(x, θ, ϕ, d) be a plan in the budget set Bi(p, q, κ). If U i(x) is finite
then a has finite equivalent payoffs, i.e., a belongs to Bi

⋆(p, q, κ).

18 That is, di⋆(p, q, κ) ≡ {a ∈ Bi
⋆(p, q, κ): Pref

i(p, a) ∩ Bi
⋆(p, q, κ) = ∅}.
Proof of Proposition 3.2. Fix an agent i and consider a budget
feasible plan a ∈ Bi(p, q, κ) with a finite utility. Fix a period t > 0
and ε > 0. Since U i(x) is finite, there exists T > t + 1 such that
τ>T


ξ∈Dτ

ui(ξ , x(ξ)) 6 ε.

Consider now the plana defined by

a(ξ) =


a(ξ) if t(ξ) < T
(ωi(ξ), 0, 0,d(ξ)) if t(ξ) = T
(ωi(ξ), 0, 0, 0) if t(ξ) > T

where

∀ξ ∈ DT , ∀j ∈ J, d(ξ , j) = D(p, ξ , j)ϕ(ξ−, j).

Observe that the plan a is budget feasible, belongs to CT and
satisfiesa1[0,T−1] = a1[0,T−1].

Fix τ > T . Since T − 1 > t , in order to prove that the plan a has
finite equivalent payoffs, we need to compare U i,τ (x ) and U i,τ (x).
Observe that

U i,τ (x ) = U i,T−1(x)+


T6s6τ


ξ∈Ds

ui(ξ , ωi(ξ))

> U i,T−1(x)

> U i,τ (x)−


T6s6τ


ξ∈Ds

ui(ξ , x(ξ))

> U i,τ (x)− ε.

We have thus proved that the plan a has finite equivalent
payoffs. �

A direct implication of the last proposition is that, when there
is no loss of utility in case of default, the sets Eq(E) and Eq⋆(E)
coincide. This observation allows us to obtain the existence result
of Araujo et al. (2002) as a direct corollary of our equilibrium
existence result (see Section 4).

Proposition 3.3. If there is no default penalty then (π, a) is a
competitive equilibrium, if and only if, it is a competitive equilibrium
with finite equivalent payoffs, i.e., the sets Eq(E) and Eq⋆(E) coincide.

Proof of Proposition 3.3. Let (π, a) ∈ Eq(E) be a competitive
equilibrium. Fix an agent i ∈ I . In order to prove that ai belongs
to the demand di⋆(π), it is sufficient to prove that ai has finite
equivalent payoffs. Since a is feasible we have xi(ξ) 6 Ω(ξ). From
(H.3), we get that U i(xi) is finite. The desired result follows from
Proposition 3.2.

Now let (π, a) ∈ Eq⋆(E) be a competitive equilibrium with
finite equivalent payoffs. We only have to prove that ai belongs to
di(π) for each agent i. Fix an agent i and assume by contradiction
that there exists a plan a in Bi(π) such that U i(x) > U i(xi). If U i(x)
is finite then, applying Proposition 3.2, we get that a ∈ Bi

⋆(π):
contradiction. Therefore, we must have U i(x) = ∞, implying that
there exists T > 1 such that

U i,T (x) > U i(xi).

Consider the plana defined by

a(ξ) =


a(ξ) if t(ξ) 6 T
(ωi(ξ), 0, 0,d(ξ)) if t(ξ) = T + 1
(ωi(ξ), 0, 0, 0) if t(ξ) > T + 1

where

∀ξ ∈ DT+1, ∀j ∈ J, d(ξ , j) = D(p, ξ , j)ϕ(ξ−, j).
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Since the plana ∈ Bi(p, q, κ) and U i(x ) < ∞, Proposition 3.2
implies that it has finite equivalent payoffs, i.e.,a ∈ Bi

⋆(p, q, κ).
Moreover we have

U i(x ) = U i,T (x)+


ξ∈D\DT

ui(ξ , ωi(ξ)) > U i(xi).

This contradicts the optimality of ai in Bi
⋆(p, q, κ). �

4. Precluding Ponzi schemes

Levine and Zame (1996) proved that finitely effective debt
constraints are compatible with equilibrium when the default
penalty is infinite and no collateral is required. We argued in the
previous section that a reasonable adaptation of those endogenous
borrowing constraints to models with limited commitment is
to restrict plans to have finite equivalent payoffs. We formally
defined the concept of equilibrium with finite equivalent payoffs
and we have shown its relation with respect to the equilibrium
concepts found in the papers of Araujo et al. (2002) and Kubler
and Schmedders (2003). In this section, we are concerned with
the issue of existence of such equilibria. We show that if agents
are myopic with respect to default penalties, restricting actions to
have finite equivalent payoffs allows to rule out Ponzi schemes and
guarantees the existence of an equilibrium. Myopia in our setting
refers to the time preference of default: the disutility of defaulting
today is greater than the disutility of defaulting in the distant
future and vanishes in the long run. In otherwords,myopia implies
a reasonable restriction on the asymptotic behavior of default
penalties. We exhibit below a large class of ‘‘standard’’ economies
for which agents are myopic with respect to default penalties.

