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Abstract

For a given simple graph G, the energy of G, denoted by £(G), is defined as the sum
of the absolute values of all eigenvalues of its adjacency matrix, which was defined by I.
Gutman. The problem on determining the maximal energy tends to be complicated for a
given class of graphs. There are many approaches on the maximal energy of trees, unicyclic
graphs and bicyclic graphs, respectively. Let PS5 denote the graph with n > 20 vertices
obtained from three copies of Ci and a path P,_ig by adding a single edge between each
of two copies of Cg to one endpoint of the path and a single edge from the third Cg to the
other endpoint of the P,_g. Very recently, Aouchiche et al. [M. Aouchiche, G. Caporossi, P.
Hansen, Open problems on graph eigenvalues studied with AutoGraphiX, Europ. J. Comput.
Optim. 1(2013), 181-199] put forward the following conjecture: Let G be a tricyclic graphs
on n vertices with n = 20 or n > 22, then £(G) < E(PS’G‘G) with equality if and only if
G = PO Let G(n;a,b, k) denote the set of all connected bipartite tricyclic graphs on n
vertices with three vertex-disjoint cycles C,, Cj, and Cj, where n > 20. In this paper, we
try to prove that the conjecture is true for graphs in the class G € G(n;a,b, k), but as a
consequence we can only show that this is true for most of the graphs in the class except for

9 families of such graphs.
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1 Introduction

Let G be a graph of order n and A(G) be the adjacency matrix of G. The characteristic
polynomial of A(G) is defined as

GG, \) = det(Al — A(G)) = > a:\"™,
i=0

which is called the characteristic polynomial of G. The n roots of the equation
o(G, ) =0, denoted by Aj, Ag, -+, A, are the eigenvalues of G. Since A(G) is sym-

metric, all eigenvalues of G are real. It is well-known [6] that if G is a bipartite graph,

then
L) 11
¢(G,\) = Za%/\"‘% = Z(_l)ibQi/\rz—zz"
i=0 =0
where by; = (—1)%ay; and by; > 0 for all i = 1,-- -, L%J

The energy of G, denoted by £(G), is defined as

n

£@) =3 IAdl,

i=1
which was proposed by Gutman in 1977 [8]. The following formula is also well-known
&)=+ [ Lioglrolc.ifmla
=— — log |z i/x)|dx,
7T e 1‘2 g K 9
where i2 = —1. Moreover, it is known from [6] that the above equality can be expressed

as the following explicit formula:

/2] ) :

Lo i i i i
(@) = ﬁ/,m Flog ; (=Dagz® | + ; (1) ag; 2% dz,
where aq, as,...,a, are the coefficients of ¢(G,\). It is also known [11] that for a

bipartite graph G, £(G) can be also expressed as the Coulson integral formula

2 [t> ] L
8(G):7/ St |1+ b | do,
’ i=0

™ Jo

For two bipartite graphs G and Gy, if by;(G1) < byi(G2) hold for all ¢ = 1,2,--- | 3],
we say that G; < Gy or Gy = Gy. Moreover, if by;(G1) < by;(G2) holds for some i, we
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write G; < G or G = G1. Thus, for two bipartite graphs G and Gs, we can define

the following quasi-order relation,
Gl =< G2 = E(Gl) < £(G2)7 G1 =< GQ = 8(G1) < g(Gz)

For more results about graph energy, we refer the readers to two surveys [9,10] and

the book [28].

It is quite interesting to study the extremal values of the energy among some given
classes of graphs, and characterize the corresponding extremal graphs. In the mean-
time, a large number of results were obtained on the minimal energies for distinct classes
of graphs, such as acyclic conjugated graphs [25, 32|, bipartite graphs [30], unicyclic
graphs [13,23], bicyclic graphs [14], tricyclic graphs [26,27] and tetracyclic graphs [24].
However, the maximal energy problem seems much more difficult than the minimal
energy problem. The commonly used comparison method is the so-called quasi-order
method. When the graphs are acyclic, bipartite or unicyclic, it is almost always valid.
Nevertheless, for general graphs, the quasi-order method is invalid. For these quasi-
order incomparable problems, we found an efficient way to determine which one attains

the extremal value of the energy, see [16-22].

o Q,OH

Ca Cs
Py Py

Figure 1.1: Unicyclic graph P?.

