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Abstract. The power iteration is a classical method for computing the
eigenvector associated with the largest eigenvalue of a matrix. The sub-
space iteration is an extension of the power iteration where the subspace
spanned by n largest eigenvectors of a matrix, is determined. The nat-
ural power iteration is an exemplary instance of the subspace iteration,
providing a general framework for many principal subspace algorithms.
In this paper we present variations of the natural power iteration, where
n largest eigenvectors of a symmetric matrix without rotation ambiguity
are determined, whereas the subspace iteration or the natural power it-
eration finds an invariant subspace (consisting of rotated eigenvectors).
The resulting method is referred to as constrained natural power itera-
tion and its fixed point analysis is given. Numerical experiments confirm
the validity of our algorithm.

1 Introduction

A symmetric eigenvalue problem where the eigenvectors of a symmetric matrix
are required to be computed, is a fundamental problem encountered in a va-
riety of applications involving the spectral decomposition. The power iteration
is a classical and the simplest method for computing the eigenvector with the
largest modulus. The subspace iteration is a natural generalization of the power
iteration, where the subspace spanned by n largest eigenvectors of a matrix, is
determined.

The natural power iteration [1] is an exemplary instance of the subspace
iteration, that was investigated mainly for principal subspace analysis. In this
paper we present variations of the natural power iteration and show that its
fixed point is the n largest eigenvectors of a symmetric matrix up to a sign
ambiguity, whereas the natural power iteration just finds a principal subspace
(i.e., arbitrarily rotated eigenvectors). The resulting algorithm is referred to as
constrained natural power iteration. Numerical experiments confirm the validity
of our algorithm.

2 Natural Power Iteration

The power iteration is a classical method which finds the largest eigenvector
(associated with the largest eigenvalue) of a matrix C € R™*™ [2]. Given a



symmetric matrix C € R™*™ (hence its eigenvalues are real), the power iteration
starts from a nonzero vector w(0) and iteratively updates w(t) by

w(t+1) = Cw(t), (1)
w(t+1)
wt+1) = ——" (2)
[w(t +1)ll2
where || - ||2 represents Euclidean norm. Combining (1) and (2) leads to the

updating rule which has the form

N

w(t+1) = Cw(t) [w” (t)C*w(t)] (3)

Assume that C has an unique eigenvalue of maximum modulus A; associated
with the leading eigenvector w;. Then the power iteration (3) leads w(t) to
converge to u;.

The subspace iteration [3] is a direct generalization of the power iteration, for
computing several eigenvectors of C'. Starting from W (0) € R™*" the subspace
iteration updates W (t) by

W(t+1)=CW(t). (4)

The space spanned by W (t) converges to invariant subspace determined by n

largest eigenvectors of C, provided that |A,| > |An+1] [3]. As in the power

iteration, the subspace iteration requires the normalization or orthogonalization.
The subspace iteration

W(t+1)=CW(t), (5)

followed by an orthogonalization

N

W(t+1)=W(t+1) [WT(tH)W(tH)T , 6)
leads to
W(t+1)= CW() [WT(t)CQW(t)}_%, (7)
——

power term .
normalizer

which is known as the natural power iteration proposed in [1].
Denote the eigendecomposition of the symmetric matrix C' € R"*™ of rank
r(>n) as

A 0

C:[UlUg][O s

T
} v Us)" ®
where U, € R™*™ contains n largest eigenvectors, Uy € R™*("=7) consists of
the rest of eigenvectors, and associated eigenvalues are in Ay, Ay with || >
[A2] > -+ > |An]- The key result in regards to the natural power iteration is
summarized in the following theorem



Theorem 1 ( Y. Hua et al. [1] ). The weight matriz W (t) € R™*" in the
natural power iteration (10) globally and exponentially converges to W = U1Q
where Q € R™*™ is an arbitrary orthogonal matriz, provided that the nth and
(n+1)th eigenvalues of C are distinct and the initial weight matriz W (0) meets
a mild condition, saying that there exists a nonsingular matriz L € R(m—n)xn
such that UL W (0) = LUTW (0) for a randomly chosen W (0).

The natural power iteration was mainly studied for principal subspace analy-
sis where C = E{x(t)x(t)} is the covariance matrix of m-dimensional stationary
vector sequences, (t), with zero mean. In such a case, the matrix C is symmetric
as well as positive semidefinite. For the case of principal subspace analysis, the
weight vector W (¢) of the natural power iteration (7) converges to n principal
arbitrary rotated eigenvectors of C. A variety of algorithms, including Oja’s sub-
space rule [4], PAST [5], OPAST [6], can be viewed as the implementations of the
natural power iteration [1]. However, all these algorithms belong to the principal
subspace method where arbitrarily rotated eigenvectors are determined, unless
the deflation method was used to extract principal components one by one. Next
section describes a simple variation of the natural power iteration, incorporating
the upper-triangularization operator into the normalizer in (7). This variation
is referred to as a constrained natural power iteration. It is shown here that a
fixed point of the constrained natural power iteration is W = U (up to a sign
ambiguity). Thus, the constrained natural power iteration computes the exact
eigenvectors of a given symmetric matrix, whereas the natural power method
finds a principal subspace.

