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Oxygen Mass Transfer 
Calculations in Large Arteries 
The purpose of this study was to model the transport of oxygen in large arteries, 
including the physiologically important effects of oxygen transport by hemoglobin, 
coupling of transport between oxygen in the blood and in wall tissue, and metabolic 
consumption of oxygen by the wall. Numerical calculations were carried out in an 
89 percent area reduction axisymmetric stenosis model for several wall thicknesses. 
The effects of different boundary conditions, different schemes for linearizing the 
oxyhemoglobin saturation curve, and different Schmidt numbers were all examined 
by comparing results against a reference solution obtained from solving the full 
nonlinear governing equations with physiologic values of Schmidt number. Our re­
sults showed that for parameters typical of oxygen mass transfer in the large arteries, 
oxygen transport was primarily determined by wall-side effects, specifically oxygen 
consumption by wall tissue and wall-side mass transfer resistance. Hemodynamic 
factors played a secondary role, producing maximum local variations in intimal 
oxygen tension on the order of only 5-6 mmHg. For purposes of modeling blood-
side oxygen transport only, accurate results were obtained through use of a computa­
tionally efficient linearized form of the convection-diffusion equation, so long as 
blood-side oxygen tensions remained in the physiologic range for large arteries. 
Neglect of oxygen binding by hemoglobin led to large errors, while arbitrary reduc­
tion of the Schmidt number led to more modest errors. We conclude that further 
studies of oxygen transport in large arteries must couple blood-side oxygen mass 
transport to transport in the wall, and accurately model local oxygen consumption 
within the wall. 

1 Introduction 

Arterial transport of blood-borne materials is essential for 
maintenance of normal arterial wall physiology. Disturbed 
transport of such materials, due for example to altered hemody­
namic patterns caused by local geometric factors, may be linked 
to the pathogenesis of vascular diseases. One such blood-borne 
species, which is of major interest, is oxygen, since it is an 
important cellular metabolite. Abnormalities in arterial wall 
oxygen tension have been implicated in the formation of athero­
sclerotic lesions [1 - 4 ] , and may also be linked to intimal hyper­
plasia [5] . 

Analysis of oxygen transport in arteries is complicated by two 
factors. First, oxygen transport in blood is coupled to oxygen 
transport and consumption in the artery wall. Second, oxygen 
in blood is carried in two forms: as free oxygen dissolved in 
plasma, and bound to hemoglobin (Hb) within red cells. Due 
to the nonlinear dependence of oxyhemoglobin concentration 
on plasma oxygen partial pressure (PO2), blood-side oxygen 
transport is a strongly nonlinear mass transfer problem. These 
complications prevent use of simple in vitro experimental mod­
els, necessitating either in vivo experimental measurements of 
oxygen tension [5, 6] , or numerical modeling of oxygen trans­
port (e.g., [7-11]) . 

The goal of the present paper is to study oxygen transport in 
blood and the arterial wall via a numerical modeling approach. 
We incorporate a number of physiologically important factors, 
including oxygen consumption by cells in the artery wall, cou­
pling of oxygen transport between blood and the wall, and the 
nonlinear oxygen binding properties of hemoglobin. Addition­
ally, we study different ways of treating the nonlinearity in 
blood-side oxygen mass transfer, and the Schmidt number de­

pendence of the results. The analysis is carried out in a physio­
logically relevant axisymmetric stenosis geometry under steady 
flow conditions. 

2 Methods 

2.1 Governing Equations. Considering oxygen dis­
solved in plasma and that bound to hemoglobin as two distinct 
species, the following coupled convection-diffusion equations 
describe oxygen transport in blood: 

a - ^ ^ ^ = aV • (DiVFOj) + r 
l)t 

"l)S 
[Hb] — = [Hb]V-(D,V5) 

i)t 

(1) 

(2) 
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where r is the rate of O2 release by the carrier Hb, /)/ 1)t is the 
substantive derivative, computed using the blood velocity field, 
a is the solubility of oxygen in plasma, S is the oxyhemoglobin 
saturation function (see below), PO2 is the plasma oxygen ten­
sion, [Hb] is the total oxygen carrying capacity of hemoglobin 
in blood, and Dj and D^ are the diffusivities of free oxygen in 
blood and of oxyhemoglobin in blood, respectively. Note that 
we have treated [Hb] as a constant in Eq. (2), which implies 
a spatially uniform distribution of hemoglobin in the region 
of interest. Consistent with this approximation, we ignore the 
presence of the plasma skimming layer, which is much thinner 
than even the mass transfer boundary layers, and which has 
been shown to have a very small effect on overall oxygen 
transport [ 8 ] . Because the oxyhemoglobin is contained inside 
red cells, Dc is usually interpreted as the diffusion coefficient 
of a red cell, which is effectively zero. However, it is known 
that red cells in shear flow undergo significant dispersion [12], 
and therefore in the present work we interpret D^. to be the 
shear-augmented dispersion coefficient of a red cell. 
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Addition of Eqs. (1) and (2) yields a single convection-
diffusion equation for PO2: 

