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Abstract

We focus on the discovery and identification of direct causes and effects of a target
variable in a causal network. State-of-the-art causal learning algorithms generally
need to find the global causal structures in the form of complete partial directed
acyclic graphs (CPDAG) in order to identify direct causes and effects of a target
variable. While these algorithms are effective, it is often unnecessary and wasteful
to find the global structures when we are only interested in the local structure of
one target variable (such as class labels). We propose a new local causal discov-
ery algorithm, called Causal Markov Blanket (CMB), to identify the direct causes
and effects of a target variable based on Markov Blanket Discovery. CMB is de-
signed to conduct causal discovery among multiple variables, but focuses only on
finding causal relationships between a specific target variable and other variables.
Under standard assumptions, we show both theoretically and experimentally that
the proposed local causal discovery algorithm can obtain the comparable identifi-
cation accuracy as global methods but significantly improve their efficiency, often
by more than one order of magnitude.

1 Introduction

Causal discovery is the process to identify the causal relationships among a set of random variables.
It not only can aid predictions and classifications like feature selection [4]], but can also help pre-
dict consequences of some given actions, facilitate counter-factual inference, and help explain the
underlying mechanisms of the data [13]. A lot of research efforts have been focused on predict-
ing causality from observational data [[13} [18]. They can be roughly divided into two sub-areas:
causal discovery between a pair of variables and among multiple variables. We focus on multivari-
ate causal discovery, which searches for correlations and dependencies among variables in causal
networks [[13]]. Causal networks can be used for local or global causal prediction, and thus they can
be learned locally and globally. Many causal discovery algorithms for causal networks have been
proposed, and the majority of them belong to global learning algorithms as they seek to learn global
causal structures. The Spirtes-Glymour-Scheines (SGS) [18] and Peter-Clark (P-C) algorithm [[19]]
test for the existence of edges between every pair of nodes in order to first find the skeleton, or
undirected edges, of causal networks and then discover all the V-structures, resulting in a partially
directed acyclic graph (PDAG). The last step of these algorithms is then to orient the rest of edges
as much as possible using Meek rules [[10] while maintaining consistency with the existing edges.
Given a causal network, causal relationships among variables can be directly read off the structure.

Due to the complexity of the P-C algorithm and unreliable high order conditional independence tests
[9l], several works [23| [15] have incorporated the Markov Blanket (MB) discovery into the causal
discovery with a local-to-global approach. Growth and Shrink (GS) [9] algorithm uses the MBs
of each node to build the skeleton of a causal network, discover all the V-structures, and then use
the Meek rules to complete the global causal structure. The max-min hill climbing (MMHC) [23]
algorithm also finds MBs of each variable first, but then uses the MBs as constraints to reduce the
search space for the score-based standard hill climbing structure learning methods. In [[15], authors



use Markov Blanket with Collider Sets (CS) to improve the efficiency of the GS algorithm by com-
bining the spouse and V-structure discovery. All these local-to-global methods rely on the global
structure to find the causal relationships and require finding the MBs for all nodes in a graph, even
if the interest is the causal relationships between one target variable and other variables. Differ-
ent MB discovery algorithms can be used and they can be divided into two different approaches:
non-topology-based and topology-based. Non-topology-based methods [J5, 9], used by CS and GS
algorithms, greedily test the independence between each variable and the target by directly using the
definition of Markov Blanket. In contrast, more recent topology-based methods [22} 1} [11] aim to
improve the data efficiency while maintaining a reasonable time complexity by finding the parents
and children (PC) set first and then the spouses to complete the MB.

