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Abstract. Many emerging sensor network applications require sensor
node deployment in challenging environments that are remote and in-
accessible. In such applications, it is not always possible to deploy base
stations in or near the sensor field to collect sensory data. Therefore, the
overflow data generated by some nodes is first offloaded to other nodes
inside the network to be preserved, then gets collected when uploading
opportunities become available. In this paper, we study a generalized
data preservation problem in sensor networks, whose goal is to minimize
the total energy consumption of preserving data inside sensor networks,
given that each node has limited battery power. With an intricate trans-
formation of the sensor network graph, we demonstrate that this problem
can be modeled and solved as a minimum cost flow problem. Also, using
data preservation in sensor networks as an example, we show that seem-
ingly equivalent maximum flow techniques can result in dramatically
different network performance. Much caution thus needs to be exercised
while adopting classic network flow techniques into sensor network appli-
cations, despite successful application of network flow theory to many ex-
isting sensor network problems. Finally, we present a load-balancing data
preservation algorithm, which not only minimizes the total energy con-
sumption, but also maximizes the minimum remaining energy of nodes
that receive distributed data, thereby preserving data for longer time.
Simulation results show that compared to the existing techniques, this
results in much evenly distributed remaining energy among sensor nodes.
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1 Introduction

Data preservation is critical in sensor networks that are deployed in challenging
environments, such as underwater or ocean sensor networks [1, 2], acoustic sen-
sor networks [3], and sensor networks monitoring volcano eruption and glacial
melting [4, 5]. Due to limited accessibility in these environments, it is not possi-
ble to deploy a base station with power outlet near or inside the sensor network
to collect the data. Meanwhile, each sensor node has limited storage capacity
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and a finite battery supply. Sensor nodes close to the event of interest constantly
generate large amounts of sensory data, which can quickly exhaust their limited
storage capacity. We refer to these sensor nodes with exhausted data storage as
source nodes. Other sensor nodes that still have available storage are referred to
as destination nodes. In order to prevent data loss, the overflow data generated
at source nodes needs to be offloaded to some destination nodes before upload-
ing opportunities (such as data mules [6, 7] or low rate satellite link [8]) become
available. We refer to this process as data preservation in sensor networks.

Previous research on data preservation [9] has two major limitations. First,
it assumes that each node has “enough” battery power, so data items can always
be offloaded from source to destination nodes using shortest paths (in terms of
number of hops) between them. In this paper, we study a more challenging and
general problem, wherein each node has limited battery power, therefore short-
est paths may not always be viable. By defining and solving a generalized data
preservation problem, we demonstrate that even with low energy levels of sensor
nodes, optimal data preservation is still achievable. In particular, by fine-tuning
the costs and capacities of edges of the flow network transformed from the sen-
sor network graph, we show that the generalized data preservation problem is
equivalent to the minimum cost flow problem, which can be solved optimally and
efficiently [10]. Second, works such as [9] only focus on total energy consumption
in data preservation and do not pay attention to load-balancing of energy con-
sumption of individual sensor nodes. Once a node storing data items depletes
its energy, the data preservation fails. Therefore, maintaining load-balancing
among sensor nodes is critical for data preservation. We achieve load-balancing
by maximizing the minimum remaining energy among all destination nodes. In
contrast, Hou et al. [11] do not minimize the total energy consumption of data
preservation, while Patel et al. [12] provide separate solutions for minimizing the
routing cost and maximizing the minimum remaining energy.

Network flow theory [10] has been adopted to solve many fundamental prob-
lems in sensor networks, including data gathering [12–14], data aggregation [15],
and clustering [16]. Classic network flow problems including maximum flow,
minimum cost flow and multi-commodity flow have all been employed in sen-
sor network research (Section 2 contains a review of such work). Using data
preservation as an example, however, we demonstrate that much caution needs
to be exercised while adopting classic maximum flow techniques into sensor net-
work applications, as seemingly equivalent techniques can result in dramatically
different network performance. In particular, we show that different maximum
flow algorithms, viz. the Ford-Fulkerson Algorithm and the Edmonds-Karp Al-
gorithm [10], which differ only in time complexity, yield dramatically different
energy consumption in sensor networks.1

We also empirically compare and analyze the performance of our chosen max-
imum flow algorithm (i.e., Edmonds-Karp Algorithm) and minimum cost flow
algorithm, for various network scenarios. Based on simulation results, we draw

1 We focus here only on the data preservation problem in sensor networks [9, 11, 17],
but our findings are applicable to many other sensor network applications as well.
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some conclusions as to what extent and how well the network flow algorithms
can be applied to solve sensor network problems.