Let P,, C,, and S, be a path, cycle and star garph with n vertices, respectively.
Gutman (8] first considered the extremal values of energy of trees and showed that
for any tree T of order n, £(S,) < E(T) < E(P,). Let P* be the graph obtained by
connecting a vertex of the cycle C, with a terminal vertex of the path P,_, (as shown
in Figure 1.1). In order to find lower and upper bounds of the energy, Caporossi et
al. [5] used the AGX system. They proposed a conjecture on the maximal energy of

unicyclic graphs.
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Conjecture 1.1 Among all unicyclic graphs on n vertices, the cycle C,, has mazimal
energy if n <7 and n =9,10,11,13 and 15. For all other values of n, the unicyclic

graph with mazimal energy is PS .

In [15], Hou et al. proved a weaker result, namely that £(P%) is maximal within
the class of the unicyclic bipartite n-vertex graphs differing from C,,. Huo et al. [20]
and Andriantiana [1] independently proved that £(C,,) < £(PY), and then completely
determined that P? is the only graph which attains the maximum value of the energy
among all the unicyclic bipartite graphs for n = 8,12, 14 and n > 16, which partially
solves the above conjecture. Finally, Huo et al. [21] and Andriantiana and Wagner [2]

completely solved this conjecture by proving the following theorem, independently.

Theorem 1.2 Among all unicyclic graphs on n wvertices, the cycle C, has mazimal
energy if n < 7 but n # 4, and n = 9,10,11,13 and 15; P} has mazimal energy if

n = 4. For all other values of n, the unicyclic graph with mazimal energy is PS .

The problem of finding bicyclic graphs with maximum energy was also widely studied.
Let P** (as shown in Figure 1.2) be the graph obtained from cycles C, and C} by
joining a path of order n —a — b+ 2. Denote by R, the graph obtained from two
cycles C, and Cj, (a,b > 10 and a = b = 2 (mod4)) by connecting them with an edge.

In [12], Gutman and Vidovi¢ proposed a conjecture on bicyclic graphs with maximal

Ca Gy Cs Cs

a,b 6,6
P s

energy.

Figure 1.2: Bicyclic graph P&

Conjecture 1.3 Forn =14 and n > 16, the bicyclic molecular graph of order n with
mazimal energy is the molecular graph of the o, 8 diphenyl-polyene Co Hs(C'H ), —12C H,
or denoted by PSS,

n
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Furtula et al. [7] showed by numerical computation that the conjecture is true up
to n = 50. For bipartite bicyclic graphs, Li and Zhang [29] got the following result,

giving a partial solution to the above conjecture.

Theorem 1.4 If G € %, then E(G) < E(PYY) with equality if and only if G = P85,
where A, denotes the class of all bipartite bicyclic graphs but not the graph R,.

However, they could not compare the energies of P56 and R,;. Furtula et al. in [7]
showed by numerical computation that £(P%) > £(R,,), which implies that the
conjecture is true for bipartite bicyclic graphs. They only performed the computation
up to a+ b = 50. It is evident that a solid mathematical proof is still needed. Huo
et al. [19] completely solved this problem. However, the conjecture is still open for

non-bipartite bicyclic graphs.

Theorem 1.5 Let G be any connected, bipartite bicyclic graph with n(n > 12) ver-
tices. Then E(G) < E(PSO) with equality if and only if G = PSS,

Actually, Wagner [31] showed that the maximum value of the graph energy within
the set of all graphs with cyclomatic number & (which includes, for instance, trees or
unicyclic graphs as special cases) is at most 4n/m + ¢, for some constant ¢, that only

depends on k. However, the corresponding extremal graphs are not considered.

The problem of finding the tricyclic graphs maximizing the energy remains open.
Gutman and Vidovié¢ [12] listed some tricyclic molecular graphs that might have max-
imal energy for n < 20. Very recently, in [3], experiments using AutoGraphiX led us
to conjecture the structure of tricyclic graphs that presumably maximize energy for
n = 6,...,21. For n > 22, Aouchiche et al. [3] proposed a general conjecture ob-
tained with AutoGraphiX. First, let P56 (as shown in Figure 1.3) denote the graph
on n > 20 obtained from three copies of Cy and a path P,_;g by adding a single edge
between each of two copies of Cg to one endpoint of the path and a single edge from

the third Cg to the other endpoint of the P, 1g.
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Conjecture 1.6 Let G be a tricyclic graphs on n vertices with n = 20 or n > 22.

Then E(G) < E(PSSS) with equality if and only if G = PS55.

n—17

6.6.6
I

Figure 1.3: Tricyclic graph P66,

Let G(n; a, b, k) denote the set of all connected bipartite tricyclic graphs on n vertices
with three disjoint cycles C,, C, and Cj, where n > 20. In this paper, we try to prove
that the conjecture is true for graphs in the class G € G(n;a, b, k), but as a consequence
we can only show that this is true for most of the graphs in the class except for 9 families

of such graphs.