Local learning of causal networks generally aims to identify a subset of causal edges in a causal
network. Local Causal Discovery (LCD) algorithm and its variants [3[17}[7] aim to find causal edges
by testing the dependence/independence relationships among every four-variable set in a causal
network. Bayesian Local Causal Discovery (BLCD) [8] explores the Y-structures among MB nodes
to infer causal edges [[6]. While LCD/BLCD algorithms aim to identify a subset of causal edges via
special structures among all variables, we focus on finding all the causal edges adjacent to one target
variable. In other words, we want to find the causal identities of each node, in terms of direct causes
and effects, with respect to one target node. We first use Markov Blankets to find the direct causes
and effects, and then propose a new Causal Markov Blanket (CMB) discovery algorithm, which
determines the exact causal identities of MB nodes of a target node by tracking their conditional
independence changes, without finding the global causal structure of a causal network. The proposed
CMB algorithm is a complete local discovery algorithm and can identify the same direct causes and
effects for a target variable as global methods under standard assumptions. CMB is more scalable
than global methods, more efficient than local-to-global methods, and is complete in identifying
direct causes and effects of one target while other local methods are not.

2 Backgrounds

We use V to represent the variable space, capital letters (such as X, Y") to represent variables, bold
letters (such as Z, MB) to represent variable sets, and use |Z| to represent the size of set Z. X 1L Y
and X N Y represent independence and dependence between X and Y, respectively. We assume
readers are familar with related concepts in causal network learning, and only review a few major
ones here. In a causal network or causal Bayesian Network [13]], nodes correspond to the random
variables in a variable set V. Two nodes are adjacent if they are connected by an edge. A directed
edge from node X to node Y, (X,Y) € V, indicates X is a parent or direct cause of Y and Y is
a child or direct effect of X [12]. Moreover, If there is a directed path from X to Y, then X is an
ancestor of Y and Y is a descendant of X. If nonadjacent X and Y have a common child, X and
Y are spouses. Three nodes X, Y, and Z form a V-structure [12] if Y has two incoming edges from
X and Z, forming X — Y < Z, and X is not adjacent to Z. Y is a collider in a path if Y has two
incoming edges in this path. Y with nonadjacent parents X and Z is an unshielded collider. A path
J from node X and Y is blocked [12]] by a set of nodes Z, if any of following holds true: 1) there is
a non-collider node in J belonging to Z. 2) there is a collider node C' on J such that neither C' nor
any of its descendants belong to Z. Otherwise, .J is unblocked or active.

A PDAG is a graph which may have both undirected and directed edges and has at most one edge
between any pair of nodes [10]. CPDAGs [2]] represent Markov equivalence classes of DAGs, captur-
ing the same conditional independence relationships with the same skeleton but potentially different
edge orientations. CPDAGs contain directed edges that has the same orientation for every DAG in
the equivalent class and undirected edges that have reversible orientations in the equivalent class.
Let G be the causal DAG of a causal network with variable set } and P be the joint probability dis-
tribution over variables in V. G and P satisfy Causal Markov condition [13] if and only if, VX € V,
X is independent of non-effects of X given its direct causes. The causal faithfulness condition [13|]
states that G and P are faithful to each other, if all and every independence and conditional indepen-
dence entailed by P is present in G. It enables the recovery of GG from sampled data of P. Another
widely-used assumption by existing causal discovery algorithms is causal sufficiency [12]. A set of
variables X C V is causally sufficient, if no set of two or more variables in X shares a common
cause variable outside ). Without causal sufficiency assumption, latent confounders between adja-
cent nodes would be modeled by bi-directed edges [24]. We also assume no selection bias [20] and



we can capture the same independence relationships among variables from the sampled data as the
ones from the entire population.

Many concepts and properties of a DAG hold in causal networks, such as d-separation and MB.
A Markov Blanket [[12] of a target variable 7', MBr, in a causal network is the minimal set of
nodes conditioned on which all other nodes are independent of 7', denoted as X 1L T|MBr,VX C
{V\T}\ MBr. Given an unknown distribution P that satisfied the Markov condition with respect
to an unknown DAG G, Markov Blanket Discovery is the process used to estimate the MB of a
target node in G°, from independently and identically distributed (i.i.d) data D of P. Under the
causal faithfulness assumption between G° and P, the MB of a target node 7 is unique and is the
set of parents, children, and spouses of 7" (i.e., other parents of children of T) [12]]. In addition, the
parents and children set of T', PCr, is also unique. Intuitively, the MB can directly facilitate causal
discovery. If conditioning on the MB of a target variable 7" renders a variable X independent of
T, then X cannot be a direct cause or effect of 7. From the local causal discovery point of view,
although MB may contain nodes with different causal relationships with the target, it is reasonable
to believe that we can identify their relationships exactly, up to the Markov equivalence, with further
tests.