1 + 
[Hb] dS \ DPO, 

dPO. '•I)t 

(3) 

The saturation function, S, defined as the ratio of oxyhemoglo­
bin to total hemoglobin, is approximated by the Hill equation: 

PO'i 

PO'i + P'L 
(4) 

where n = 2.7 and P50 = 26.6 mmHg. 
The coefficient 1 + {VHbya){dSldP02) on the left-hand 

side of Eq. (3) can be interpreted as a nonconstant oxygen 
carrying capacity, while Di[l + ([Hb]/a)(D,/Dj)(rf5/rfP02)] 
is a nonconstant diffusivity. Since each of these coefficients 
depends on plasma oxygen tension through the term dS/dPOi, 
it is seen that there are two mechanisms whereby nonlinearity 
enters the governing equations. 

2.1.1 Linearization of the Blood-Side Equation. Due to its 
nonlinear nature, solution of Eq. (3) is computationally inten­
sive. It is therefore advantageous to linearize Eq. (3) by replac-
ing dS/dP02 by some suitable constant mean value, 
dS/dPOj [7, 13, 14], here obtained by first-order Taylor series 
expansion of 5 as given by the Hill equation. This yields 

dS nS 

dPOo POi 
(1 ~S) (5) 

where PO2 is some reference value of PO2, and 5 is 5 evaluated 
at PO2. The value of PO2 should be selected so as to minimize 
the error in the approximation to dSldPOj over the working 
range of oxygen tensions, and is therefore boundary condition 
dependent. Unless otherwise noted, we used a PO2 value of 75 
mmHg. 

Colton et al. [14] showed that linearization schemes could 
be a poor approximation for analyzing blood flow in the micro­
circulation; however, the accuracy of this simplification for oxy­
gen mass transfer in the large arteries, where local variations 
in oxygen tension are less than in the microcirculation, has not 
been quantified. 

Equation (5) can be used to linearize the left-hand side, 
the right-hand side, or both sides of equation (3) . Additional 
simplifications result from setting D^ to zero, as is often done, 
or by ignoring the presence of oxyhemoglobin completely. In 
the first phase of this study, we tested the effects of these simpli­
fications by computing blood-side oxygen transport for the fol­
lowing five cases: 

1 Reference solution: all terms and all nonlinearity in Eq. 
(3) are retained. 

2 Fully linearized solution: all terms in Eq. (3) are retained, 
and both sides of the equation are linearized using Eq. (5). 

3 Nonlinear solution with no oxyhemoglobin dispersion: D^ 
is set to zero, but nonlinearity is retained on the left side of Eq. 
(3). 

4 Linearized solution with no oxyhemoglobin dispersion: 
Dc is set to zero, and the left side of Eq. (3) is linearized using 
Eq. (5). 

5 No hemoglobin: [Hb] is set to zero. 

2.7.2 Schmidt Number Effects. As is the case for all but 
the smallest of blood-borne species, the Schmidt number for 
oxygen in blood is very large. This implies that the mass transfer 
boundary layer will be very thin, which in turn necessitates use 
of extremely high computational grid densities near the artery 

wall. In practice, this is difficult to achieve, with the result that 
grid (or cell) Peclet numbers can be large. Many numerical 
schemes demonstrate poor convergence and accuracy for large 
cell Peclet numbers. To overcome these difficulties, stabilized 
numerical schemes can be used [10], or the Schmidt number 
can be reduced, e.g., [15]. 

The error associated with reducing the Schmidt number does 
not appear to have been quantified for flow situations typical 
of the large arteries. In the second phase of the study, we investi­
gated the Schmidt number dependence of blood-side oxygen 
mass transfer by arbitrarily reducing Sc from its physiological 
value by a factor of either 100 or 1000. 

2.L3 Blood-Wall Transport Coupling. In the third phase 
of the study, blood-side oxygen mass transport was coupled to 
oxygen transport and consumption in the artery wall. A typical 
filtrate (convective) velocity within the artery wall is 10"^ cm/ 
s [16], while oxygen diffusion velocity scales as Drlt, where 
Dr is the oxygen diffusivity in tissue and / is the wall thickness 
(inner lumen to vasa vasorum). Using Dr ~ 0.9 X 10"' m^/s, 
t values from 4-12.5 percent of the arterial diameter (see Sec­
tion 2.2), and a typical arterial diameter of 1 cm, gives diffusion 
velocities of order 10"^ to 10"'' cm/s. Convective transport of 
oxygen within the artery wall was therefore neglected, since 
filtrate velocities are one to two orders of magnitude smaller 
than oxygen diffusion velocities (see also [16]). Thus, the equa­
tion governing wall-side oxygen transport was: 

OiT = arV-iDrVPOi) + 
dt 

(6) 

where q represents a constant volumetric consumption rate of 
oxygen by cells within the arterial wall tissue. Continuity of 
both PO2 and oxygen flux were required across the blood-
tissue interface. 