Paper Organization. The rest of the paper is organized as follows. In Section 2 we
give an overview of sensor network research that adopts network flow algorithms.
In Section 3 we formulate and solve the generalized data preservation problem.
We also solve a related problem that finds the maximum number of data items
that can be offloaded, and show that two classic maximum flow algorithms yield
very different performance. Section 4 proposes load-balancing data preservation
algorithm. Section 5 gives some analysis of the simulation results. We conclude
the paper in Section 6 and discuss possible future work.

2 Related Work

The network flow algorithms adopted in sensor network research include max-
imum flow [11, 13, 14, 17], minimum cost flow [9, 12, 18], and multi-commodity
flow [15]. Below we give a brief review.

Maximum Flow Problem: Hong et al. [14] study store-and-gather problems
in sensor networks, and show that these are essentially flow maximization under
vertex capacity constraint, which reduces to a standard maximum flow problem.
Bodlaender et al. [13] study integer maximum flow in wireless sensor networks
with energy constraint. They show that despite the efficiency of traditional max-
imum flow methods, integer maximum flow in sensor networks is indeed strongly
NP-complete and in fact APX-hard [19], which means it is unlikely to have a
polynomial time approximation scheme. Xue et al. [17] let sensory data from
different sensor nodes have different priorities, and study how to preserve data
inside the network with highest priorities. They model the problem as a maxi-
mum weighted flow problem, wherein different flows have different weights. Hou
et al. [11] study the data preservation problem in intermittently connected sen-
sor networks and design a maximum flow based algorithm to maximize data
preservation time in the network. Besides, they observe that due to energy con-
straints at sensor nodes, it is possible that not all overflow data items can be
preserved. They propose a Modified Edmonds-Karp Algorithm to find out if this
is the case. We show that with more intricate transformation of the flow network,
Edmonds-Karp Algorithm can be applied directly without being modified.

Minimum Cost Flow Problem: Patel et al. [12] minimize the energy cost
of sending data packets from sensor nodes to base stations while satisfying the
capacity limits of wireless links, and propose a routing protocol based on the
minimum cost flow algorithm. Ghiasi et al. [16] study a so called balanced k-
clustering problem in sensor networks, wherein each of the k clusters is balanced
(in terms of number of sensor nodes) and the total distance between sensor
nodes and master nodes is minimized. They show that the k-clustering problem
can be modeled as a minimum cost flow problem. Tang et al. [9] formulate the
energy-efficient data redistribution problem in data-intensive sensor networks as
a minimum cost flow problem and present a distributed algorithm.
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Multi-commodity Flow Problem: Xue et al. [15] study energy efficient rout-
ing for data aggregation in wireless sensor networks, with the goal of maximiz-
ing the lifetime of the network. The resulting model is a multi-commodity flow
problem, where each commodity represents the data generated from a sensor
node. Since multi-commodity flow problem is NP-hard, they propose a fast ϵ-
approximation algorithm, and extend their algorithm for multiple base stations.

In contrast to existing research, our work takes a new perspective by studying
how different network flow algorithms could have different effect on sensor net-
work performance such as energy consumption. We believe this is an important
effort – as shown in Section 3.2, network flow modeling does not necessarily take
into account resource consumption/allocation in a network-specific context.

3 Generalized Data Preservation Problem

3.1 System Model and Problem Formulation.

System Model. We model the sensor network as an undirected graph G(V,E),
where V = {1, 2, ..., |V |} is the set of |V | nodes, and E is the set of |E| edges.
There are p source nodes, denoted as Vs. Without loss of generality, let Vs =
{1, 2, ..., p}. Source node i is referred to as SN i. Let di denote the number of
overflow data items SN i needs to offload. Let q =

∑p
i=1 di be the total number

of data items to be offloaded in the network. Let ci be the available free storage
space (in terms of number of data items) at sensor node i ∈ V . Note that a
source node does not have available storage space.