Lastly, exiting causal network learning algorithms all use three Meek rules [[10], which we assume
the readers are familiar with, to orient as many edges as possible given all V-structures in PDAGs to
obtain CPDAG. The basic idea is to orient the edges so that 1) the edge directions do not introduce
new V-structures, 2) preserve the no-cycle property of a DAG, and 3) enforce 3-fork V-structures.

3 Local Causal Discovery of Direct Causes and Effects

Existing MB discovery algorithms do not directly offer the exact causal identities of the learned MB
nodes of a target. Although the topology-based methods can find the PC set of the target within
the MB set, they can only provide the causal identities of some children and spouses that form v-
structures. Nevertheless, following existing works [4} [15]], under standard assumptions, every PC
variable of a target can only be its direct cause or effect:

Theorem 1. Causality within a MB. Under the causal faithfulness, sufficiency, correct indepen-
dence tests, and no selection bias assumptions, the parent and child nodes within a target’s MB set
in a causal network contains all and only the direct causes and effects of the target variable.

The proof can be directly derived from the PC set definition of a causal network. Therefore, using
the topology-based MB discovery methods, if we can discover the exact causal identities of the PC
nodes within the MB, causal discovery of direct causes and effects of the target can therefore be
successfully accomplished.

Building on MB discovery, we propose a new local causal discovery algorithm, Causal Markov
Blanket (CMB) discovery as shown in Algorithm |1} It identifies the direct causes and effects of a
target variable without the need of finding the global structure or the MBs of all other variables in
a causal network. CMB has three major steps: 1) to find the MB set of the target and to identify
some direct causes and effects by tracking the independence relationship changes among a target’s
PC nodes before and after conditioning on the target node, 2) to repeat Step 1 but conditioned on
one PC node’s MB set, and 3) to repeat Step 1 and 2 with unidentified neighboring nodes as new
targets to identify more direct causes and effects of the original target.

Step 1: Initial identification. CMB first finds the MB nodes of a target 7', M B, using a topology-
based MB discovery algorithm that also finds PC7;. CMB then uses the CausalSearch subroutine,
shown in Algorithm 2] to get an initial causal identities of variables in PCr by checking every
variable pair in PCy according to LemmalT}

Lemma 1. Ler (X,Y) € PCr, the PC set of the target T € V in a causal DAG. The independence
relationships between X and'Y can be divided into the following four conditions:

Cl X LY and X L Y|T; this condition can not happen.

C2X 1L Yand X NY|T = X andY are both the parents of T.

C3X NYand X L Y|T = atleast one of X and Y is a child of T.

C4 X N Y and X N Y|T = their identities are inconclusive and need further tests.



Algorithm 1 Causal Markov Blanket Discovery Algorithm

1: Input: D: Data; T': target variable 13:  if3Zs.t (X, Z)and (Y, Z) are idp = 4 pairs
2: Qutput: ID7p: the causal identities of all then

nodes with respect to T 14: I1Dr(Z) = 1;

{Step 1: Establish initial ID } 15: ID7(X) = 3,vX that ID7(X) = 4;