4.1. Myopia with respect to default penalties

Before introducing the formal definition of myopic agents with
respect to default penalties, we need to introduce some notations.
For each asset j and node ξ , we denote by M(ξ , j) the real number

min
ℓ∈L

Ω(ξ , ℓ)

C(ξ , j, ℓ)
which corresponds to themaximum amount of short-sales in asset
j at node ξ that is consistent with the equilibrium condition of
market clearing. Observe that under Assumption 2.2, we have
M(ξ , j) < ∞. Finally, for every node ξ ≠ ξ0 we let19

H(ξ , j) = sup
p∈∆(L)

[pA(ξ , j)− pY (ξ)C(ξ−, j)]+

pv(ξ)
.

The quantity H(ξ , j) is the maximum amount in real terms that
an agent may default on every unit of asset j he sold short at the
preceding node ξ−. Indeed, it is straightforward to verify that if
a = (x, θ, ϕ, d) in A is a physically feasible plan and (p, q, κ) is a
process of prices and delivery rates, then for each node ξ and each
asset j, we have ϕ(ξ, j) 6 M(ξ , j) and

[V (p, ξ , j)ϕ(ξ−, j)− d(ξ , j)]+

pv(ξ)
6 M(ξ−, j)H(ξ , j).

Definition 4.1. Agent i is said to be myopic with respect to
default penalties if the disutility suffered at the initial period from
defaulting in the long run is negligible, i.e.,

lim inf
T→∞


ξ∈DT


j∈J

λi(ξ , j)H(ξ , j)M(ξ−, j) = 0.

19 The set∆(L) is the simplex in RL
+
, i.e.,∆(L) = {p ∈ RL

+
:


ℓ∈L p(ℓ) = 1}.
Agent i is said to be uniformly myopic with respect to default
penalties when

lim inf
T→∞


ξ∈DT


j∈J

λi(ξ , j)H(ξ , j) = 0.

Assuming that agents are myopic with respect to default
penalties is a very mild assumption since it is automatically
satisfied for every standard economy as defined below (see e.g.
Araujo and Sandroni (1999)).

Definition 4.2. The economy E is said to be standard if Assump-
tions 2.1 and 2.2 are satisfied and if for each agent i there exist
(S.1) a discount factor βi ∈ (0, 1);
(S.2) a sequence (P i

t)t>1 of beliefs about nodes at period t
represented by a probability P i

t ∈ Prob(Dt);
(S.3) a Bernoulli function vi : D × RL

+
→ [0,∞) where vi(ξ , ·) is

the cardinal felicity function at node ξ ;
(S.4) a current default penalty µi(ξ , j) ∈ (0,∞) for each node

ξ > ξ0;
such that for each node ξ ∈ D,

ui(ξ , ·) = [βi]
t(ξ)P i

t(ξ)(ξ)v
i(ξ , ·)

for each j ∈ J ,

λi(ξ , j) = [βi]
t(ξ)P i

t(ξ)(ξ)µ
i(ξ , j)

and the processes (A(ξ , j))ξ>ξ0 , (µ
i(ξ , j))ξ>ξ0 and (G(ξ , j))ξ∈D are

uniformly bounded from above, where

G(ξ , j) =
1

max
ℓ∈L

C(ξ , j, ℓ)
.

Remark 4.1. In a standard economy, one may have that current
default penalties are time and state independent, i.e., µi(ξ , j) =

µ(j). In that case, assuming that agents are myopic with respect to
default penalties does not impose any restriction onµ(j): it can be
as large as desired.

Remark 4.2. If every process M(j) ≡ (M(ξ , j))ξ∈D is uniformly
bounded away from 0, then myopia implies uniform myopia. In
particular, this is the case if we strengthen Assumptions 2.1 and
2.2 by assuming the following properties.
(A.1) The processΩ is uniformly bounded away from 0, i.e., there

existsΩ ∈ RL
++

such thatΩ(ξ) > Ω for every ξ .
(A.2) For every asset j, the process C(j) ≡ (C(ξ , j))ξ∈D is uniformly

bounded from above, i.e., there exists C(j) ∈ RL
+

such that
C(ξ , j) 6 C(j) for every ξ .

On the other hand, if every processM(j) is uniformly bounded from
above then uniform myopia implies myopia. This is in particular
the case if we impose the following additional assumption.
(A.3) For every asset j, the process C(j) of collateral requirements

does not eventually vanish in the sense that there exists
C(j) > 0 such that

∀ξ ∈ D, max
ℓ∈L

C(ξ , j, ℓ) > C(j).