2 Preliminaries

The following are the elementary results on the characteristic polynomial of graphs and

graph energy, which will be used in our proof.

Lemma 2.1 [6] Let uwv be an edge of G. Then

GG, N) = (G —uv,\) = (G —u—v,\) =2 Y ¢(G—C,\),
Cep(uv)

where o(uv) is the set of cycles containing wv. In particular, if uwv is a pendant edge

of G with the pendant vertez v, then

Lemma 2.2 Let uwv be an edge of a bipartite tricyclic graph G which contains three

vertex-disjoint cycles. Then

bZz(G) = bQZ'(G — U’U) + bgifz(G —Uu— U) + 2 Z (*1)1+%b2i,](G — C]).,

Crep(uv)
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where p(uv) is the set of cycles containing wv. In particular, if uv is a pendant edge

of G with the pendant vertex v, then

bg,(G) = bg,(G - ’M’U) + bgi,Q(G —Uu— ’U).

Proof. By Lemma 2.1, we have

CLZi(G) = (lQi(G - ’U/U) - (Lgifz(G —Uu— ’U) -2 Z QQi,l(G - Cl)

Crep(uv)
and
(—1)‘(121(6’) = (—1)‘a2L(G - U’U) + (—1)i_1a21‘_2(G —u— U)
+2 3 (~1)E(=1) Ry (G - O).
Crep(uv)
Since by; = (—1)%ay;, then the result follows. 1

From Sachs Theorem [6], we can obtain the following properties for bipartite graphs.

Proposition 2.3 (1). If Gy and Gy are both bipartite graphs, then bay(Gy U Ga) =
Zk: 02i(G1) - bag—2i(G2).

720). Let G and G + e both be bipartite graphs, where e ¢ E(G) and G + e denotes
the graph obtained from G by adding the edge e to it. If either the length of any cycle
containing e equals 2 (mod 4) or e is not contained in any cycle, then G < G + e.
(3). If Go, Gi, Gy are all bipartite and Gy = Gaq, since by;(Goy) > 0 and by (Gy) >
bai(Gs) for all positive integer i, we have Go U Gy = GoU Go. Moreover, for bipartite
graphs G;, G%, i = 1,2, if G; has the same order as G} and G; = G/, then G; U Gy <
GLUGY,.

Lemma 2.4 [11] Let n = 4k, 4k + 1,4k + 2 or 4k + 3. Then

P, = PUP, 2> PLUP, 4> = Py UP op = Popy1 U Py o

= Py UP g == B3UP, 3= PLUP, 1.
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From the definition of G(n;a,b, k), we know that a, b and k are all even. We will
divide G(n;a,b, k) into two categories Gy(n;a,b, k;ly,lo;1.) and Gyr(n;a, b, k;ly, 1o, l3)

in the following.

We say that H is the central structure of G if G’ can be viewed as the graph obtained
from H by planting some trees on it. The central structures of G;(n;a, b, k; 1, lo; I.) and
Grr(nya, b, k;ly, s, ls) are ©(n;a,b, kil 1oy 1) and ©p1(n;a, b, k; 1y, s, I3), respectively.

Or(n;a,b,k;li,la;1l.) (as shown in Figure 2.4) is the set of all the elements of
G(n;a,b,k) in which C, and C, are joined by a path P, = uy---us (ug € V(C}))
with [; vertices, Cy and C} are joined by a path P, = vy ---vy (v2 € V(C})) with Iy
vertices. In addition, the smaller part us---vy of Cy has [, vertices. Note that when

Uy = Vg, we have [, = 1.

Figure 2.4: ©;(n;a,b, k;ly,l;1.).

Orr(n;a,b, kyly,la, l3) (as shown in Figure 2.5) is also a subset of G(n;a, b, k). For
any G € ©Oyr(n;a,b, k;ly,ls,1l5), G has a center vertex v, C,, C, and C}, are joined
to v by paths Pi = uy---v (ug € V(Cy,)), Po = ug---v (uz € V(Cy)), Py = ug---v
(uz € V(Cy)), respectively. The number of vertices of Py, P, and Ps are [y, I and I3,

respectively.

Cr

Figure 2.5: ©y7(n;a,b, k;ly, 1o, 13).
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It is easy to verify that

G(n;a, b k) = Gr(n;a,b kil la;l.) U Grr(nga, b, k1, 1, 15).

Now we define two special graph classes I'y and I'y as follows.