{Step 3: Resolve variable set with idp = 3}

3 1Dy = zeros(|V], 1); 16: for each X with idr = 3 do
‘51: <ZM<—B(,5, PCT) — andMB(T, D)’ 17: lieculrsivgly ﬁnq I,jDX" \zilthout going back to
6: IDT « C’ausalSearch(D, T, .PQT7 Z,IDr) 18: Lpedztze?gﬂi?grd;a;?o [eBX;
{Step 2: Further test variables with idp = 4} 19:  if IDx(T) = 2 then
7: for one X in each pair (X,Y") with idr = 4 do . _ 1.
8:  MBx ¢ FindMB(X,D); g(l) tl'oll?q;:(v)e(r) _YLin idr = 3 variable pairs
9:  Z< {MBx\T}\Y; ' (X’Y)dyo T P
10:  ID7 + CausalSearch(D,T,PCr,Z, IDT);22: IDr(Y) = 2;
11:  ifno element of I Dy is equal to 4, break; 52; Returl,fl?(},ejlimem of IDris equal to 3, break:
12: for every pair of parents (X,Y") of 7' do
Algorithm 2 CausalSearch Subroutine
1: Input: D: Data; T target variable; PCr: 13: if ID7(Y) = 1 then
the PC set of T'; Z: the conditioned variable 14 IDp(X) <+ 2
set; I.D: current ID 15: else if 7D (X) # 2 then
2: Output: ID7: the new causal identities of  16: IDp(X) <3
all nodes with respect to T’ 17: add (X,Y) to pairs with idp = 3
{Step 1: Single PC } 18:  else
3: if |PCy| = 1 then 190 if IDp(X) & ID7(Y) = 0 or 4 then
4: IDT(PCT) — 3; 20: IDT(X) — 4; IDT(Y) — 4
{Step 2: Check C2 & C3} 21: add (X,Y) to pairs with idr = 4
5: forevery X, Y € PCr do {Step 3: identify idp = 3 pairs with known
6: X 1Y|Zand X N Y|T U Z then parents }
7: IDp(X) + 1, IDp(Y) «+ 1; 22: for every X such that D7 (X) =1 do
8: elseif X N YV|Zand X L Y|TUZthen 23: for every Y in idy = 3 variable pairs
9: if IDp(X) =1 then (X,Y)do
10: ID7(Y) 2 24: IDp(Y) 2
11: else if ID1(Y) # 2 then 25: Return: /Dy
12: IDp(Y) <« 3

C1 does not happen because the path X — 7" — Y is unblocked either not given T or given T', and
the unblocked path makes X and Y dependent on each other. C2 implies that X and Y form a
V-structure with 7" as the corresponding collider, such as node C' in Figure[Th which has two parents
A and B. C3 indicates that the paths between X and Y are blocked conditioned on 7', which means
that either one of (X,Y) is a child of T and the other is a parent, or both of (X,Y") are children of
T For example, node D and F in Figure[Th satisfy this condition with respect to £. C4 shows that
there may be another unblocked path from X and Y besides X — 7' — Y. For example, in Figure
[Ib, node D and C have multiple paths between them besides D — T' — C. Further tests are needed
to resolve this case.

Notation-wise, we use I Dr to represent the causal identities for all the nodes with respect to 7',
IDp(X) as variable X’s causal identity to 7', and the small case idy as the individual ID of a node
to T'. We also use I Dx to represent the causal identities of nodes with respect to node X. To avoid
changing the already identified PCs, CMB establishes a priority systerrﬂ We use the idp = 1 to
represent nodes as the parents of T, ¢dr = 2 children of T, idr = 3 to represent a pair of nodes that
cannot be both parents (and/or ambiguous pairs from Markov equivalent structures, to be discussed
at Step 2), and idp = 4 to represent the inconclusiveness. A lower number ¢d cannot be changed

"Note that the identification number is slightly different from the condition number in Lemma
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Figure 1: a) A Sample Causal Network. b) A Sample Network with C4 nodes. The only active path
between D and C conditioned on MB¢ \ {T,D}is D — T — C.

into a higher number (shown by Line 11~15 of Algorithm 2). If a variable pair satisfies C2, they
will both be labeled as parents (Line 7 of Algorithm [2). If a variable pair satisfies C3, one of them
is labeled as idp = 2 only if the other variable within the pair is already identified as a parent;
otherwise, they are both labeled as id7 = 3 (Line 9~12 and 15~17 of Algorithm . If a PC node
remains inconclusive with id; = 0, it is labeled as idr = 4 in Line 20 of Algorithm Note that
if T has only one PC node, it is labeled as idr = 3 (Line 4 of Algorithm[2). Non-PC nodes always
have idr = 0.