Finally, if the process M(j) is uniformly bounded from above
and away from 0, then the concepts of uniform myopia and
myopia coincide. Uniformmyopia is useful whenwe discuss issues
regarding the implementation of our equilibrium concept (see
Section 4.2).

When agents are myopic with respect to default penalties, any
budget and physically feasible plan a ∈ Bi(p, q, κ)∩ F i has actually
finite equivalent payoffs. This result will turn out to be crucial in
the process of proving the existence of an equilibrium with finite
equivalent payoffs.
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Proposition 4.1. If agent i ismyopicwith respect to default penalties,
then every budget and physically feasible plan has finite equivalent
payoffs. In other words, we have

Bi(p, q, κ)


F i
⊂ Bi

⋆(p, q, κ).

Proof of Proposition 4.1. Fix an agent i and consider a plan a that
is budget and physically feasible, i.e., a ∈ Bi(p, q, κ) ∩ F i. Fix a
period t > 0 and ε > 0. Since the allocation a is physically feasible,
we have x(ξ) 6 Ω(ξ), implying that
ξ∈D

ui(ξ , x(ξ)) < ∞.

Therefore there exists T 0 > 1 such that
T>T0


ξ∈DT

ui(ξ , x(ξ)) 6
ε

2
.

Since agent i is myopic with respect to default penalties, there
exists T > max{t, T 0

} such that
ξ∈DT


j∈J

λi(ξ , j)H(ξ , j)M(ξ−, j) 6
ε

2
.

Consider now the plana defined by

a(ξ) =


a(ξ) if t(ξ) < T
(ωi(ξ), 0, 0,d(ξ)) if t(ξ) = T
(ωi(ξ), 0, 0, 0) if t(ξ) > T

where

∀ξ ∈ DT , ∀j ∈ J, d(ξ , j) = D(p, ξ , j)ϕ(ξ−, j).

Observe that the plana satisfiesa ∈ Bi(p, q, κ) ∩ CT and a1[0,T−1] = a1[0,T−1].

Moreover, for every τ > T we have

Π i,T (p,a) > Π i,T−1(p,a)+


ξ∈DT

ui(ξ , ωi(ξ))

−


ξ∈DT


j∈J

λi(ξ , j)H(ξ , j)M(ξ−, j)

> Π i,T−1(p, a)−


ξ∈DT


j∈J

λi(ξ , j)H(ξ , j)M(ξ−, j)

> Π i,T−1(p, a)−
ε

2

> Π i,τ (p, a)−
ε

2
−


T6s6τ


ξ∈Ds

ui(ξ , x(ξ))

> Π i,τ (p, a)− ε.

It follows that for every τ > T

Π i,τ (p,a) = Π i,T (p,a)+


ξ∈Dτ \DT

ui(ξ , ωi(ξ)) > Π i,τ (p, a)− ε.

Since T − 1 > t , this implies that the plan a has finite equivalent
payoffs. �

Remark 4.3. Given Proposition 4.1 one may wonder whether
restricting plans to have finite equivalent payoffs is relevant to
the issue of existence. Since myopia implies that budget and
physically feasible plans have finite equivalent payoffs, why one
should impose any kind of debt constraints on available plans
to ensure existence? The answer to this question lies on the
fact that in decentralized economies, agents do not take into
account feasibility restrictionswhen they solve theirmaximization
problem. Only budgetary restrictions are relevant for them. But if
this is the case, in the absence of borrowing constraints, agents can
run a Ponzi scheme and equilibria may fail to exist.20

4.2. Implementation of equilibria with finite equivalent payoffs

The introduction of debt constraints raises issues related to the
implementation of those constraints in decentralized anonymous
markets. When there is no default penalty implementation is
not an issue. Indeed, Proposition 3.3 states that in this case our
constraints on plans are innocuous.21 The case where default
penalties are non-zero requires more elaboration.

When there is full commitment, Magill and Quinzii (1994)
rule out Ponzi schemes by imposing implicit or explicit and non-
binding bounds on the real value of debt. They subsequently
argue for either a subjective (self-monitoring) interpretation of
implicit bounds or an objective (market-based) interpretation
when bounds are explicit. We propose to show that in our context
of limited commitment the same kind of interpretation applies.
More precisely, we show that equilibria with finite equivalent
payoffs are equilibria with implicit (or explicit and non-binding)
bounds on short sales.

To prove our claim, we introduce first some notations. Given
a number m > 0, we let Bi

m(p, q, κ) be the subset of all plans
a = (x, θ, ϕ, d) in the unconstrained budget set Bi(p, q, κ)
such that the process ϕ is uniformly bounded by m. The set
∪m>0 Bi

m(p, q, κ) is denoted by Bi
∞
(p, q, κ) and corresponds to all

plans a = (x, θ, ϕ, d) in the unconstrained budget set Bi(p, q, κ)
such that the process ϕ is uniformly bounded, i.e., ϕ ∈ ℓ∞(D).
The set Bi

∞
(p, q, κ) is called the budget set with implicit bounds on

short-selling and Bi
m(p, q, κ) is called the budget set with explicit

bound m on short-selling.