Iy consists of graphs G with the following four different possible forms:
(i) G e€Or(nya,4,k;ly,l;2), wherea > 8, k>8,2<1; <3,2<1[, <3.
(i) G € Or(n;a,b,k;l,ls;2), where a > 8, 0> 6,k >8,2<1; <3,2<1, <3and
[y = Iy, = 3 is not allowed.
(i) G € ©r(n;4,b,k; 11,19;2), where b > 6, k > 6,2 <3 <3 and 2 <[y < 3.
(iv) G € ©1(nya,b,4;11,15;2), where 2 < [y < 3.
Whereas I'y consists of graphs G with the following five different possible forms:
(i) G € Or(n;a,b, k;2,15,13), where a > 8.
(i) G €O(n;a,b,k;3,3,3), where a >k > b > 8.
(ii) G € ©y1(n;a,4, k; 11,3, 13).
(iv) G € Orr(n;a,4, k; 11,2, 13).
(v) G€0Oy(n;a,4,k;3,4,3), where a > k > 6.

In this paper, we first try to find the graphs with maximal energy among the two
categories of G(n;a,b, k): Gr(n;a,b, k;ly,lo;1.) and Grr(n;a, b, k;ly, o, I3), respectively.
Then, we will obtain that P$%% = ©/(n;6,6,6;n — 17,2,2) has the maximal energy
among all graphs in G(n;a, b, k) except for two classes I'} and I';. Our main result is

stated as follows, which gives support to Conjecture 1.6.

Theorem 2.5 For any tricyclic bipartite graph G € G(n;a,b,k) \ (I'' UTy), E(G) <
E(PSS5) and the equality holds if and only if G =2 PS5,

3 Proof of Theorem 2.5.

By repeatedly applying the recursive formula of by;(G) in Lemma 2.2 and the third

property in Proposition 2.3, we obtain the following two lemmas.
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Lemma 3.1 If G € Gi(n;a,b,k;ly,ls;1.) \ Or(n;a, b, k; 1}, 15;1)), then there exists a
graph G' € ©;(n;a, b, k; 11, 15;1.) such that G < G, i.e., the graph with mazimal energy
among graphs in Gr(n;a,b, k;ly, lo; 1) must belong to ©y(n;a,b, k; 15, 15;10).

Lemma 3.2 If G € Gyi(n;a,b,k;ly, 1o, l5) \ ©r7(n;a,b, k; 11,15, 1), then there exists a
graph G' € ©rr(n;a, b, k; 17, 15,15) such that G < G, i.e., the graph with maximal energy

among graphs in Grr(n;a,b, k;ly,ls, l3) must belong to ©rr(n;a,b, k;l},15,1%).

From the results above, we know that the graph with maximal energy among graphs
in G(n;a,b, k) must belong to O7(n;a,b, k;li,ls;1.) or ©r(n;a,b, k;ly,ls,ls). There-
fore, in the following, we will find the graph with maximal energy among graphs in

Or(n;a,b, k;ly,le; 1) and Or(n;a, b, k;ly, la, 13).

Lemma 3.3 For any graph G € O(n;a,b, k;11,12;1.), there exists a graph H € ©;(n; a,
b, k;l1,12;2) such that G < H.

Proof. We distinguish the following two cases:

Case 1. [. = 1.

For fixed parameters n, a, b, k, l; and Iy, let Gi € Or(n;a,b, k;l;,l2;1) and Gy =
Or(n;a,b, k;l1,12;2) (as shown in Figure 3.6). It suffices to show that Gy < Gs.

Figure 3.6: Graphs for Lemma 3.3.

By Lemma 2.2 we have

bgi(Gl) = b2i(G1 - ’lto?)g) + bQi—Z(Gl — Uy — 'UU) + (—1)1+%2b2i,(,(G1 - C{,)
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= boi(Gr — ugvo) + baia(Pryy, o U Piyyyo U Pyo)
+(*1)1+52b2i—b(P5+1172 U Pk}lrz)
and
byi(Ga) = boy(Go — uv) + bay_o(Goy — 1 — v) + (—1)732by;_y(Gy — Cp)
= byi(Gy — wv) + by o(Pyy, 5 U P, 5 U P, )
+(—1)1+§2b2i—b(P«f+1172 U Pyi,—0)-

Therefore, it suffices to show that by;(G1 — ugvg) < bgi(Ge — uv). By Lemma 2.2 we

have

b2i(G1 — uguo) bai( Py, 2 U Pk+b+l2 9) + baia (P, 3 U Pk+12 2 UP1)
boi(Ga —uv) = bai(Piy, 5 U Piyyigy o) + baia(Piyy, 5 U Py, —s)
= bai( Py o U Pryity—) + baica(Piyy, 3 U Py, _p U Poa)
Fboi—a(Pyryy, 53U P,H,,r:s U Py ).
Since by;—4(Pyy;, U P,iﬁrl,r3 U Py_5) > 0, then we obtain by;(G1 — ugvg) < bai(Ga — uv).

a

Case 2. [, > 2.