Step 2: Resolve idr = 4. Lemma|I]alone cannot identify the variable pairs in PCrp with idy = 4
due to other possible unblocked paths, and we have to seek other information. Fortunately, by
definition, the MB set of one of the target’s PC node can block all paths to that PC node.

Lemma 2. Let (X,Y) € PCr, the PC set of the target T € V in a causal DAG. The independence
relationships between X and Y, conditioned on the MB of X minus {Y,T}, MBx \ {Y, T}, can
be divided into the following four conditions:

ClI X L YMBx \{Y,T}and X L Y|T UMBXx \ Y, this condition can not happen.

C2X L YMBx\{Y,T}and X N.Y|TUMBXx \Y = X andY are both the parents of T.
C3X NYMBx \{Y,T}and X L Y|TUMBx \Y = atleast one of X and 'Y is a child of T.
C4X NYMBx \{Y,T}and X N Y|TUMBx \'Y = then X and Y is directly connected.

C1~3 are very similar to those in Lemmal[I] C4 is true because, conditioned on 7" and the MB of X
minus Y, the only potentially unblocked paths between X and Y are X — T — Y and/or X — Y. If
C4 happens, then the path X —7"—Y has no impact on the relationship between X and Y, and hence
X — Y must be directly connected. If X and Y are not directly connected and the only potentially
unblocked path between X and Y is X — T — Y, and X and Y will be identified by Line 10 of
Algorithm 1| with idr € {1,2,3}. For example in Figure[Ip, conditioned on MB¢ \ {T', D}, i.e.,
{4, B}, the only path between C and D is through T. However, if X and Y are directly connected,
they will remain with id; = 4 (such as node D and E from Figure ). In this case, X, Y, and
T form a fully connected clique, and edges among the variables that form a fully connected clique
can have many different orientation combinations without affecting the conditional independence
relationships. Therefore, this case needs further tests to ensure Meek rules are satisfied. The third
Meek rule (enforcing 3-fork V-structures) is first enforced by Line 14 of Algorithm[I]} Then the rest
of idr = 4 nodes are changed to have idr = 3 by Line 15 of Algorithm[I]and to be further processed
(even though they could be both parents at the same time) with neighbor nodes’ causal identities.
Therefore, Step 2 of Algorithm [I|makes all variable pairs with idy = 4 to become identified either
as parents, children, or with id; = 3 after taking some neighbors’ MBs into consideration. Note
that Step 2 of CMB only needs to find the MB’s for a small subset of the PC variables (in fact only
one MB for each variable pair with ¢d7 = 4).

Step 3: Resolve idr = 3. After Step 2, some PC variables may still have idr = 3. This could
happen because of the existence of Markov equivalence structures. Below we show the condition
under which the CMB can resolve the causal identities of all PC nodes.



Lemma 3. The Identifiability Condition. For Algorithm|l|to fully identify all the causal relation-
ships within the PC set of a target T, 1) T must have at least two nonadjacent parents, 2) one of T'’s
single ancestors must contain at least two nonadjacent parents, or 3) T' has 3 parents that form a
3-fork pattern as defined in Meeks rules.

We use single ancestors to represent ancestor nodes that do not have a spouse with a mutual child that
is also an ancestor of 7. If the target does not meet any of the conditions in Lemma[2] C2 will never
be satisfied and all PC variables within a MB will have id; = 3. Without a single parent identified,
it is impossible to infer the identities of children nodes using C3. Therefore, all the identities of the
PC nodes are uncertain, even though the resulting structure could be a CPDAG.