Definition 4.3. A competitive equilibrium with explicit bounds
(implicit bounds) on short-selling is a family of prices and delivery
rates (p, q, κ) and an allocation a = (ai)i∈I where each ai is optimal
in the constrained budget set Bi

m(p, q, κ) (resp. B
i
∞
(p, q, κ)) and

all markets clear. We denote by Eqm(E) (Eq∞(E)) the set of
all competitive equilibria with explicit bounds m (resp. implicit
bounds) on short-selling.

The following proposition shows that, under uniform myopia
with respect to default penalties, plans with implicit constraints
on short-sales have finite equivalent payoffs.22

Proposition 4.2. If agent i is uniformly myopic with respect to
default penalties then every plan with implicit bounds on short-selling
has finite equivalent payoffs, i.e., for every price process (p, q, κ) we
have Bi

∞
(p, q, κ) ⊂ Bi

⋆(p, q, κ).

We can now provide a formal proof of our claim: equilibria
with finite equivalent payoffs are indeed equilibria with implicit
(or explicit and non-binding) bounds on short sales.

Corollary 4.1. Consider an economy where every agent is uniformly
myopic with respect to default penalties. Assume that for every asset
j, there exists a lower bound C(j) > 0 on collateral requirements, i.e.,

∀ξ ∈ D, max
ℓ∈L

C(ξ , j, ℓ) > C(j). (4.1)

Then every competitive equilibrium with finite equivalent payoffs is
(1) an equilibrium with implicit bounds on short-selling;

20 Páscoa and Seghir (2009) provide an example of an economy with myopic
agents and no borrowing constraints in which equilibria fail to exist.
21 In particular, we recover the existence result in Araujo et al. (2002). See
Corollary 4.2.
22 The proof follows almost verbatim the arguments of the proof of Proposition 4.1
and therefore is omitted.
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(2) an equilibriumwith explicit boundsm > mon short-sellingwhere

m ≡ max
j∈J


i∈I
Ω

i

C(j)
.

Proof of Corollary 4.1. Let ((p, q, κ), a) be a competitive equilib-
rium with finite equivalent payoffs, i.e., ((p, q, κ), a) ∈ Eq⋆(E).
Given Proposition 4.2, to prove the corollary we only have to show
that for every agent i, the plan ai belongs to Bi

m(p, q, κ) for every
m > m. Since the allocation a is physically feasible, we get that the
process ϕ of short-sales satisfies

∀ξ ∈ D, ∀j ∈ J, ϕi(ξ , j) 6 M(ξ , j).

The desired result follows from Assumption 2.1 and condi-
tion (4.1). �

Remark 4.4. It follows from the above arguments that if the bound
m is such that m > m, then this bound is never binding at
equilibrium.

4.3. Existence

The main contribution of this paper is the following existence
result.

Theorem 4.1. If every agent is myopic with respect to default
penalties, then a competitive equilibrium with finite equivalent
payoffs exists, i.e., Eq⋆(E) ≠ ∅.

We propose a simple proof based on the standard ‘‘truncation
argument’’.

Proof of Theorem 4.1. For each τ ∈ T , we denote by E τ the
truncation of the economy forwhich the final period is τ . Following
the arguments in Páscoa and Seghir (2009),23 it is possible to
prove that under our set of assumptions, there exist a process of
prices and delivery rates π τ = (pτ , qτ , κτ ) and a process of plans
aτ = (ai,τ )i∈I such that (π τ , aτ ) is a competitive equilibrium for
the truncated economy E τ with ∥pτ (ξ)∥ > m(ξ) > 0 for some
m(ξ) that depends only on the primitives of the economy E (and is
independent of the truncation size τ ).24

We denote by clΞ the closure of Ξ under the weak
topology.25Each process π τ belongs to clΞ which is weakly
compact as a product of compact sets. Passing to a subsequence if
necessary, we can assume that the sequence (π τ )τ∈T converges to
a process π = (p, q, κ) in clΞ . Observe that, for each node ξ ∈ D,
we have ∥p(ξ)∥ > m(ξ) > 0. In particular, for each period t and
every plan a ∈ A, the payoffΠ i,t(p, a) is well defined.

By feasibility at each node ξ , we get for each j

xi,τ (ξ) 6 Ω(ξ), ϕi,τ (ξ , j) 6 M(ξ , j) and
θ i,τ (ξ , j) 6 M(ξ , j).