For fixed parameters n, a, b, k, l; and Iy, let G} € ©;(n;a,b, k;ly,1;1.) and G €
Or(n;a,b, k;l1,1lz;2) (as shown in Figure 3.7, where uz belongs to the part of Cj, with
length b — I. + 1). It suffices to show that G} < G%.

o=0-0

el G

Figure 3.7: Graphs for Lemma 3.3.

By Lemma 2.2 we have

bQZ(G,l) = sz(Gll — U2’L63) -+ bgi,Q(G,l — Uy — /LL3) -+ (*1)1+%2b2i,b(6ﬂ1 — Cb),



-194-

boi(Gh) = boi(Gl — wv) + byi_o(Gly — u — v) + (—1)32by; (G — C).
Since (—1)1+%2b2i,b(G’1 -y = (—1)1+%2b2i,b(G’2 — (), we only need to compare
boi (G — uguz) + by o (G — ug — uz) with by (G — uv) + by _o(GYy —u —v). By applying
Lemma 2.2 repeatedly, we have

boi (G — uguz) + by _o( G — uz — u3)
= bai( Pty s—s Y Prengtamto—1) + b2ima (P s U Py, o U P,

Hbai—a(Pali, 2 U Py, o U Pooa) + baima(Pily, s U Py, s U P s U Py ),
and

bai (Gl — uv) 4 byi—o (G4 — u —v)

- b2i(P;+h+lc—3 U Pbk+k+12—lc—1) + 1’21'72(P;+l1+lc—4 U Pbk+k+12—zc—2)
+boia(Pyy, o U Plfﬁrlrz U Py o)

= boi(Pryy4-3 U PkarkJrlz—lﬂ—l) + baia(Pyyy 44 U P,er? upb,y)
Fb2ia(Pyyr, 1,4 Y Plf+l2—3 UPy 1) +boio(Pyyy, o U P,fHZ,Q U Py_2)

= (P, 0,-3 Y Pty 1,-1) + baima (P g, U P, s U By,
boia( Py, s UPE 53U Py_s) + baia(Plyy, s U P, _sUB, 2 U P _1)

+bai6(Patyyy—3 U Py, 3 U Piog U Py ).

Since b2i76(P5+1173 @] Plf’l+1273 @] Pl(_,3 @] Pb*lcfl) > 0, we have bzl(Gll - UQ’1L3) + b2¢,2(G/1 —
Uy — ’LL3) S bg,(GIQ — U/U) + b2i72(G/2 —Uu— U).

Thus, the proof is complete. 1

Theorem 3.4 For any graph G € O1(n;a,b,k;ly,la,l3) \ Ta, there exists a graph
H € 0;(n;6,6,6;1,,15,15) such that G < H.

Proof. Without loss of generality, we may assume that a > k > b. It is obvious that
ly,ls,13 > 2. We distinguish the following cases:
h+a—2>T7
Case 1. S b +b—-3>7
ls+k—2>7
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In this case, considering the values of [, [y and I3, we distinguish the following four

subcases.
Subcase 1.1. [; > 3, I, > 4 andi3 > 3.

For any values of Iy, Iy and I3, let Gy € O1(n;a,b, k;ly,1s,13) and Go; € O14(n; 6,6,
6; 1,1, 1) (as shown in Figure 3.8), where I{ = a+1;—6, l;, = b+1y—6 and I}, = k+13—0.

Figure 3.8: Graphs for Subcase 1.1.

By Lemma 2.2, we have
boi(G1) = boi(Gy — ugvr) + bai—a(G1 — uy — vy)

k b
= by Pa+k+ll+l; 3U Pbm o) + b2 oLy o U Py o U B, 3),

Il
=

2\ +z’ 4o Y Pﬁ+4) + bai (P 44 U Pl [ U Pz' +3)

(
(
b2i(Go1) = bai(Gor — up1vor) + bai—o(Gor — ug — vo1)
(B
(Fy

= by +k+ll+ld s U DB, o) + by o(PL _,U Pk+z,«,—2 U Ppys,3)-
By Proposition 2.3, we can obtain that G; < Goy.

Subcase 1.2. [; =2, 13 >4, l3>30rly >3, 1o >4, 13=2.

The graphs in this subcase belong to I'z(), so we do not consider them.

Subcase 1.3. [; > 3,1, =3, 13 > 3.