Step 3 of CMB searches for a non-single ancestor of 7" to infer the causal directions. For each node
X with ¢dr = 3, CMB tries to identify its local causal structure recursively. If X’s PC nodes are
all identified, it would return to the target with the resolved identities; otherwise, it will continue
to search for a non-single ancestor of X. Note that CMB will not go back to already-searched
variables with unresolved PC nodes without providing new information. Step 3 of CMB checks the
identifiability condition for all the ancestors of the target. If a graph structure does not meet the
conditions of Lemma the final I Dy will contain some idp = 3, which indicates reversible edges
in CPDAGs. The found causal graph using CMB will be a PDAG after Step 2 of Algorithm I] and
it will be a CPDAG after Step 3 of Algorithm

Case Study. The procedure using CMB to identify the direct causes and effects of E in Figure [Th
has the following 3 steps. Step 1: CMB finds the MB and PC set of E. The PC set contains node
D and F. Then, IDg(D) = 3 and IDg(F) = 3. Step 2: to resolve the variable pair D and F’
with idg = 3, 1) CMB finds the PC set of D, containing C, F, and G. Their idp are all 3’s, since
D contains only one parent. 2) To resolve IDp, CMB checks causal identities of node C' and G
(without going back to E). The PC set of C contains A, B, and D. CMB identifies I D¢ (A) = 1,
IDc(B) = 1, and IDo(D) = 2. Since C resolves all its PC nodes, CMB returns to node D
with IDp(C) = 1. 3) With the new parent C, IDp(G) = 2,1Dp(E) = 2, and CMB returns to
node E with IDg(D) = 1. Step 3: the IDg(D) = 1, and after resolving the pair with idg = 3,
IDg(F) =2.

Theorem 2. The Soundness and Completeness of CMB Algorithm. If the identifiability condition
is satisfied, using a sound and complete MB discovery algorithm, CMB will identify the direct causes
and effects of the target under the causal faithfulness, sufficiency, correct independence tests, and
no selection bias assumptions.

Proof. A sound and complete MB discovery algorithm find all and only the MB nodes of a target.
Using it and under the causal sufficiency assumption, the learned PC set contains all and only the
cause-effect variables by Theorem [l When Lemma [3]is satisfied, all parent nodes are identifiable
through V-structure independence changes, either by Lemma [TJor by Lemma[2] Also since children
cannot be conditionally independent of another PC node given its MB minus the target node (C2),
all parents identified by Lemma |l|and [2| will be the true positive direct causes. Therefore, all and
only the true positive direct causes will be correctly identified by CMB. Since PC variables can only
be direct causes or direct effects, all and only the direct effects are identified correctly by CMB. [

In the cases where CMB fails to identify all the PC nodes, global causal discovery methods cannot
identify them either. Specifically, structures failing to satisfy Lemma [3| can have different orien-
tations on some edges while preserving the skeleton and v-structures, hence leading to Markov
equivalent structures. For the cases where 7" has all single ancestors, the edge directions among all
single ancestors can always be reversed without introducing new V-structures and DAG violations,
in which cases the Meek rules cannot identify the causal directions either. For the cases with fully
connected cliques, these fully connected cliques do not meet the nonadjacent-parents requirement
for the first Meek rule (no new V-structures), and the second Meek rule (preserving DAGs) can
always be satisfied within a clique by changing the direction of one edge. Since CMB orients the
3-fork V-structure in the third Meek rule correctly by Line 12~ 14 of Algorithm[I} CMB can identify
the same structure as the global methods that use the Meek rules.

Theorem 3. Consistency between CMB and Global Causal Discovery Methods. For the same
DAG G, Algorithm|l|will correctly identify all the direct causes and effects of a target variable T



as the global and local-to-global causal discovery methodf] that use the Meek rules [10]], up to G’s
CPDAG under the causal faithfulness, sufficiency, correct independence tests, and no selection bias
assumptions.

Proof. 1t has been shown that causal methods using Meek rules [10] can identify up to a graph’s
CPDAG. Since Meek rules cannot identify the structures that fail Lemma[3] the global and local-to-
global methods can only identify the same structures as CMB. Since CMB is sound and complete in
identifying these structures by Theorem 2] CMB will identify all direct causes and effects up to G’s
CPDAG. O

3.1 Complexity

The complexity of CMB algorithm is dominated by the step of finding the MB, which can have an
exponential complexity [, [16]]. All other steps of CMB are trivial in comparison. If we assume a
uniform distribution on the neighbor sizes in a network with [NV nodes, then the expected time com-
plexity of Step 1 of CMB is O(& SN | 2%) = O(%), while local-to-global methods are O(2%).
In later steps, CMB also needs to find MBs for a small subset of nodes that include 1) one node
between every pair of nodes that meet C4, and 2) a subset of the target’s neighboring nodes that
provide additional clues for the target. Let [ be the total size of these nodes, then CMB reduces the
cost by % times asymptotically.