This implies that the sequence (xi,τ (ξ), ϕi,τ (ξ), θ i,τ (ξ))τ∈T is
uniformly bounded. By optimality, the delivery di,τ (ξ , j) is
always lower than the promise V (pτ , ξ , j)ϕi,τ (ξ−, j) and therefore
the sequence (di,τ (ξ))τ∈T is uniformly bounded. Passing to a
subsequence if necessary, we can assume that for each i, the
sequence (ai,τ )τ∈T converges to a process ai ∈ A.

23 We can also adapt the arguments of the proof of Theorem 1 in Araujo et al.
(2002).
24 We refer to the Appendix for the precise definition of the truncated economy
E τ and the associated (finite-horizon) equilibrium concept.
25 The process (p, q, κ) belongs to clΞ if the condition ‘‘p(ξ) ∈ RL

++
’’ is replaced

by ‘‘p(ξ) ∈ RL
+
’’ in the definition ofΞ .
We claim that (π, a) is a competitive equilibrium with finite
equivalent payoffs for the economy E . It is straightforward to
check that each plan ai belongs to the budget set Bi(p, q, κ) and
that the feasibility conditions (2.4)–(2.7) are satisfied. Applying
Proposition 4.1,we get that the plan ai has finite equivalent payoffs.
We propose now to prove that ai is optimal among planswith finite
equivalent payoffs, i.e., the set Prefi(p, ai) ∩ Bi

⋆(p, q, κ) is empty.
Assume by way of contradiction that there exist ε > 0, a plan a in
the budget set Bi

⋆(p, q, κ) and T 1
∈ N satisfying

∀T > T 1, Π i,T (p, a) > Π i,T (p, ai)+ ε. (4.2)

Since ai is physically feasible, we have xi(ξ) 6 Ω(ξ) for every
node ξ ∈ D. It follows from Assumptions (H.2) and (H.3) that
U i(xi) 6 U i(Ω) < +∞. This implies that the limit

Π i(p, ai) ≡ lim
T→∞

Π i,T (p, ai)

exists in [−∞,∞). In particular, there exists T 2 > T 1 such that

∀T > T 2, Π i,T (p, ai)+
ε

2
> Π i(p, ai). (4.3)

Since the plan a has finite equivalent payoffs, there exists T > T 2

anda in the set Bi(p, q, κ) ∩ CT such that

a1[0,T2] = a1[0,T2] and inf
τ>T

[Π i,τ (p,a)−Π i,τ (p, a)] > −
ε

4
.

We denote bya the plan defined by

∀ξ ∈ D, a(ξ) =

a(ξ) if t(ξ) 6 T
(0, 0, 0, 0) if t(ξ) > T .

Observe thata belongs to the truncated budget set Bi(p, q, κ)∩ BT

and satisfies

a1[0,T2] = a1[0,T2] and Π i,T (p,a) > Π i,T (p, a)−
ε

4
. (4.4)

Combining (4.2)–(4.4) we get

Π i,T (p,a) > Π i(p, ai)+
ε

4
.

Let ψ i be the correspondence from A to AT defined by

∀a ∈ A, ψ i(a) =


b ∈ BT :Π i,T (p, b) > Π i(p, a)+

ε

4


.

Let F i be the correspondence fromΞ × A to AT defined by

∀(π ′, a′) ∈ Ξ × A, F i(π ′, a′) = Bi,T (π ′) ∩ ψ i(a′).

Observe thata ∈ F i(π, ai). Moreover, we proved that there exists
a strictly increasing sequence (Tn)n∈N with Tn ∈ N such that

lim
n→∞

((pn, qn, κn), ain) = ((p, q, κ), ai)

where

(pn, qn, κn) = (pTn , qTn , κTn) and ain = ai,Tn .

Since F i is lower semi-continuous on Ξ × A for product
topologies,26 we can conclude that there exists ν ∈ N large enough
such that Tν > T and the set F i((pν, qν, κν), aiν) is non-empty. Letaν be an element of that set. This means that

aν ∈ Bi,T (pν, qν, κν) and Π i,T (pν,aν) > Π i(pν, aiν)+
ε

4
.

Since Tν > T , we have

Bi,T (pν, qν, κν) ⊂ Bi,Tν (pν, qν, κν)

26 See Páscoa and Seghir (2009) for detailed arguments.
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and

Π i,Tν (pν,aν) > Π i,T (pν,aν).
It follows that

Π i,Tν (pν,aν) > Π i(pν, aiν) = Π i,Tν (pν, aiν)

contradicting the optimality of aiν in the truncated economy E Tν

under the price process (pν, qν, κν).
We have thus proved that for each i, the plan ai has finite

equivalent payoffs and satisfies

Prefi(p, ai) ∩ Bi
⋆(p, q, κ) = ∅.

This means that ai belongs to the demand set di⋆(π). We already
proved that all markets clear. This means that (π, a) is a
competitive equilibrium with finite equivalent payoffs. �

Given Proposition 3.3, we can obtain the main existence
result in Araujo et al. (2002, Theorem 2) as a direct corollary of
Theorem 4.1.