Sensor node i has a finite and unreplenishable initial energy Ei. We adopt
first order radio model [20] as the energy model for wireless communication. In
this model, for R-bit data over distance l, the transmission energy Et(R, l) =
Eelec × R + ϵamp × R × l2, and the receiving energy Er(R) = Eelec × R. Eelec

is the energy consumption per bit on the transmitter circuit and receiver cir-
cuit, and ϵamp calculates the energy consumption per bit on the transmit am-
plifier. For densely and uniformly deployed sensor nodes, we can approximate
that Et(R, l) = Er(R). To be consistent with the assumption in [9] that energy
consumption of sending a data item from a source node to a destination node
equals the number of hops it traverses, we assume that for each node, sending
or receiving a data item each costs 0.5 unit of its energy.

Problem Formulation. Let D = {D1, D2, ..., Dq} denote the set of q data
items to be offloaded in the entire network. Let S(i) ∈ Vs, where 1 ≤ i ≤ q,
denote the source node of data item Di. An offloading function is defined as
r : D → V − Vs, indicating Di ∈ D is offloaded from S(i) to its destination
node r(i) ∈ V − Vs. Let Pi : S(i), ..., r(i), referred to as the offloading path of
Di, be the sequence of distinct sensor nodes along which Di is offloaded from
S(i) to r(i) (note that the offloading path is not necessarily the shortest path
between source node and destination node). Let E i be the energy consumption of
offloading Di from S(i) to r(i) following Pi (E i equals the number of nodes on Pi

minus one). Let E′
i denote i’s energy level after all the q data items are offloaded.
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The objective of generalized data preservation problem is to find an offloading
scheme r and a set of paths P = {P1, P2, ..., Pq}, to send each of the q data items
to its destination node, such that the total energy consumption in this process is
minimized, i.e. minr,P

∑
1≤i≤q E i, under the energy constraint: E′

j ≥ 0, ∀ j ∈ V ,

and the storage capacity constraint: |{i | r(i) = j, 1 ≤ i ≤ q}| ≤ cj ,∀ j ∈ V .

1 2 

3 

4 

Data Item 

Storage Space 

Fig. 1. A small sensor network of 4 nodes.

Example 1. Fig. 1 gives an example of the generalized data preservation problem
in a small sensor network of 4 nodes. Nodes 1 and 4 are source nodes, with 2 and
2 data items to offload, respectively. Nodes 2 and 3 are destination nodes, with
2 and 2 available storage spaces, respectively. The initial energy of each node is
10. The optimal solution is that node 1 offloads its two data items to node 2,
while node 4 offloads its two data items to node 3, resulting in minimum total
energy consumption of 4. Other solutions are non-optimal.

3.2 Maximum Flow Algorithms to Determine the Maximum
Number of Offloaded Data Items.

If the energy levels get low, not all the overflow data items at source nodes can
be offloaded. Therefore, a related question is: What is the maximum number of
data items that can be offloaded given that the energy levels of sensor nodes are
low? For example, in the sensor network of Fig. 1, if the initial energy level of
each node is 0.5 (instead of 10), source node 1 and 4 can each only offload 1 data
item, and destination node 2 and 3 can each receive and store 1 data item.

Lemma 1 In an optimal solution that maximizes number of offloaded data items,
a SN does not relay data unless it finishes offloading all its own data items, a
destination node does not relay data unless its own storage is full.

Proof: By way of contradiction, assume that in the optimal solution, there is a
SN B that serves as a relaying node before finishing offloading all its data items.
That is, there exists in the optimal solution an offloading path P : A, ..., B, ..., C,
which offloads the overflow data items of SN A to destination node C, while SN
B still has its own overflow data items to offload. Assume that a data items
are offloaded from A, and B still has b amounts of data items to offload. We
therefore can select the path P ′ : B, ..., C, along which B offloads min(a, b) data
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items to C (A offloads max(0, a − b) data items to C along P ). This strategy
achieves the same maximum amount of offloaded data, while costing less energy
than the optimal solution. The argument for destination nodes is similar. □

To find the maximum amount of data items offloaded, we first transform the
undirected graph G(V,E) into a new directed graph G′(V ′, E′) as follows:

I. V ′ = V ∪{s, t}, where s is the new source node and t is the new sink node.
II. Replace each undirected edge (i, j) ∈ E with two directed edges (i, j) and

(j, i). Set their edge capacities as infinity.
III. Split each node i ∈ V into two nodes: in-node i′ and out-node i′′. All

incoming directed edges of i are incident on i′ and all outgoing directed
edges of i emanate from i′′. The edge capacity of (i′, i′′) is f(Ei, di) for
source node SN i, and f(Ei, ci) for destination node i. f(x, y) is defined as:

f(x, y) =

{
2x if (x < y/2),
x+ y/2 otherwise.