4 Experiments

We use benchmark causal learning datasets to evaluate the accuracy and efficiency of CMB with
four other causal discovery algorithms discussed: P-C, GS, MMHC, CS, and the local causal dis-
covery algorithm LCD?2 [7]]. Due to page limit, we show the results of the causal algorithms on four
medium-to-large datasets: ALARM, ALARM3, CHILD3, and INSUR3. They contain 37 to 111
nodes. We use 1000 data samples for all datasets. For each global or local-to-global algorithm, we
find the global structure of a dataset and then extract causal identities of all nodes to a target node.
CMB finds causal identities of every variable with respect to the target directly. We repeat the dis-
covery process for each node in the datasets, and compare the discovered causal identities of all the
algorithms to all the Markov equivalent structures with the known ground truth structure. We use the
edge scores [[15] to measure the number of missing edges, extra edges, and reversed edgesﬂ in each
node’s local causal structure and report average values along with its standard deviation, for all the
nodes in a dataset. We use the existing implementation [21] of HITON-MB discovery algorithm to
find the MB of a target variable for all the algorithms. We also use the existing implementations [21]]
for P-C, MMHC, and LCD?2 algorithms. We implement GS, CS, and the proposed CMB algorithms
in MATLAB on a machine with 2.66GHz CPU and 24GB memory. Following the existing proto-
col [15], we use the number of conditional independence tests needed (or scores computed for the
score-based search method MMHC) to find the causal structures given the MBsﬂ and the number
of times that MB discovery algorithms are invoked to measure the efficiency of various algorithms.
We also use mutual-information-based conditional independence tests with a standard significance
level of 0.02 for all the datasets without worrying about parameter tuning.

As shown in Table[I, CMB consistently outperforms the global discovery algorithms on benchmark
causal networks, and has comparable edge accuracy with local-to-global algorithms. Although CMB
makes slightly more total edge errors in ALARM and ALARM3 datasets than CS, CMB is the best
method on CHILD3 and INSUR3. Since LCD2 is an incomplete algorithm, it never finds extra or
reversed edges but misses the most amount of edges. Efficiency-wise, CMB can achieve more than
one order of magnitude speedup, sometimes two orders of magnitude as shown in CHILD3 and
INSUR3, than the global methods. Compared to local-to-global methods, CMB also can achieve

We specify the global and local-to-global causal methods to be P-C [19], GS [9] and CS [15].

31f an edge is reversible in the equivalent class of the original graph but are not in the equivalent class of the
learned graph, it is considered as reversed edges as well.

“For global methods, it is the number of tests needed or scores computed given the moral graph of the global
structure. For LCD2, it would be the total number of tests since it does not use moral graph or MBs.



Table 1: Performance of Various Causal Discovery Algorithms on Benchmark Networks