Corollary 4.2 (Araujo et al. (2002)). If there is no default penalty,
then there exists a competitive equilibrium, i.e., Eq(E) ≠ ∅.

Remark 4.5. Theproof of the above result proposedbyAraujo et al.
(2002) is different from ours. They also consider a sequence of
equilibria for truncated economies and pass to the limit. However,
to prove that the limit allocation is optimal, they follow a rather
involved argument showing that the sequence of marginal utilities
of income associated to the sequence of truncated equilibria is
uniformly bounded.

5. Equilibrium refinement

In this section, we address an issue related to the indeterminacy
of delivery rates in the definition of a competitive equilibrium. In
a companion paper (see Martins-da-Rocha and Vailakis (2011)),
we have shown that for the two examples proposed in Páscoa
and Seghir (2009), no-trade is a possible equilibrium outcome.
This is due to the fact that the standard equilibrium concept
leaves room for spurious inactivity on asset markets due to unduly
pessimistic expectations on asset deliveries. In the definition of a
competitive equilibrium, themarket clearing equation defining the
delivery rate expected by lenders leaves its value undeterminate
when there is no-trade at equilibrium. A similar issue was already
pointed out by Dubey et al. (2005). However, in their model it
is easy to support equilibria with no-trade in the asset markets
on account of absurdly pessimistic expectations about repayment
rates. Indeed, if lenders expect assets to deliver nothing, then we
can support any pure-spot equilibria by choosing the asset prices
to be equal to zero. Onemay think that this problem does not arise
anymore in the presence of collateral requirements since lenders
rationally expect deliveries to be at least larger than the minimum
between the promise and the value of the depreciated collateral.
It is true that we cannot support pure-spot equilibria in a trivial
manner as it is the case in Dubey et al. (2005). However, spurious
inactivity on asset markets due to overpessimistic expectations is
still a problem even in the presence of collateral requirements.
We propose to clarify this issue and explain how the refinement
proposed by Dubey et al. (2005) can be adapted to our setting.

Let (π, (ai)i∈I) be a competitive equilibrium with finite
equivalent payoffs where π = (p, q, κ) ∈ Ξ and ai =

(xi, θ i, ϕi, di). Fix a node ξ > ξ0. Since agent i delivers in node ξ
at least the amount D(p, ξ , j)ϕi(ξ−, j), we let σ i(ξ , j) ∈ [0, 1] be
the individual delivery rate defined by the equation

di(ξ , j) = [σ i(ξ , j){V (p, ξ , j)− D(p, ξ , j)} + D(p, ξ , j)]ϕi(ξ−, j)
if agent i has a short position ϕi(ξ−, j) > 0, and we pose σ i(ξ , j) =

0 elsewhere. If there is trade in node ξ−, i.e.,ϕi(ξ−, j) > 0 for some
agent i, then Eq. (2.7) in the definition of a competitive equilibrium
can be restated as follows

κ(ξ, j)

i∈I

ϕi(ξ−, j) =


i∈I

σ i(ξ , j)ϕi(ξ−, j) (5.1)

and κ(ξ, j) can be interpreted as the average delivery rate (per
unit of asset sold) above the minimum delivery D(p, ξ , j). If there
is no-trade in asset j in node ξ−, then the delivery rate κ(ξ, j)
is left undeterminate. That is, when the asset is not traded, our
equilibrium concept makes no assumption about the expected
delivery rate. We have shown in Martins-da-Rocha and Vailakis
(2011) that pessimistic expectations about deliveries (i.e., low
values of κ(ξ, j)) may by itself render the asset market inactive
if default penalties are large enough. This finding shares some
similaritieswith the issue of trivial equilibria pointed out by Dubey
et al. (2005). To explain this linkwe recall somenotations. In Dubey
et al. (2005), assets are not collateralized. The repayment rate,
denoted by K(ξ , j), is defined by the equation

K(ξ , j)V (p, ξ , j)

i∈I

ϕi(ξ−, j) =


i∈I

di(ξ , j).

As explained in Páscoa and Seghir (2009), when assets are
collateralized agents deliver at leastD(p, ξ , j) per unit of asset sold.
In this case, if D(p, ξ , j) and V (p, ξ , j) are not zero, rational agents
expect K(ξ , j) to be greater than the ratio D(p, ξ , j)/V (p, ξ , j), and
in particular it must be non-null.27 In other words, when there is
trade in node ξ− we have the relation

K(ξ , j)V (pξ, j) = κ(ξ, j){V (pξ, j)− D(pξ, j)} + D(pξ, j).