2.2 Computational Geometry and Model. All mass 
transfer calculations were carried out in a rigid-walled axisym-
metric cosine-shaped stenosis model, with maximum lumenal 
area reduction 88.9 percent (Fig. l(fl)). The stenosis extended 
two artery diameters on either side of the throat. For simulations 
that included the effects of oxygen transport within the arterial 
wall, the computational domain consisted of the arterial lumen 

Vsloclty=10 (a) 
Velocity Vectora/Streamllnes 

Vasa 

Wall 

Dlmsnsionleas Axial Position, x/D 

Wall Shear Stress (b) 

DImensionless Axial Position, x/D 

Fig. 1 IVIodel geometry and velocity vector plot [panel (a)] and resulting 
normalized wall shear stress distribution [panel (/})] for steady flow 
through the stenosis. In panel (a), the velocity vectors are normalized 
by the spatial mean inlet veloci^, and the solid lines are streamlines. In 
panel (b) the shear stress is normalized by the Poiseuille wall shear 
stress in an artery without a stenosis at the same Reynolds number. 
Note the unequal axis scaling in panel (a). 
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plus the region of the artery wall from the inner surface of the 
intima to the vasa vasorum, i.e., the outer boundary of the 
computational domain was taken as the location of the vasa 
vasorum. Specifically, far from the stenosis, the distance from 
the intima to the vasa vasorum was 4 percent of the unstenosed 
lumenal diameter, consistent with a healthy human abdominal 
aorta [17], while in the region of the stenosis this distance 
increased to a maximum value (at the throat) equal to 12.5 
percent of the unstenosed lumenal diameter. This gave a geome­
try in which the diameter of the vasa vasorum decreased close 
to the stenosis, consistent with data showing peristenotic prolif­
eration of the vasa vasorum [2]. A "thin-walled" stenosis 
model was also created, which differed from the model de­
scribed above in that the artery wall reached a maximum thick­
ness of only 9.5 percent of the unstenosed lumenal diameter. 
This model has the advantages of being clinically relevant, of 
demonstrating moderately complex flow patterns (i.e., the recir­
culation zone distal to the stenosis throat), and of having been 
used previously for simplified blood-side oxygen mass transfer 
calculations [9] . It is also a fairly simple geometry, which, 
because of its two-dimensional nature, is amenable to paramet­
ric numerical studies. 

For the blood velocity field calculation, used in all subsequent 
mass transfer computations, steady flow of a Newtonian fluid 
with an inlet Reynolds number RCD of 50 was modeled. Fully 
developed flow was specified at the inlet, the no-slip condition 
was specified at the vessel wall, and zero traction was specified 
at the outlet. Blood density and viscosity were taken to be 1000 
kg/m' and 3.5 X 10 •* kg/m- s, respectively. For mass transfer 
calculations, the inlet condition was a uniform oxygen tension 
of 85 mmHg, while zero axial gradient in oxygen partial pres­
sure was imposed at the outlet. For phases one and two of 
the study, which examined only blood-side mass transfer, no 
calculations were carried out in the wall, and the following 
boundary conditions were used at the blood-wall interface: 

A constant wall oxygen tension of 0 mmHg. Although 
this is not physiologic, it was included because it is the 
most severe test of linearizing the blood-side transport 
equation, demonstrating the maximum possible variation 
in the slope of the oxyhemoglobin saturation function. 
For this boundary condition, ^02 was taken as 50 mmHg. 
A constant wall oxygen tension of 60 mmHg. This bound­
ary condition is considered to be more physiologic, since 
the oxygen wall tension measured in dogs in vivo is ap­
proximately 60 mmHg [6], 

For the third phase of the study, examining blood-wall cou­
pling, a constant oxygen tension of 45 mmHg was maintained 
at the outer boundary of the computational domain, i.e., at the 
assumed location of the vasa vasorum. 

All flow field and mass transfer calculations were performed 
using the commercial code Fluent (Creare.x, Hanover, NH). 
The computational domain extended four diameters upstream 
of the stenosis throat and 16 diameters downstream. Based on 
preliminary grid convergence studies, most calculations were 
performed on a grid with 500 nodes in the axial direction and 
103 nodes in the radial direction. Nonuniform spacing was used, 
such that the off-wall spacing of the first grid point at the 
stenosis throat was 4.7 X 10"'' artery diameters. The power law 
scheme was used for spatial differencing. Parameter values for 
all simulations were as follows: [Hb] = 0.2 ml 02/ml blood 
[ 7 ] ; D t = 1.2 X 10- ' 'mVs[18] ;D, = 1.5 X 1 0 - " m V s [ 1 2 ] ; 
a = 2.5 X 1 0 ' ml Oj/ml blood/mmHg [8] ; Dj- = 0.9 X 10"' 
mVs [8]; UT = 2.4 X 10"^ ml Oj/ml tissue/mmHg [8]; and 
-̂ = 2.1 X 10"^ ml Oj/ml tissue/s [8] . 