(1)

IV. Connect s to in-node of SN i ∈ Vs with an edge of capacity di. Connect
out-node of destination node j ∈ V − Vs to t with an edge of capacity cj .

Therefore |V ′| = 2|V |+2 and |E′| = 2|E|+2|V |. Fig. 2(a) shows the transformed
graph G′ of the sensor network in Fig. 1.
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(b) Minimum cost flow problem.

Fig. 2. The transformed graphs of the sensor network in Fig. 1.

Theorem 1 Finding the maximum number of offloaded data items in G(V,E)
is equivalent to finding the maximum flow in G′(V ′, E′).

Proof: First we explain the rationale for f(x, y) in Equation 1. We focus on
source nodes, but the same analysis works also for destination nodes. According
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to Lemma 1, each source node offloads its own data items before relaying data
items for others. Specifically, for SN i,

– when Ei < di/2, SN i does not have enough energy to offload all its di data
items, since it needs 0.5 unit of energy for each data item. But in Fig. 2(a),
each unit of flow reduces one unit of edge capacity, signifying one unit of energy
cost for SN i. Therefore the edge capacity of (i′, i′′) in Fig. 2(a) is set as 2×Ei,
which is the largest amount of offloaded data items allowed by Ei.

– when Ei ≥ di/2, SN i has enough energy to offload all its di data items. We
set the edge capacity of (i′, i′′) in Fig. 2(a) as Ei + di/2. If it does offload all
di data items, the edge capacity of (i′, i′′) becomes Ei + di/2− di = Ei − di/2,
which is exactly SN i’s energy after it offloads all its di data items. Otherwise,2

since it will not serve as relaying nodes either according to Lemma 1, adding
di/2 upon Ei does not increase SN i’s ability to offload more data.

Now if the value of the maximum flow from s to t in Fig. 2(a) is f , with fi
amount of flow on edge (s, i′) and

∑p
i=1 fi = f , there must be fi amount of net

flow out of SN i, meaning SN i offloads fi amount of its own data items. On the
other hand, if SN i can offload its fi number of data items (fi ≤ di) following
an offloading path Pi from SN i to a destination node, then in Fig. 2(a), it can
offload fi units of flow from s to t, without violating the capacity conditions of
edges, giving maximum

∑p
i=1 fi amount of flow. □

However, above maximum flow modelling does not fully address data preser-
vation from the efficient resource allocation perspective. As we will see next,
different maximum flow algorithms could result in very different energy con-
sumption in sensor networks.

Comparing Ford-Fulkerson and Edmonds-Karp. Both Ford-Fulkerson and
Edmonds-Karp are classic maximum flow algorithms. In each iteration of Ford-
Fulkerson, an arbitrary augmenting path is selected in the residual graph to
push flow from source to sink, whereas in Edmonds-Karp, a shortest augment-
ing path is selected. The time complexity of Ford-Fulkerson is O(|E′|C), where C
is the value of a maximum flow in G′. The time complexity of Edmonds-Karp is
O(|V ′||E′|2). Note that Hou et al. [11] designed a modified Edmonds-Karp max-
imum flow algorithm, called MEA, to determine the maximum number of data
items offloaded. Our findings are an improvement upon theirs. First, Theorem 1
shows that with intricate specification of the edge capacity of the transformed
graph (i.e., Equation 1), any maximum flow algorithm can be directly applied
to the transformed graph without modification. More fundamentally, we observe
that when being applied to solve sensor network problems, different classic max-
imum flow algorithms, namely Ford-Fulkerson algorithm and Edmonds-Karp
algorithm, could result in very different energy consumption, even though both
achieve maximum amount of flow and only differ in time complexity. This is not
explored in [11].

2 Note that this is possible when destination nodes around SN i do not have enough
energy to store all di data items.
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Fig. 3. Comparison between the Ford-Fulkerson and the Edmonds-Karp algorithms of
the flow amounts and costs of their output flows for 1000 data items at SN nodes, over
different initial energy levels of non-SN nodes.