Errors: Edges Efficiency
Dataset | Method Extra Missing Reversed Total No. Tests No. MB
Alarm P-C 1.59+£0.19  2.19+0.14 0.324+0.10 4.10£0.19 | 4.0e344.0e2 -
MMHC | 1.29£0.18 1.94+0.09 0.244+0.06 3.46£0.23 | 1.8e3+1.7e3 37+0
GS 0.39+0.44 0.87+0.48 1.13+£0.23 2.39£0.44 | 586.5£72.2 37+0
CS 0.42+0.10 0.64+0.10 0.38+0.08 1.43£0.10 | 331.4£61.9 37£ 0
LCD2 | 0.00£0.00 2.49£0.00 0.00£0.0  2.4940.00 1.4e3+0 -
CMB 0.69+0.13 0.61+0.11 0.51+0.10 1.81£0.11 53.7£4.5 2.61 + 0.12
Alarm3 P-C 3.71£0.57  2.214+0.25 1.374£0.04 7.30£0.68 | 1.6e414.0e2 -
MMHC | 2.36+0.11 2.45+0.08 0.72+0.08 5.53£0.27 | 3.7e3+6.1e2 111+£0
GS 1.24+0.23  1.41+0.05 0.9940.14 3.64£0.13 | 2.1e3+1.2¢e2 111+£0
CS 1.26+£0.16 1.47+0.08 0.63+0.14 3.38£0.13 | 699.1£60.4 111+0
LCD2 | 0.00£0.00 3.85+£0.00 0.00£0.0  3.8540.00 1.2e4+0 -
CMB 1.41£0.13  1.55+0.27 0.784+0.25 3.73£0.11 50.3+£6.2 2.58 + 0.09
Child3 pP-C 4.32£0.68 2.69+0.08 0.84+0.10 7.76+0.98 | 8.3e4+2.9e3 -
MMHC | 1.98+0.10 1.57+0.04 0.43+0.04 4.00£0.93 | 6.6e318.2¢e2 60 £0
GS 0.88+£0.04 0.75+0.08 1.03+0.08 2.66£0.33 | 2.1e3+2.5¢2 60£0
CS 0.94+£0.20 0.91+0.14 0.53+0.08 2.37£0.33 | 1.0e344.8¢e2 60£ 0
LCD2 | 0.00£0.00 2.63£0.00 0.00+0.0  2.63+0.00 3.6e3+0 -
CMB 0.924+0.12  0.84+0.16 0.60£0.10  2.36+0.31 7824152 253 £0.15
Insur3 P-C 4.76£1.33 250+0.11 1.294+0.11 8.55£0.81 | 2.5e5+1.2¢e4 -
MMHC | 2.39+0.18 2.53+0.06 0.76+0.07 5.68+£0.43 | 3.1e445.2¢e2 810
GS 1.94+£0.06 1.44+0.05 1.194£0.10 4.57£0.33 | 4.5e442.2e3 81+0
CS 1.92+0.08 1.564+0.06 0.89£0.09 4.37+0.23 | 2.6e4£3.9¢3 81+0
LCD2 | 0.00£0.00 5.03£0.00 0.00£0.0  5.03+0.00 6.6e31+0 -
CMB 1.72+£0.07 1.39+0.06 1.194+0.05 4.30+£0.21 | 159.8+38.5 2.46 + 0.11

more than one order of speedup on ALARM3, CHILD3, and INSUR3. In addition, on these datasets,
CMB only invokes MB discovery algorithms between 2 to 3 times, drastically reducing the MB calls
of local-to-global algorithms. Since independence test comparison is unfair to LCD2 who does not
use MB discovery or find moral graphs, we also compared time efficiency between LCD2 and CMB.
CMB is 5 times faster on ALARM, 4 times faster on ALARM3 and CHILD3, and 8 times faster on
INSUR3 than LCD2.

In practice, the performance of CMB depends on two factors: the accuracy of independence tests
and MB discovery algorithms. First, independence tests may not always be accurate and could
introduce errors while checking the four conditions of Lemma|[I]and 2] especially under insufficient
data samples. Secondly, causal discovery performance heavily depends on the performance of the
MB discovery step, as the error could propagate to later steps of CMB. Improvements on both areas
could further improve CMB’s accuracy. Efficiency-wise, CMB’s complexity can still be exponential
and is dominated by the MB discovery phrase, and thus its worst case complexity could be the same
as local-to-global approaches for some special structures.

5 Conclusion

We propose a new local causal discovery algorithm CMB. We show that CMB can identify the
same causal structure as the global and local-to-global causal discovery algorithms with the same
identification condition, but uses a fraction of the cost of the global and local-to-global approaches.
We further prove the soundness and completeness of CMB. Experiments on benchmark datasets
show the comparable accuracy and greatly improved efficiency of CMB for local causal discovery.
Possible future works could study assumption relaxations, especially without the causal sufficiency
assumption, such as by using a similar procedure as FCI algorithm and the improved CS algorithm
[14] to handle latent variables in CMB.
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