Oxygen wall fluxes are presented in terms of the local Sher­
wood number, She, defined as 

ShD = 
qwD 

Dl,(P02,„ - POjref) 
(7) 

where q„ is the local wall oxygen flux, D is the arterial diameter, 
P02i„ and P02ref are the specified inlet and reference oxygen 
tensions, respectively. For calculations involving blood-side 
mass transfer only, /'02rcf was the specified wall tension. For 
coupled blood-wall calculations, P02ref was the specified vasa 
vasorum tension. In evaluating q„, account was taken of the 
variation of the oxygen tension with PO2, i.e., q„ was computed 
as: 

= -D, 1 + 
[Wb] D, dS \ dPO. 

a Dh dPOn dn 
(8) 

where n is the normal to the wall, with appropriate modification 
for the cases where D<; = 0, [Hb] = 0, or the oxyhemoglobin 
saturation curve was linearized. 

3 Results 

3.1 Flow Field. It is useful to point out the main features 
of the flow field (Fig. 1(a)) , which include a prominent jet 
through and distal to the stenosis throat, and separation adjacent 
to the wall distal to the throat. As can be seen from the corre­
sponding plot of normalized wall shear stress (Fig. \{b)), this 
leads to very large wall shear stresses at the throat, and zero 
values at the separation and reattachment points, located at xl 
D = 0.70 and 4.25, respectively. Computed velocity fields were 
validated against published results [9] as well as the solution 
obtained from our well-validated in-house Navier-Stokes 
solver [19]. 

3.2 Blood Side Effects: Effects of Linearization. We 
first examine the mass transfer solution for the simplest case, 
i.e., that of no hemoglobin (Case 5) , since it allows a simple 
physical interpretation and can be compared to the analogous 
calculations of Schneiderman et al. [9] . Figure 2(a) shows 

% ^-^ 
8 0.6 
Q. 

I 0.4 a oc 

1 °'̂  
I 0.1 

0.0 

Nonnallzad PO, Praflin 
Ca» S (no hamoglobbi) 

0 mmHg Wan Boundaiy Condition 

(a) 

6 10 16 

DImenslonless Axial Position, x/D 

0 mmHg Wall Boundary Condition 

- Flow in Stenosed Vessel (Case 6) 

- Flow In Unstenosed Vessel (Graetz-Nusselt Solution) 

i(! i?~ 
DImensionisss Axial Position, x/D 

(b) 

Fig. 2 Normalized isoconcentration contours [panel (a)] and local Sher­
wood number as a function of axial position [panel (b)j for Case 5 (no 
tiemoglobln present) witii 0 mmHg oxygen wall tension boundary condi­
tion. Tiie contoured variable in panel (a) is the dimensionless oxygen 
partial pressure, (PO2 - P02„)/(P0a„ - POt„), where PO^^ and POa„ are 
the wall and inlet oxygen plasma partial pressures, respectively. Note 
that the contours In panel (a) are not uniformly spaced. In panel (b), the 
Leveque solution of the Graetz-Nusselt problem [22] Is also plotted for 
reference. Small slope discontinuities seen in the numerical solution are 
due to small changes in the wall slope in the computational domain, and 
are not indicative of mesh underresolution. 
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normalized isoconcentration contours for this case with the 0 
mmHg oxygen wall tension boundary condition. Proximal to 
the stenosis, normal growth of the mass transfer boundary layer 
with axial position is evident. The recirculation zone distal to 
the stenosis throat has two major effects. First, at the separation 
point, recirculating blood from the near wall region having very 
low oxygen tension is convected away from the wall, forming 
a small pocket of oxygen-depleted blood. Second, relatively 
oxygen-rich blood is convected toward the wall in the vicinity 
of the reattachment point, forming a zone of higher oxygen 
tension on either side of the reattachment point. These features 
are similar to those observed by Schneiderman et al. in their 
study [9] , although quantitative comparison was not carried 
out due to the fact that they used an approximate form of the 
velocity field to compute their concentration field. 

Corresponding to the above isoconcentration plot. Fig. 2(b) 
shows the local Sherwood number as a function of axial position 
for Case 5 with the 0 mmHg oxygen wall tension boundary 
condition. Also shown is the analytical Graetz-Nusselt solution 
for the developing mass transfer boundary layer in a straight 
tube. Relatively large Sherwood numbers are observed at the 
throat of the stenosis, consistent with high shear rates there. In 
the neighborhood of the separation point, a Sherwood number 
below that predicted by the Graetz-Nusselt solution is seen, 
which can be attributed to the "pocket" of low-oxygen-tension 
blood described above. Finally, on either side of the reattach­
ment point, the Sherwood number exceeds that of the Graetz-
Nusselt solution, due to the convection of oxygen-rich blood 
toward the wall, as described above. 