To illustrate, we create a 10 × 10 grid network (with 100 nodes). One node
is randomly selected as the source node with 1000 data items to offload. For
each destination node, its storage capacity is 20, and its initial energy levels is
varied as 50, 100, 150, 200, 250.3 Fig. 3(a) shows that both algorithms offload
the same number of data items because both achieve maximum flow. However,
Fig. 3(b) shows that Edmonds-Karp costs much less energy than Ford-Fulkerson
does, and the difference gets larger with the increase of energy levels.

3.3 Minimum Cost Flow Algorithm.

The minimum cost flow problem [10] is the following: Given a graph in which
each edge has a capacity and a cost, some nodes are supply nodes and some
are demand nodes, and total supply equals total demand; the goal is to find
flows from supply nodes to demand nodes with minimum total cost while the
capacity constraint at each edge is satisfied. To find the optimal algorithm for
generalized data preservation, we first transform undirected graph G(V,E) into
another new directed graph G′′(V ′′, E′′). Much of the transformation is the same
as the one in Section 3.2. Additionally, for any edge (i, j) in G, we set the costs
of corresponding edges (i′′, j′) and (j′′, i′) in G′′ to be 1. We set the costs of all
other edges in G′′ as 0. Finally, we set both the supply at s and the demand at t
as

∑p
i=1 di, the total number of data items to be offloaded in the entire network.

Fig. 2(b) shows the transformed network graph G′′ corresponding to the sensor
network in Fig. 1.

Theorem 2 The generalized data preservation problem in G(V,E) is equivalent
to the minimum cost flow problem in G′′(V ′′, E′′).

3 We assign the source node large enough energy so that all 1000 data items can be
offloaded. Otherwise, the amount of data offloaded in the network (i.e., the effect
of maximum flow algorithms) is mainly limited by the energy level of source node,
making the comparison less interesting.
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Proof: We show that a minimum cost flow from s to t in G′′ solves the gener-
alized data preservation problem in G optimally. Specifically, we show that, a)
it offloads all the data items from their source nodes to some destination nodes,
and b) it incurs minimum energy cost in this process.

A minimum cost flow from s to t must include di amount of flow on edge
(s, i′) in G′′ (1 ≤ i ≤ p), since the capacity of (s, i′) is di and the total amount
of flow from s to t is

∑p
i=1 di. This signifies that in G, di amount of data items

are offloaded from SN i. For any data item Di in G, its corresponding flow in G′′

goes from s to S(i)′, S(i)′′, ..., r(i)′, r(i)′′, and ends at t, indicating that Di is
finally stored at destination node r(i). Besides, the capacity of edge (i′′, t) being
ci, the storage capacity of destination node i, guarantees that in G, a destination
node never stores more than its storage capacity allows.

For an edge (i, j) in G, sending a data item between i and j costs one amount
of energy, which is accurately captured in G′′, wherein the costs of corresponding
edges (i′′, j′) and (j′′, i′) are 1 while costs of others are all 0. The minimum cost of
sending

∑p
i=1 di amount of flow from s to t in G′′ is therefore incurring minimum

amount of energy cost offloading di amount of data from SN i (1 ≤ i ≤ p). □
Time Complexity. There are various polynomial algorithms to solve minimum
cost flow problem. In this paper, we use the algorithm and implementation by
Goldberg [21, 22] due to its practical nature. This algorithm has the time com-
plexity of O(|V ′′|2|E′′|log(|V ′′|C)), where |V ′′|, |E′′|, and C are, respectively, the
number of nodes, edges, and the maximum capacity of an edge in graphG′′. Since
|V ′′| = 2|V | + 2 and |E′′| = 2|E| + 2|V |, the time complexity of the minimum
cost flow algorithm is therefore O(|V |2|E|log(|V |C)).

4 Data Preservation Problem With Load Balancing

Problem Formulation. The goal of data preservation problem with load-
balancing is first to minimize the total energy consumption in data preser-
vation; then among the minimum total energy consumption solutions, to find
the one that maximizes the minimum remaining energy among all the desti-
nation nodes. Specifically, we find an offloading scheme r and a set of paths
P = {P1, P2, ..., Pq}, to offload each of the q data items to its destination
node, such that the total energy consumption in this process is minimized, i.e.
minr,P

∑
1≤i≤q E i, and the minimum remaining energy among all the destination

nodes is maximized, i.e., maxr,P min1≤i≤qE
′

r(i).