It is easy to verify that b > 8 and then we have a > k > b > 8. Let Gy €
Orr(nya,b,k;ly,ls,ls) and Goa € ©51(n;6,6,6;11,15,1), where I} = a+1, —6, I} =
b+1ly—6andly =k+1;—6. If [; >3 or [; > 3, then with similar analysis in Subcase

1.1, we have

kb a a
b2i(G2) = bQi(Pk+b+l2+lg—3 U Pa+ll—2) + bQi—Z(Pa+l1—3 U P)§+l3—2 U Plf+1272)=
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6.6 6 6 6 6
b2i(Goa) = bai(PyZy 1o U By a) + baia(Py (s U P U )
6,6 6 6 6 6
bai (P ptna1a—s U Povry o) Fbaia(Pr, s U P » U B, ).

By Proposition 2.3, we can obtain that Ga < Goa.

If I, = Iy = I3 = 3, the graphs in this case belong to I'y(i%), so we do not consider

them.

Subcase 1.4. [; >3, [y, =2, [3>3o0rly =13=2,lp>4o0rl; =2, 2<1, <3,

132301'1123/2§12§37l3:20111213:272S12§3

The graphs in this case belong to I'y(i), so we do not consider them.

lh+a—2<6
Case 2. (b +b0—3>7
ls+k—2>7

In this case, it is easy to verify that a < 6, from which we have b < k£ < a < 6.
If a=0=Fk =6, it follows that this lemma holds. Hence, we consider the following

subcases.
Subcase 2.1. a =k =6, b= 4.

It is easy to verify that Iy > 6 and I3 > 3. For any values of I, and I3, let G3 €
©11(n;6,4,6;2,15,1l3) and Gog € O1(n;6,6,6;2,15,15), where Il = Iy — 2 and I} = I3.

By Lemma 2.2, we have

byi(G3) = bZi(PlGﬁn U PziJrz) + byi—2(Cs U Pzi+4 U PliJrl)

3

bzi(G03) = bZi(Pziﬁn U PIE+2) + 1721?2(00' U Pli+4 U Pli-%—l)-
By Proposition 2.3, we can obtain that G3 < Gog.
Subcase 2.2. a =6, k=b=14.

It is easy to verify that Iy > 6 and I3 > 5. For any values of I, and I3, let G3 €
©11(n;6,4,4;2,15,15) and Gos € O1/(n;6,6,6;2,15,15), where I, =l —2 and I = 13— 2.

By Lemma 2.2, we have

byi(Gy) = bzz'(PlG’ig UP. ) +byi2(CoUPL,UPL,),

3
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boi(Gos) = bai( Pl U P o) + bai o(Co U P, UPS L)
By Proposition 2.3, we can obtain that Gy < Goy.
Subcase 2.3. a =k =b=4.
It is easy to verify that [} < 4,1, > 6andl3 > 5. Ifl; = 4,let G5 € O7(n;4,4,4;4,15,13)

and Gos € O7/(n;6,6,6;2,15,1;), where I, = Iy — 2 and I} = 3 — 2. By Lemma 2.2, we

have

byi(Gs) = bu(PyleUPhys) +baa(PfUPL, UPLL),

3
boi(Gos) = bai(PLSg UL o) +baia(Co U P, UPS ).
Also, ¢(Pg;A) = A8 — 6X* + 6A2 and ¢(Cg; A) = A — 6A* + 9X2 — 4. Tt follows that
P¢ < Cp. By Proposition 2.3, we can obtain that G5 < Gps.

If I} < 4, graphs in this case belong to T'y(ii4) or I's(iv), so we do not consider them.

ll+a7227
Case 3. S b +b—-3>T7
I3+k—2<6

In this case, it is easy to verify that £ < 6. If b < k < a < 6, with similar analysis
in Case 2 we obtain that this lemma holds. Then we consider the case a > 6 > k > b.
Without considering graphs with forms I'y(¢), T'y(i4é) and T'y(iv), there are only two

subcases as follows.
Subcase 3.1. a > 6, k=6,b=06 or 4.

It is easy to verify that Iy > 4 and I3 = 2. We have [; > 3 since we do not consider
graphs with form I';(7). For any values of [; and I3, let Gg € ©17(n;a,b,6;11,15,2) and
Gos € O11(n;6,6,6;17,1,,2), where I =a+ 1, —6 and I, = b+ I, — 6. By Lemma 2.2,
we have

boi(Ge) = bai(Pey), o5 U Py o) + baia(Peyy, s UCs U P, ),

byi(Gos) = bai( Py, 45U Piriy—o) + bai (Pl o UCs U By, ).
By Proposition 2.3, we can obtain that Gg < Gg.