Figure 3 shows a comparison of the local Sherwood number 
for all five cases identified above, for the 0 mmHg oxygen 
wall tension boundary condition. All curves show qualitatively 
similar behaviour, consistent with the description in the above 
paragraph. However, there are major differences in the magni­
tudes of the Sherwood numbers, particularly near the throat of 
the stenosis. Interestingly, the dynamic range (peak Sherwood 
number divided by minimum Sherwood number) was quite 
similar for all cases (Table I ) . It is seen that the solution that 
comes closest to the reference case (Case 1) is that obtained 
by linearizing the governing equation and retaining red cell 
dispersion effects (Case 2). Solutions in which the dispersion 
of red cells was neglected (Cases 3 and 4) are further from the 
reference case, while the solution that neglects hemoglobin 
(Case 5) shows major differences from the reference case. 

Figure 4 compares normalized isoconcentration contours for 
the reference solution (Case 1) and the fully linearized solution 
(Case 2), both for the 0 mmHg oxygen wall tension boundary 

0 mmHg Wall Boundaiy Condition 

-Case 1 (nonlinear, 0^5*0) 

- Case 2 (linearized, D„ * 0) 

, Case 4 (linearized, D, = 0) 

- Case 3 (nonlinear, D^ = 0) 

S 10 15 

Dimensionless axial position, WD 

Fig. 3 Local Sherwood number, Sho, as a function of dimensionless 
axial position for all five cases with 0 mmHg oxygen wall tension bound­
ary condition. Refer to text for full description of cases. 

Table 1 Maximum Sherwood number, minimum Sherwood number, and 
ratio of maximum to minimum observed for each of Cases 1 -5 . 0 mmHg 
and 60 mmHg refer to cases run with 0 mmHg and 60 mmHg wall oxygen 
tension boundary conditions, respectively. 

Case 
1 
2 
3 
4 
5 

Msix Shj} 

920.6 
747.4 
500.3 
530.0 
135.3 

3 mmHg 
Min Sho 
134.4 
102.9 
91.5 
75.7 
19.9 

Ratio 
6.86 
7.26 
5.47 
7.00 
6.80 

60 mmHg 
Max Shu 
389.7 
389.8 
332.4 
346.3 
135.3 

Min SHD 

49.5 
49.8 
42.9 
44.9 
19.9 

Ratio 
7.87 
7.83 
7.75 
7.71 
6.80 

condition. Surprisingly, even though these two cases showed 
somewhat similar local Sherwood number profiles, their iso­
concentration contours exhibit major differences. 

Figure 5 shows local Sherwood number as a function of 
position for all five cases for the more physiologic 60 mmHg 
oxygen wall tension boundary condition. Although there are 
differences between all five cases, the magnitude of these differ­
ences is much less than that observed for the 0 mmHg wall 
tension boundary condition. In fact. Cases 1 and 2 yield essen­
tially identical local Sherwood number distributions, with Cases 
3 and 4 showing a modest reduction in peak values. However, 
Case 5 (no hemoglobin) once again shows major differences 
with respect to the reference case. 

3.3 Blood-Side Transport: Effects of Changing Sc. In 
Fig. 6 we plot the scaled local Sherwood number as a function 
of position for Case 2 with 60 mmHg oxygen wall tension. Data 
are shown for three different values of the Schmidt number: the 
physiologic value of iz/D,, = 2917, and reduced values of 29.17 
and 2.917, obtained by increasing both D,, and D,. by 100 or 
1000, respectively.' Although Sherwood number profiles scaled 
by S c ' " are qualitatively similar as the Schmidt number is 
reduced, there are important quantitative differences. Specifi­
cally, reducing Sc tends to reduce the magnitudes of the extrema 
in the scaled Sherwood number plots. Furthermore, some of 

' Although the nominal vahie of Schmidt number, based on jy and Di,, is 2917, 
the effective value is much larger. Equation (3) shows that the term £>,,[! + 
ayib]/a)(D,/D„){dS/dP02)l/\l + (\Hbi/a)(dS/dP02)] can be interpreted 
as a local effective oxygen diffusivity. For the conditions of Case 2, this term 
equals 0.0721 D,,, and the value of the Schmidt number formed with this effective 
diffusivity is 40,521. 

g 0.7 

| : : 

I" 
IE 
5 0.0 

g 0.7 

I" 

a 0.0 

Normalizfld PO, Profils* 

Case 1 (nonlinear, D î̂ O) 
0 mmHg Wall Boundary Condition 

(a) 

10 15 

DImenslonleas Axial Position, x/D 

NonnalJzsd PO, Profiles 
Case 2 (linearized, D̂  * 0) 

0 mmHg Walt Boundary Condition 
(b) 

0 5 10 16 
DImenslonleas Axial Poaitlon, x /0 

Fig. 4 Normalized isoconcentration contours for Case 1 (reference so­
lution; panel (a)) and Case 2 (linearized solution with D„ ^ 0; panel (b)) 
for 0 mmHg oxygen wall tension boundary condition. The contoured 
variable is as defined in Fig. 2. Note that the contours are not uniformly 
spaced. 
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400 r 

60 mmHg Wall Boundary Condition 

-Case 1 (nonlinear, D,^0) 

-Case 2 (linearized, D, * 0) 

Case 3 (nonlinear, D„ = 0) 

- Case 4 (linearized, D. = 0) 

Coupled Blood-Wall Boundary Condition 

5 10 15 

Dimensionless axial position, x/D 

Fig. 5 Local Sherwood number, Sho, as a function of dimensionless 
axial position for all 5 cases for 60 mmHg oxygen wall tension boundary 
condition. Lines for Cases 1 and 2 are essentially coincident. Refer to 
text for full description of cases, and compare with Fig. 3. 