Finding All Shortest Paths Between Nodes In Grid Networks. Before
presenting the load-balancing algorithm (Algorithm 2), we first find all the short-
est paths between any given two nodes in a grid network (Algorithm 1). There is
extensive research on finding the k shortest simple paths in a directed weighted
graph [23, 24]. In this paper we use a grid network for clarity of presentation,
and design a much simpler recursive algorithm.4 The algorithm works as follows.

4 However, we are aware of that [23, 24] present much more efficient algorithms using
complex data structures, which are difficult to implement.
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In the base case, when the source and destination nodes are the same, it returns
only one path with just that node. Otherwise, this algorithm returns paths ob-
tained by appending the source node to all shortest paths from the nodes that
are one step closer to the destination node, on each of the x and y axes.

Algorithm 1 Finding All Shortest Paths Between Two Nodes In Grids.
Input: The coordinates of two nodes: (x1, y1) and (x2, y2)
Output: Set of all shortest paths between them

AllShortestPaths(x1, y1, x2, y2)

1. xStep =

1 if x1 < x2

−1 if x1 > x2

0 otherwise

2. yStep =

1 if y1 < y2
−1 if y1 > y2
0 otherwise

3. if (xStep == 0 and yStep == 0) RETURN {⟨(x1, y1)⟩};
4. S = ϕ;
5. if (xStep ̸= 0)

S = S ∪ {(x1, y1) :: P | P ∈ AllShortestPaths(x1 + xStep, y1, x2, y2)};
6. if (yStep ̸= 0)

S = S ∪ {(x1, y1) :: P | P ∈ AllShortestPaths(x1, y1 + yStep, x2, y2)};
7. RETURN S.

Time Complexity of Algorithm 1. Let X = |x1 − x2|, and Y = |y1 − y2|. There
are CX

(X+Y ) shortest paths between (x1, y1) and (x2, y2), where CX
(X+Y ) is the

number of ways of selecting X items from a set of (X + Y ) items. Finding
each shortest path requires O(X + Y ) append operations. Therefore, the time
complexity of Algorithm 1 is O((X + Y )CX

(X+Y )).

Data Preservation With Load-balancing. Load-balancing data preserva-
tion algorithm (Algorithm 2) works as follows. First, we use minimum cost flow
algorithm (Section 3.3) to achieve minimum energy consumption as well as to
find the destination nodes of all data items (line 1). Then, for each data item,
we find all the shortest paths between its SN and the destination node using
Algorithm 1 (line 5). Finally, among all the shortest paths for this data item,
we choose the one whose minimum energy-node has the maximum energy as
its offloading path (line 7-11). This way it ensures that destination nodes with
less energy do not relay data items, hence saving energy and preserving their
stored data for longer time. Although we can not prove the optimality of this
algorithm, we show in Section 5 that it performs better than the one without
load-balancing.

Algorithm 2 Load-balancing Data Preservation Algorithm.
Input: The sensor network graph and set of data items D
Output: Set of offloading paths: {Pj |Dj ∈ D}
1. Run minimum cost flow algorithm;
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2. for each source node with coordinate (x1, y1)
3. for each of its data item
4. Let the coordinate of its destination node be (x2, y2);
5. Get all the shortest paths from AllShortestPaths(x1, y1, x2, y2);
6. MaxMinEnergy = 0;
7. for each such shortest path Pj

8. MinEnergy[j] = minimum energy of nodes in Pj ;
9. if (MinEnergy[j] > MaxMinEnergy)

MaxMinEnergy = MinEnergy[j];
10. end for;
11. Find path, say Pk, with MaxMinEnergy, as its offloading path;
12. end for;
13. end for;
14. RETURN all the offloading paths.

Time Complexity of Algorithm 2. The length of any shortest path in a grid of

|V | nodes is at most 2
√
|V |, since

√
|V | is the number of nodes along either

x or y axis. The largest number of shortest paths between any two nodes is

therefore C

√
|V |

2
√

|V |
. The time complexity of the minimum cost flow algorithm is

O(|V |2|E|log(|V |C)), which is less than C

√
|V |

2
√

|V |
. Therefore, the time complexity

of Algorithm 2 is O(q × 2
√
|V | × C

√
|V |

2
√

|V |
).