Subcase 3.2. a > 6, k=b=4.
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It is easy to verify that [y > 6 and I3 < 4. We have [; > 3 since we do not consider
graphs with form I'y(4). For any values of [} and I3, let G7 € ©y/(n;a,4,4;1y,15,4) and
Gor € O11(n;6,6,6;1,15,2), where I} =a+1; — 6 and ly = I, — 2. By Lemma 2.2, we

have

bai(Gr) = bo(Po s UP ) + baia(Plyy s UPS UPL,),

boi(Gor) = bai(Pyl, 5 UPL ) + baia(Plyy, s UCsUPRL,).

Also, PéL < Cg. By Proposition 2.3, we can obtain that G; < Gyy.

l1+a7227
Case 4. b +b—3<6
I3+k—2>7

It is easy to verify that b < 6. Without considering graphs with forms I'y(¢), T'y(ii4),

I'y(iv) and T'y(v), we can distinguish this case into the following four subcases.
Subcase 4.1. b =06, 15 =3, 1; > 3 and I3 > 3.
For any values of [; and I3, let Gs € ©;,(n;a, 6, k;11,3,13) and Gos € O;(n;6,6,6;1],
3,14), where I =a+1; —6 and I = k+ I3 — 6. By Lemma 2.2, we have
bai(Gs) = bai(Pyipysiy—s U PP) + baia( P,y U Py, U Cy),
bai(Gos) = b2i(Pz?fk+ll+1373 U P8 + bgi_g(P:HrZ U P,fﬂrz U Cp).
By Proposition 2.3, we can obtain that Gy < Gog.
Subcase 4.2. b=06, 13 =2, > 3 and I3 > 3.
For any values of l; and I3, let Gy € ©;7(n;a,6,k;11,2,13) and Gog € ©1/(n; 6,6, 6;
11,2,15), where lf =a+1; — 6 and Iy = k + I3 — 6. By Lemma 2.2, we have
bai(Gy) = b2i(P;fk+zl+13—3 U C6) + bai—a (P, U Pl o U Ps),
bsi(Gog) = bZi(Pfkangsa U Cs) + bZi—2(Pf+llf2 U PIS+1372 U F).
By Proposition 2.3, we have Gy < Gog.

Subcase 4.3. b=4,13="5,1; >3 and I3 > 3.



-199-

For any values of [; and I3, let Gig € Or1(n;a,4,k; 1y, 5,13) and Goig € O11(n; 6,6, 6;
11,3,15), where I'! = a+1; — 6 and I} = k + I3 — 6. By Lemma 2.2, we have
boi(Gro) = bai(Peliiisiy—s U PP + baisa(Peyy s UPE, ,UPR),
boi(Goro) = bai(Pyistyiiss U PF) 4 baia(P2yy s UPE, U Cp).
By Proposition 2.3, we can obtain that Gi1g =< Go.-
Subcase 4.4. b=4,1,=4,1; > 3 and I3 > 3.
Let Gi1 € Or(n;a, 4, k;ly,4,13) and Goiy € O17(n;6,6,6;11,2,1), where If = a +

Iy —6 and I} = k + 3 — 6. By Lemma 2.2, we have

a,k a
boi(Gn1) = bai(Pyyy i y1,—3 U Pe) + baica(Piyy s U PEy o U P,

a

boi(Gont) = bai(PeSeiny 15U C6) + baia(Plyy, 5 U PPy 5 U Ps).

Also, ¢(Pd;A) = A% — 3X% 4+ 2\ and @(Ps; \) = A\° — 4X% + 3\, So Pd < Ps. Then by

Proposition 2.3, we have G1; < Goq1.

l1+(l*2§6
Case 5. { b +b—3>7
I3+k—-2<6

It is easy to verify that a < 6 and then we have b <k <a <6. Ifa=b=k =6, it
follows that this lemma holds. Then we focus on other subcases. Without considering
graphs with forms T'y(447), T's(iv), we can distinguish this case into the following three

subcases.

Subcase 5.1. a =k =6, b=4.

It is easy to verify that [y = I3 = 2 and [y > 6. For any value of [y, let G152 €
O11(n;6,4,6;2,15,2) and Goiz2 € O77(n;6,6,6;2,105,2), where I, = I, — 2. By Lemma
2.2, we have

byi(Gr2) = bai(P UPL,,) + baia(Ce UCs U Ph ),

boi(Gorz) = bo(Pfy U P,‘;;g) + by 2 (Cs U C U Pliﬂ)-

By Proposition 2.3, we can obtain that G5 < Gpia.