(a) 

Case 4 (linearized, D,, = 0) 

10 16 

DImenslonleBS Axial Position, x/D 

Case 2 (linearized, D, ̂  0) 

Case 4 (linearized, D. = 0) ( b ) 

_ / Case 1 (nonlinear, D, * 0) 

Dimensionless Axial Position, x/D 

Fig. 7 Local Sherwood number, Sho [panel (a)] and dimensionless sur­
face PO2 [panel (/>)] as a function of dimensionless axial position for all 
five cases with fluid side transport coupled to an oxygen consuming 
wall. Refer to text for full description of cases. Model geometry is as 
shown in Fig. 1(/>). 

the local detail in the recirculation region (dimensionless axial 
position of 0.8 to 2.0) is absent in the runs with reduced Schmidt 
number. The lower Schmidt number also thickens the mass 
transfer boundary layer, and therefore produces substantially 
different concentration fields as compared to the physiologic 
case (data not shown). 

3.4 Blood-Wall Transport Coupling. Figure 7(a) 
shows the local Sherwood number as a function of position for 
all five cases under the condition of coupled blood-wall oxygen 
transport. As was the situation for the 60 mmHg constant wall 
tension boundary condition, differences between cases are rela­
tively minor, with the exception of Case 5 (no hemoglobin), 
which once again shows major differences with respect to the 
reference case. 

Comparison of Figs. 7(a) and 5 shows three important as­
pects of simulations done with coupled blood-wall transport: 

• Oxygen flux is quite symmetric about the stenosis throat 
and its local magnitude is approximately proportional to 

Case 2 (linearized, D, ̂  0) 

- Sc reduced by 100 

- Sc reduced by 1000 

5 10 15 

DItnenslonless Axial Position, x/D 

Fig. 6 Scaled local Sherwood number as a function of axial position for 
Case 2 with 60 mmHg oxygen wall tension, and three different values of 
Schmidt number. Refer to text for full description of Case 2. Following the 
scaling in the Graetz-Nusselt solution, the vertical axis is the Sherwood 
number normalized by the cube root of the Schmidt number. 

wall thickness when blood-wall transport coupling is 
present. 

• Hemodynamically driven features seen with constant wall 
tension boundary conditions, such as the dip in local Sher­
wood number at the separation point, are largely absent 
when blood-wall transport coupling is present. 

• Peak Sherwood number magnitudes are approximately 
tenfold lower when blood-wall transport coupling is pres­
ent. 

The first observation suggests that local oxygen flux is deter­
mined by local wall-side oxygen demand, which is proportional 
to local wall thickness. This is supported by the data shown in 
Fig. 8(a) , demonstrating a significant reduction in local Sher­
wood number when wall thickness is reduced. Since the hemo­
dynamics in the ' 'thin-walled'' and regular models are identical, 
this indicates that oxygen flux into the artery wall is primarily 
determined by local wall-side oxygen consumption, and is only 
weakly dependent on blood-side mass transfer effects. 

The second and third observations suggest that wall-side oxy­
gen mass transfer resistance is much larger than blood-side 
resistance. If this is true, oxygen tension at the blood-wall inter­
face should be only weakly dependent on hemodynamic effects. 
Figure l(h') shows intimal oxygen tension versus axial position 
for all five cases. Local hemodynamic effects are observable in 
this figure. For example, in all five cases, intimal oxygen tension 
reaches a minimum just distal to the throat of the stenosis, 
where oxygen-depleted blood is convected away from the wall 
at the separation point. However, except for the inaccurate solu­
tion obtained by neglecting hemoglobin (Case 5) , the magni­
tude of this spatial variation in intimal oxygen tension is fairly 
small, with local peak-to-peak changes in oxygen tension of 
approximately 5-6 mmHg. This local variation is only 12 to 
15 percent of the total oxygen tension difference between the 
incoming blood and the vasa vasorum, consistent with the sug­
gestion that blood-side oxygen mass transfer resistance is small 
relative to wall-side resistance. 

Figure 8 shows how wall thickness affects intimal oxygen 
tension as a function of axial position (panel (a) ) , and how 
wall thickness affects oxygen tension along a radial slice at the 
stenosis throat (panel {b)). It is clear that wall thickness has 
little influence on blood-side oxygen tension, while markedly 
altering wall-side oxygen profiles. This confirms the dominant 
nature of the wall-side mass transfer resistance. 
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Fig. 8 Comparison of effects of wall thickness on oxygen mass transfer. 
Panel (a): local Sherwood number (upper 2 curves) and surface PO2 
(lower 2 curves) versus axial position In stenosis. Panel (b): oxygen 
partial pressure at the throat of the stenosis versus radial position. Solid 
lines: thick wall; dashed lines: thin wall. Refer to text for respective wall 
thicknesses. 