In Dubey et al. (2005), it is easy to support equilibria with no-
trade in the asset on account of absurdly pessimistic expectations
about repayment rates. However, in a model with collateral
requirements, it is not clear whether such equilibria can be
supported.28 In Martins-da-Rocha and Vailakis (2011), we show
that although agents expect per unit repayments K(ξ , j) to
be strictly positive (actually above or equal to the minimum
D(p, ξ , j)/V (p, ξ , j)) there is still room for unduly pessimistic
expectations that sustain equilibrium with no-trade.

This raises an interesting issue. The equilibrium concept should
be refined in order to rule out suchpathological no-trade equilibria.
We show below that the refinement procedure proposed by Dubey
et al. (2005) can be easily adapted to our framework.

Following Dubey et al. (2005), we propose an equilibrium re-
finement in which the government intervenes to sell infinitesimal
quantities ε > 0 of each asset at each node and fully delivers on
its promises. Since the government does not default, it does not

27 This is the reason why in our model we have chosen to parameterize agents’
expectations about delivery by the average delivery rate above the minimum
delivery, denoted by κ(ξ, j).
28 The intuition behind the existence of trivial equilibria in Dubey et al. (2005) is
as follows. Consider a sequence of pure spotmarkets and an associated equilibrium.
Introduce next an asset j in node ξ− . Choose the repayment rate K(ξ , j) of the
asset equal to zero and the price q(ξ−, j) equal to zero. Then no agent would
have an incentive to trade in node ξ− . In a model with collateralized obligations
this argument breaks down since K(ξ , j) must be larger than D(p, ξ , j)/V (p, ξ , j).
In case the asset’s promise is larger than the depreciated value of the collateral,
i.e.,D(pξ, j) = p(ξ)Y (ξ , j)C(ξ−, j), onemay try to implement no-trade by choosing
κ(ξ, j) = 0 (or equivalently K(ξ , j) = D(p, ξ , j)/V (p, ξ , j)) and fixing the asset
price q(ξ−, j) = p(ξ−)C(ξ−, j). No agent would have incentives to invest. Indeed,
it would be better to buy the bundle C(ξ−, j) instead of one unit of the asset
because of the utility obtained from consuming the collateral. However, it is not
clear whether agents would have no incentives to sell the asset. It depends on
whether the gain from consuming the collateral in node ξ− can compensate the
future penalty suffered in case of default or the loss in consumption due to the
repayment of debt besides the value of the depreciated collateral.
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need to constitute collateral bundles. However, since it delivers
fully εV (p, ξ , j) but it gets delivered only εV (κ, p, ξ , j), on net the
government injects the vector of commodities εb(κ, p, ξ , j)v(ξ)
where b(κ, p, ξ , j) > 0 is defined by the equation

b(κ, p, ξ , j)p(ξ)v(ξ) = V (p, ξ , j)− V (κ, p, ξ , j).

This touch of honesty banishes whimsical pessimism and rules
out spurious inactivity on asset markets. We adapt the definition
of a competitive equilibrium with the government intervention
proposed by Dubey et al. (2005) to our framework.

Definition 5.1. An ε-equilibrium is a family π = (p, q, κ) ∈ Ξ

of prices and delivery rates and an allocation (ai)i∈I such that: (1)
as in the standard competitive equilibrium with finite equivalent
payoffs, for every agent i the plan ai is optimal among the budget
feasible plans and the asset market clears at every period; (2)
different to the standard competitive equilibrium, commodity
markets ε-clear, i.e., for every ξ ∈ D,29
i∈I

xi(ξ) =


i∈I

[ωi(ξ)+ Y (ξ)xi(ξ−)] + εb(κ, p, ξ , j)v(ξ)

and delivery rates are boosted by the external agent, i.e., for every
ξ > ξ0,

V (κ, p, ξ , j)


ε +


i∈I

θ i(ξ−, j)


= εV (p, ξ , j)+


i∈I

di(ξ , j). (5.2)

Eq. (5.2) defining the delivery rate κ(ξ, j) can be restated as
follows

κ(ξ, j)


ε +


i∈I

θ i(ξ−, j)


= ε +


i∈I

σ i(ξ , j)ϕi(ξ−, j)

where σ i(ξ , j) is agent i’s individual delivery rate as defined by
(5.1). The delivery rate κ(ξ, j) is theweighted average of individual
rates and is boosted due to the fact that the government delivers
fully on its promises. As the government intervention disappears,
i.e., ε tends to 0, this boost disappears for periods where the asset
is positively traded in the limit.

Definition 5.2. A competitive equilibrium (π, (ai)i∈I) with finite
equivalent payoffs is called a refined equilibrium if for every ε > 0
small enough there exists an ε-equilibrium (π(ε), (ai(ε))i∈I) such
that

lim
ε→0

(π(ε), (ai(ε))i∈I) = (π, (ai)i∈I).