5 Performance Evaluation

We first compare the network performance of the load-balancing data preser-
vation algorithm with the minimum cost flow data preservation algorithm in
[9], which does not employ load-balancing technique. We then compare energy
consumption of data preservation using maximum flow algorithm and minimum
cost flow algorithm. Since it is shown in Section 3.2 that Edmonds-Karp algo-
rithm costs less energy than Ford-Fulkerson does, we adopt Edmonds-Karp as
the maximum flow algorithm in the comparison.

Comparing load-balancing data preservation and minimum cost flow-
based data preservation. The sensor network is a 10 × 10 grid network. We
randomly choose two nodes in the network as SNs. The storage capacity of each
destination node is 10, and the initial energy of each node (including the source
nodes) is 1000. Fig. 4(a) shows that both algorithms cost the same amount of
energy. However, Fig. 4(b) shows that with the increase of the number of data
items at source nodes, the minimum remaining energy of the destination nodes
given by load-balancing algorithm gets larger than that given by minimum cost
flow algorithm. This indicates that data preservation would fail much later with
load-balancing algorithm than without load-balancing.
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Fig. 4. Comparison between the load-balancing data preservation and the minimum
cost flow-based data preservation.
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Fig. 5. Comparison between the Edmonds-Karp maximum flow algorithm and the
minimum cost flow algorithm.

Comparing maximum flow and minimum cost flow. Since minimum cost
flow algorithm gives minimum energy consumption for data preservation, and
Edmonds-Karp costs much less energy than Ford-Fulkerson does, we ask the
following question: How close does Edmonds-Karp perform w.r.t. minimum cost
flow? Below we compare their performances. We set the network size as 15× 15
and randomly choose 5 nodes as SNs, each with 400 data items. The storage
capacity of each destination node is 10. Fig. 5(a) shows the energy consumption
comparison by varying the initial energy level of each node. When initial energy
equals 100, not all the data items can be offloaded. We thereby use Edmonds-
Karp to first find the maximum amount of data items that can be offloaded by
each SN, and use that information as input for minimum cost flow algorithm. It
shows that the total energy consumption by Edmonds-Karp is larger than that
of minimum cost flow. When initial energy is 200 and 300, all the data items
can be offloaded from their SNs. When initial energy gets to 400, since each
destination node has enough energy to either store or relay the data items, there
are more shorter offloading paths available, therefore the total energy consump-
tion decreases for both algorithms. In all cases, the total energy consumption
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by Edmonds-Karp is larger than that of minimum cost flow. Fig. 5(b) uses the
same parameters as in Fig. 5(a), except that now we fix the energy level of all
the nodes as 200, and change the number of SNs. It shows that when there
are only one or two SNs, Edmonds-Karp and minimum cost flow have similar
performance. However, when the number of SNs increases, minimum cost flow
costs less energy than Edmonds-Karp does. In all, minimum cost flow performs
better than Edmonds-Karp in more stressed scenarios (i.e., more data items to
offload).

6 Conclusion and Future Work

We study a generalized data preservation problem to preserve data inside sen-
sor networks, considering that each node has limited battery power. We show
that this problem can be modeled and solved as a minimum cost flow problem,
which is solvable in polynomial time. By examining how different network flow
algorithms can affect sensor network performance, we take a step further to view
network flow problems from the perspective of efficient resource allocation, and
study their applicability to sensor network scenarios. Our ongoing and future
works are as follows. First, instead of a grid network, we will adopt a randomly
generated sensor network for further study. Second, it would be interesting to
prove if Edmonds-Karp costs the minimum amount of energy for data preserva-
tion, among all maximum flow algorithms. That is, when each edge has the same
unit cost, is Edmonds-Karp a minimum cost maximum flow?5 Third, we hope
to study the problem using a more general energy model, wherein the energy
consumption of sending data from one node to another depends on not only the
size of the data but also the distance between nodes.

Acknowledgment

This work was supported in part by the NSF Grant CNS-1116849.