4 Discussion 

4.1 Blood-Side Modeling of Oxygen Mass Transfer. 
Our results indicate that linearization of the equation governing 
blood-side oxygen transport can produce accurate results, sub­
ject to the following provisos: 

1 Neglecting the oxygen-carrying capacity of hemoglobin, 
as was done in Case 5, consistently leads to large errors. Inclu­
sion of oxygen transport by oxyhemoglobin is mandatory in 
blood-side oxygen mass transfer calculations. 

2 Oxyhemoglobin transport effects can be treated in a com­
putationally efficient manner by using a linearized approxima­
tion to Eq. (3), as was done in Case 2. However, due to the 
complex shape of the oxyhemoglobin saturation curve, the accu­
racy of this linearized approach depends on both the working 
range of oxygen tensions in the blood and the mean oxygen 
partial pressure, PO2, about which the Hill equation is linear­
ized. The present study demonstrates that for boundary condi­
tions that are physiologically realistic for the large arteries (e.g., 
60 mmHg wall tension or coupled blood-wall transport), the 
linearized approach gives excellent results for local oxygen flux 
(Sherwood number), as judged by the very close agreement 
with the reference solution (Case 1). For such boundary condi­
tions, we conclude that the linearized formulation is the pre­
ferred approach for numerical and analytical modeling of blood-
side oxygen transport in the large arteries. In fact, solution of 
the linearized system is no more difficult than solution of Eq. 
(1) alone, except that the value of the effective diffusivity will 
typically be much less than that of Dj. This will tend to produce 
a higher effective Schmidt number, which is numerically more 
difficult to handle. 

3 The linearized solution generally does a worse job of 
predicting blood-side concentration fields than it does in pre­
dicting local Sherwood number distribution (for example, com­
pare Figs. 4(fl) and 4(fo)). Thus, care should be taken when 
using the linearized form of the governing equation if accurate 
information about blood-side oxygen tension (rather than sim­
ply oxygen flux at the wall) is required. The large discrepancy 
in blood oxygen tension distribution shown in Fig. 4 is puzzling 
in light of the more modest disagreement in local Sherwood 
number profiles for these two cases shown in Fig. 3. This can 
be understood as follows. Recall that in Case 2, Eq. (3) is 

linearized by replacing the terms 1 -I- ([Hb]/a)(dS/dP02) and 
D,,[l + ([Hb]/a)iDJDi,)(dS/dP02)] by constants, obtained 
by evaluating each term at a reference pressure PO2. In reality, 
these terms vary strongly with oxygen tension, and thus vary 
with position in the mass transfer boundary layer. This causes 
the effective diffusivity within the mass transfer boundary layer 
to change with position, an effect not captured with the linear­
ized form of the equation (Case 2). This leads to local compres­
sion and distortion of the isoconcentration contours in the mass 
transfer boundary layer in the linearized case as compared to the 
reference solution. However, the overall mass transfer boundary 
layer resistance, since it is based on averaged values over the 
entire boundary layer, is less sensitive to local effects, and is 
thus reasonably well captured in the linearized form of the 
equations. 

We also found that reducing the Schmidt number by a factor 
of 100 to 1000 can give qualitatively reasonable results if the 
Sherwood number is scaled by S c ' " . However, arbitrarily re­
ducing the Schmidt number causes much of the hemodynami-
cally driven local variations in oxygen wall flux to be lost. It 
also produces large errors in the blood-side oxygen tension 
distribution. Further, calculations performed at very low Sc (or­
der one to several hundred) in separated flows can give results 
which are quantitatively and qualitatively different from those 
at higher Sc. For example, for low Sc the maximum Sherwood 
number in a recirculation zone distal to a contraction scales as 
Sc"°-'^ [20], instead of the S c ' " dependence seen at higher Sc. 
Also, the location of this maximum Sherwood number varies 
quite dramatically with Sc [20, 21], but is essentially fixed at 
higher Sc. For all of these reasons, use of reduced Schmidt 
numbers should be avoided if at all possible. 

4.2 Blood-Wall Coupling of Oxygen Mass Transfer. 
The most important conclusions of this study are: (() Wall-side 
oxygen mass transfer resistance generally dominates blood-side 
resistance, meaning that hemodynamic effects are of secondary 
importance; and (/(') local wall-side oxygen demand determines 
local wall flux. The first conclusion contradicts estimates made 
by Back [7] , but agrees with the calculations of Stoop et al. 
[15]. Because of these facts, use of a constant oxygen tension 
boundary condition at the blood-wall interface can lead to 
highly misleading conclusions. For example, results from the 
60 mmHg constant wall tension simulations indicated that there 
is approximately a sevenfold variation in blood-side mass trans­
fer resistance due to local hemodynamic effects (Table 1). 
However, because the blood-side mass transfer resistance is 
small compared to wall-side resistance, this large local variation 
in blood-side resistance translates into only a weak dependence 
of intimal oxygen tension on hemodynamic effects. In this 
study, such local variations were on the order 5-6 mmHg. It 
is unclear as to whether such local variation in oxygen tension, 
maintained chronically, is physiologically significant. 