3 Constrained Natural Power Iteration

We impose a constraint in the normalization term in the natural power method
(7), through an upper-triangularization operator Ur[-] which sets all elements
of its matrix argument that are below the diagonal to zero, i.e., Up[Y] for an
arbitrary matrix Y € R™"*" gives

Urlyi;] = {

where y;; is the (4, j)-element of Y. The constrained natural power iteration
updates the weight matrix by

0 ifi>j
Yy if e <5’

(9)

—1
2

W(t+1)=CW() {uT [WT(t)CZW(t)H . (10)

Only difference between the constrained natural power iteration (10) and the
natural power method (7) lies in the presence of Uy in the normalization term.
As will be shown below, the operator Ur leads the algorithm (10) to find exact
principal eigenvectors of C' up to a sign ambiguity under mild conditions that
are generally required for power iteration. That is, the fixed point of (10) satisfies

[e] [e]
W = U;I where I is a diagonal matrix with its diagonal entries being 1 or -1,
whereas the fixed point of (7) is U;Q for an arbitrary orthogonal matrix Q.



Theorem 2. The fized point W of the constrained natural power iteration (10)

satisfies W = U1 I, under the same conditions as Theorem 1.

Proof. We define &(t) = UT W (t) and $2(t) = U2 W (t). With this definition,
pre-multiplying both sides of (10) by [U; U2]T leads to

S =15 4 [60] 20 a

where

Z(t) = {uT [@T(t)/ﬁas(t) + QT(t)Agn(t)H . (12)

[N

As in the convergence proof of the natural power iteration in [1], one can show
that £2(t) goes to zero. Assume that @(0) € R™*" is a nonsingular matrix, then
it implies that £2(0) = L®(0) for some matrix L. Then it follows from (11) that
we can write

0(t) = ASLAT'®(t). (13)

The assumption that first n eigenvalues of C' are strictly larger than the others,
together with (13), implies that £2(¢) converges to zero and is asymptotically in
the order of [Ay11/An|" where |A,| and [A,11| (< |An]) are nth and (n + 1)th
largest eigenvalues of C'.

Taking into account that £2(t) goes to zero, the fixed point @ of (11) satisfies

& {uT [quA?qs] }7 = A,®. (14)

Note that A; is a diagonal matrix with diagonal entries \; for i = 1,...,n. Thus,
1

one can easily see that @ is the eigenvector matrix of {Z/{T [@TAfsﬁ} }E with
associated eigenvalues in A;. Note that the eigenvalues of an upper-triangular
matrix are the diagonal elements. Then it follows from (14) that we have a set
of equations

NI

where ¢, is the ith column vector of @, i.e., ® = [, 5 - - @, ]. We can re-write
(15) as
ZAZQ@?‘]:)\?7 jz]‘""?”? (16)
i=1

where ;; is the (i, j)-element of @. Assume n < rank(C), then \; # 0, ¢ =
1,...,n. For non-zero \;, the only @ satisfying (16) is @ = I. Therefore, W =



U, 1, implying that the fixed point of (10) is the true eigenvector matrix Uy up
to a sign ambiguity. |

Based on the result in Theorem 2, we can consider a variation of the con-
strained natural power iteration (10), described by

W(t+1)=CW(t) {uT [WT(t)CQW(t)H . (17)

Following Theorem 2, one can easily see that the weight matrix W (¢) in (17)
also converges to the scaled eigenvector matrix of C. Algorithms (10) and (17)
have a difference in their normalizers. The matrix inverse requires less complex-
ity, compared to the square-root-inverse of a matrix, although (17) finds scaled
eigenvectors.

4 Numerical Experiments

Two simple numerical examples are shown in order to verify that the weight
matrix W (t) converges to true eigenvectors of a given symmetric matrix C.
The first experiment was carried out with a symmetric matrix C € R5*5 whose
eigenvalues are 2.48, —2.18,1.20, —0.50,0.34. Fig. 1 (a) shows the the evolution
of |'wZTuz| for ¢ = 1,2,3, where w; is the ith column vector of W and w,; are
true eigenvectors computed by SVD in Matlab.

The second experiment is related to principal component analysis. We gener-
ated 100-dimensional data vectors of length 1000, x(t) € R, ¢ =1,...,1000,
through linearly transforming 5-dimensional Gaussian vectors, s(t) € R®, with
zero mean and unit variance, i.e., ©(t) = As(t) where A € R9%% and its
elements were randomly drawn from Gaussian distribution. We applied the con-
strained natural power iteration (10) with a weight matrix W (¢) € R199%3 to
estimate first 3 eigenvectors of C' = g5 Zii(io z(t)xzT (t). Fig. 1 (b) shows the
evolution of |w;fuz| for i = 1,2, 3, where u; are true eigenvectors computed by
SVD in Matlab.

5 Discussions

We have presented the constrained natural power iteration and have shown that
its fixed point corresponded to the exact eigenvectors of a given symmetric ma-
trix, up to sign ambiguity. Its slight variation was also discussed. Numerical
experiments confirmed that the constrained natural power iteration successfully
first n eigenvectors of C. The constrained natural power iteration will be useful,
especially for the case where a few eigenvectors are required to be determined
from very high-dimensional data. Constrained natural power iteration could be
viewed as a recognition model counterpart of the generative model-based meth-
ods in [7, 8] where EM optimization were used. The constrained natural power
iteration has an advantage over EM algorithms in [7, 8], in the sense that the for-
mer involves a single-step updating whereas the latter needs two-step updating
(E and M steps), although both share a similar spirit.
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Fig. 1. Convergence of W = [w; w2 ws] in the constrained natural power iteration,

is shown in terms of the absolute values of the inner product between these weight
vectors and first three true eigenvectors of C': (a) experiment 1; (b) experiment 2.
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