References

1. Vasilescu, I., Kotay, K., Rus, D., Dunbabin, M., Corke, P.: Data collection, storage,
and retrieval with an underwater sensor network. In: Proc. of SenSys 2005. 154–165

2. Li, S., Liu, Y., Li, X.: Capacity of large scale wireless networks under gaussian
channel model. In: Proc. of MOBICOM 2008. 140–151

3. Luo, L., Cao, Q., Huang, C., Wang, L., Abdelzaher, T., Stankovic, J.: Design, im-
plementation, and evaluation of enviromic: A storage-centric audio sensor network.
ACM Transactions on Sensor Networks 5(3) (2009) 1–35

4. Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., Welsh, M.: Fidelity and yield
in a volcano monitoring sensor network. In: Proc. of OSDI 2006. 381–396

5 Note that minimum cost maximum flow problem is to find a maximum flow that
has the minimum cost among all the maximum flows, considering that each edge has
both a capacity and a cost.



14 B. Tang et al.

5. Martinez, K., Ong, R., Hart, J.: Glacsweb: a sensor network for hostile environ-
ments. In: Proc. of SECON 2004. 81–87

6. Jain, S., Shah, R., Brunette, W., Borriello, G., Roy, S.: Exploiting mobility for
energy efficient data collection in wireless sensor networks. MONET 11(3) (2006)
327–339

7. Jea, D., Somasundara, A.A., Srivastava, M.B.: Multiple controlled mobile elements
(data mules) for data collection in sensor networks. In: Proc. of the IEEE DCOSS.
(2005) 244–257

8. Mathioudakis, I., White, N.M., Harris, N.R.: Wireless sensor networks: Applica-
tions utilizing satellite links. In: Proc. of the IEEE 18th International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC 2007). (2007) 1–5

9. Tang, B., Jaggi, N., Wu, H., Kurkal, R.: Energy efficient data redistribution in
sensor networks. ACM Transactions on Sensor Networks 9(2) (May 2013) 1–28

10. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms,
and Applications. Prentice Hall (1993)

11. Hou, X., Sumpter, Z., Burson, L., Xue, X., Tang, B.: Maximizing data preservation
in intermittently connected sensor networks. In: Proc. of IEEE MASS 2012. 448–
452

12. Maulin Patel, S. Venkatesan, R.C.: Energy efficient capacity constrained routing
in wireless sensor networks. International Journal of Pervasive Computing and
Communications 2 (2006) 69–80

13. Bodlaender, H.L., Tan, R.B., Dijk, T.C., Leeuwen, J.: Integer maximum flow in
wireless sensor networks with energy constraint. In: Proc. of the 11th Scandinavian
workshop on Algorithm Theory, SWAT 08. 102–113

14. Hong, B., Prasanna, V.K.: Maximum data gathering in networked sensor systems.
Intl J. Distributed Sensor Networks 1 (2005) 57–80

15. Xue, Y., Cui, Y., Nahrstedt, K.: Maximizing lifetime for data aggregation in
wireless sensor networks. Mob. Netw. Appl. 10(6) (December 2005) 853–864

16. Ghiasi, S., Srivastava, A., Yang, X., Sarrafzadeh: Optimal energy aware clustering
in sensor networks. Sensors 2(7) (2002) 258–269

17. Xue, X., Hou, X., Tang, B., Bagai, R.: Data preservation in intermittently con-
nected sensor networks with data priorities. In: Proc. of IEEE SECON 2013. 65–73

18. Ha, R.W., Ho, P.H., Shen, X.S., Zhang, J.: Sleep scheduling for wireless sensor
networks via network flow model. Comput. Commun. 29 (August) 2469–2481

19. Papadimitriou, C., Yannakakis, M.: Optimization, approximation and complexity
classes. Journal of Computer and System Sciences 43 (1991) 425 – 440

20. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communi-
cation protocol for wireless microsensor networks. In: Proc. of HICSS 2000

21. Goldberg, A.V.: An efficient implementation of a scaling minimum-cost flow algo-
rithm. Journal of Algorithms 22(1) (1997) 1–29

22. Goldberg, A.V.: Andrew Goldberg’s network optimization library
http://www.avglab.com/andrew/soft.html.

23. Hershberger, J., Maxel, M., Suri, S.: Finding the k shortest simple paths: A new
algorithm and its implementation. ACM Trans. Algorithms 3(4) (2007) 1–19

24. Eppstein, D.: Finding the k shortest paths. SIAM J. Computing 28(2) (1998)
652–673