In order to conceptualize better the physics of oxygen mass 
transfer in the coupled blood-wall case, we have found it useful 
to use a simple lumped parameter electrical analogue model of 
the mass transfer process, as shown in Fig. 9. This incorporates 

85 mmHg 

Blood • - -AAA- -AAA- AAA-
45 mmHg 

Vasa Vasorum 

® 
N current sink 

Fig. 9 Simplified lumped parameter model of the physical processes 
occurring during oxygen mass transfer. Rt, is blood side mass transfer 
resistance; R„/2 Is mass transfer resistance of half of wall; current sink 
represents oxygen consumption by wall tissue. 
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the effects of blood-side and wall-side mass transfer resistance 
(Ri, and R„, respectively), as well as oxygen consumption by 
the wall. When R„> R^, intimal PO2 is only weakly dependent 
on R,,. 

Because oxygen flux and intimal oxygen tension depend criti­
cally on local oxygen consumption, modeling of oxygen con­
sumption will be important in any future studies of oxygen 
transport in large arteries. Local oxygen consumption depends 
both on local thickness of the avascular region of the wall 
(intima to vasa vasorum), and on the volumetric consumption 
rate, q. Both of these can be expected to change from normal 
values in diseased regions. In particular, the tissue oxygen con­
sumption rate will be strongly affected by the composition (par­
ticularly cellularity) and metabolic demands of pathological 
regions. In this context, it is particularly interesting to note that 
the wall thickness (lumen to vasa vasorum) of the model shown 
in Fig. 1(a) is close to the maximum thickness of oxygen-
consuming wall that can be supported. As indicated by the radial 
PO2 profiles at the stenosis throat (Fig. 8(&)), a minimum 
PO2 value is reached within the thickened wall tissue. When 
calculations were carried out in models with even thicker walls, 
this minimum value approached 0 mmHg. Physiologically, this 
effect would be counterbalanced by proliferation of vasa va­
sorum within the adventitia and necrosis within the core of 
the plaque region. This accords with experimental evidence 
indicating that in severely thickened arteries, sufficient vasa 
proliferation will occur to maintain a minimum wall PO2 of 15 
mmHg [2]. 

It is important to mention some of the limitations of this 
study. We have assumed that the kinetics of oxygen exchange 
between oxyhemoglobin and free (plasma) oxygen are much 
faster than any other time scale in the problem. This assumption 
seems reasonable, since the time scale for oxygen exchange 
between red cells and plasma will be the diffusion time associ­
ated with a red cell characteristic dimension. This is expected 
to be very rapid. 

In this study we have also only addressed steady flow. Physio­
logical blood flow is strongly pulsatile, and significant temporal 
variation in mass transport would be anticipated for models 
with constant wall concentration boundary conditions [ 7 ] . 
However, it has been shown that oxygen consuming arterial 
walls act to dampen the effect of pulsatility [13, 16], and oxygen 
transport well within the artery wall is likely not strongly influ­
enced by flow field pulsatility. However, pulsatility will influ­
ence oxygen transport in the immediate vicinity of the intima 
[16]. Physically, pulsatility is expected to cause localized zones 
of extreme (high and low) blood-side mass transfer resistance 
to move about in the artery, yielding time-averaged blood-side 
mass transfer resistances that are less spatially variable than in 
the steady case. This would further reduce the importance of 
localized blood-side mass transfer effects. 

We have also studied flow at relatively low Reynolds number, 
which is slightly unrealistic for the large arteries in humans. 
However, increasing the Reynolds number would tend to reduce 
blood-side mass transfer resistance (especially if turbulence 
were generated distal to the stenosis), and thus our conclusions 
about the relative importance of blood-side and wall-side mass 
transfer resistance would be strengthened. Another hemody­
namic simplification is the assumption of Newtonian blood rhe-
ology. Hemodynamic studies comparing the effects of non-
Newtonian versus Newtonian rheology generally find modest 
(20 percent or less) differences in wall shear stress (see, e.g., 
[22]). Inclusion of non-Newtonian blood rheology would there­
fore be expected to result in small changes in blood-side mass 
transfer resistance compared to the Newtonian case, but would 
not affect the main conclusions of the study. 

Finally, and most importantly, these conclusions are only 
relevant for small molecules whose transmural filtration veloci­

ties are much smaller than their diffusion velocities. This would 
not be the case for larger molecules, such as LDL, where 
transmural convective effects are very significant. Localized 
hemodynamic effects in the transport of such molecules are 
potentially very significant [ 23 ] . 
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