It is straightforward to adapt our arguments to obtain the
existence (under standard assumptions) of an ε-equilibrium with
finite equivalent payoffs. In order to prove that the limit (π, (ai)i∈I)
is an equilibrium, the only difficulty is to show that the plan
ai is optimal in the budget set defined by the price process π .
The arguments follow almost verbatim those in the proof of
Theorem 4.1 and are based on the lower semi-continuity of the
correspondence F i.30

29 By convention we let a−1 = (x−1, θ−1, ϕ−1, d−1) = (0, 0, 0, 0) and
b(κ, p, ξ0, j) = 0.
30 Here we will have

lim
ε→0

((p(ε), q(ε), κ(ε)), ai(ε)) = ((p, q, κ), ai)
6. Conclusion

What makes general equilibrium models with collateral
requirements (Araujo et al., 2002; Kubler and Schmedders, 2003)
very appealing is that collateral constraints not only do exist in
actual markets but also seem to be an efficient mechanism to
preclude Ponzi schemes without imposing any ad-hoc constraint
on debt. The recent contributions of Páscoa and Seghir (2009) and
Ferreira and Torres-Martínez (2010) show that the positive results
in Araujo et al. (2002) may not be robust: the effectiveness of
collateral requirements to bound debtmay not be valid anymore in
the natural case where there are other mechanisms leading agents
to overpay, that is, to repaymore than the collateralwhen the value
of their debt actually exceeds the collateral value.

To formally close the model and restore equilibrium, we need
to impose borrowing constraints. Among the different approaches
already existing in the literature with full commitment, we argue
in favor of the endogenous debt constraints à la Levine and
Zame (1996). We introduce in the setting of Araujo et al. (2002),
Kubler and Schmedders (2003) and Páscoa and Seghir (2009) the
concept of plans with finite equivalent payoffs. When payments are
fully enforced, our concept of plans with finite equivalent payoffs
coincides with the concept of plans with finitely effective debts
introduced by Levine and Zame (1996). When there are collateral
requirements but no default penalties, any budget feasible plan has
automatically finite equivalent payoffs. In particular, our budget
set coincides with the standard one defined in Araujo et al. (2002)
and Kubler and Schmedders (2003). Assuming a mild assumption
on default penalties, namely that agents are myopic with respect
to default penalties, we show that restricting actions to have
finite equivalent payoffs rules out Ponzi schemes and guarantees
equilibrium existencewhile keeping theminimal ability to borrow
and lend that we expect in our model. The proof is very simple and
intuitive. In particular, the main existence result in Araujo et al.
(2002) is a direct corollary of our existence result.
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Appendix. Truncated economy

Fix τ ∈ T with τ > 0. Recall that Aτ denotes the set of all plans
a ∈ A such that

∀ξ ∈ D, t(ξ) > τ H⇒ a(ξ) = 0.

Let Bτ be the set of plans a ∈ Aτ satisfying the additional condition

∀ξ ∈ D, t(ξ) = τ H⇒ ϕ(ξ) = 0.

Given a process (p, q, κ) ∈ Ξ , we denote by Bi,τ (p, q, κ) the set
defined by

Bi,τ (p, q, κ) ≡ Bi(p, q, κ) ∩ Bτ .

A competitive equilibrium for the truncated economy E τ is a
family of prices and delivery rates π = (p, q, κ) ∈ Ξ and an
allocation a = (ai)i∈I with ai ∈ Bτ such that

instead of

lim
n→N

((pn, qn, κn), ain) = ((p, q, κ), ai).

Moreover, we will obtain a contradiction with respect to the optimality of ai(ε) in
the boosted ε-economy (for ε small enough) instead of the truncated economy E T

for T large enough.
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(a) for every agent i, the plan ai is optimal, i.e.,31

ai ∈ di,τ (p, q, κ); (A.1)

(b) commodity markets clear at every node up to period τ , i.e.,
i∈I

xi(ξ0) =


i∈I

ωi(ξ0) (A.2)

and for all ξ ∈ Dτ \ {ξ0},
i∈I

xi(ξ) =


i∈I

[ωi(ξ)+ Y (ξ)xi(ξ−)]; (A.3)

(c) asset markets clear at every node up to period τ − 1, i.e., for all
ξ ∈ Dτ−1,
i∈I

θ i(ξ) =


i∈I

ϕi(ξ); (A.4)

(d) deliveries match up to period τ , i.e., for all ξ ∈ Dτ \ {ξ0} and all
j ∈ J ,
i∈I

V (κ, p, ξ , j)θ i(ξ−, j) =


i∈I

di(ξ , j). (A.5)

Observe that if a plan a belongs to Bτ , then Π i,τ (p, a) and
Π i(p, a) coincide for every price process p. Moreover, if (π, a)
is a competitive equilibrium for the truncated economy E τ , then
without any loss of generality, we can assume that q(ξ) = 0 and
θ(ξ) = 0 for every terminal node ξ ∈ Dτ .
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