Subcase 5.2. a =6, k=b=4, 13 =4.
It is easy to verify that Iy = 2. For fixed I, let Gi3 € Oyr(n;6,4,4;2,15,4) and

Gois € O11(n;6,6,6;2,15,4), where I}, = I, — 2. By Lemma 2.2, we have

b2i(Gs) = b2z’(Pl4’ig U Cg) + bai—a(Ps U Pé ) Pf;rz%

2

bai(Gorz) = bZi(Rﬁﬁg U Cg) + baj—a(Ps U Cs U 13l§+2).

By PI‘OpOSitiOH 23, we have G13 = G013.
Subcase 5.3. a=k=b=4,1; =13 =4.
It is easy to verify that I > 6. For fixed I, let Gi4 € Op(n;4,4,4;4,15,4) and

Gos € O11(n;6,6,6;2,15,2), where I}, = I, — 2. By Lemma 2.2, we have

bZi(Gl4)
byi(Gowa) = bau(Ps° U PSL) + baia(Cs U Cg U PE ).

bai(Pis U PL ) + b o(PEU P UPL),

Also, Pg‘ < (%, and by Proposition 2.3, we can obtain that G4 < Ggy4.

Lh+a—2<6
Case 6. < I, +b—3<6
Is+k—2>7

It is easy to verify that a < 6 and then we have b< k< a <6. fa=b=k =6, it
follows that this lemma holds. Then we focus on other subcases. Without considering
graphs with forms I'y(4ii), I'y(iv), we can distinguish this case into the following three
subcases.

Subcase 6.1. a =k =06,b=4,4 <[y, <5.

It is easy to verify that Iy = 2, I3 > 3. For any values of Iy and [3, let G5 €
©11(n;6,4,6;2,15,15) and Goi5 € O1/(n;6,6,6;2,15,15), where I}, = Iy — 2, I = I3. By

Lemma 2.2, we have

byi(Gis) = bai(Pyg UPS,y) + baa(Cs U B, UPE L),

boi(Gois) = bai( Pty U P, 4) + baia(Cs U Py U PELy).

By Proposition 2.3, we can obtain that G5 < Gqs.
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Subcase 6.2. a =6, k=0=4,4 <[y, <5.

It is easy to verify that {; = 2, I3 > 5. For any values of Iy and I3, let G5 €
(—)H(n; 67 4,4;2,127 13) and G016‘ (S @11(71;6,6,6; 2, lé,lg), where l’2 = 12 - 2, lé = 13 — 2.
By Lemma 2.2, we have

byi(Grs) = bai(Plig U PR ,,) +baa(CsU P, UPL,,),

boi(Gors) = bai(PLYg U PYys) +baia(Ce U P U RS,

2
By Proposition 2.3, we can obtain that G < G-
Subcase 6.3. a=k=b=4,1, =4,4 <[, <5.
It is easy to verify that I3 > 5. For any values of [, and I3, let G17 € ©yr(n;4,4,4;4,15,13)

and Gz € O77(n;6,6,6;2,15,14), where Iy = Iy — 2, I} = l3 — 2. By Lemma 2.2, we

have

b2i(Gl7) = bzi(P4

2

ﬁg U Pl§+2) + 1722'72(135.L U Pli+2 U PliJrl)v

byi(Gorr) = bai(PoigUPL ) + baia(Ce UPS ) UPSL).

2

Also, P¢ < Cs, and by Proposition 2.3, we have G17 < Go7.

l1+(l1—227
Case 7. { b +b—3<6
I3+k—2<6

It is easy to verify that £ < 6 and b < 6. If b < k < a < 6, with similar
analysis in Case 6 we can obtain that this lemma holds. Then we consider the case of
a> 6>k > b. Without considering graphs with forms I's(z), I's(%¢) and I's(iv), we

can distinguish this case into the following three subcases.
Subcase 7.1. k=0=06, [ > 3.

It is easy to verify that I3 = 2 and 2 < I, < 3. For any values of [; and o, let
G € (‘)H(TL; a,6,6;1,ls, 2) and Ggis € 61[(71; 6, 6,6;[’1,12, 2), where le =a+1;—6. By

Lemma 2.2, we have

bai(Grs) = bzi(Pa’ﬁ

a+l1+l2+3

bsi(Gows) = bai(Pyl 41pis U Co) + baioa(PE _, U P, UPs).

U C6) 4 baia(Ply, s UPS U P,
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By Proposition 2.3, it follows that Gig = Gois.

Subcase 7.2. k=6,b=4,1; > 3.

It is easy to verify that [3 = 2 and I, < 5. We have 4 < [, < 5 since we do
not consider graphs with forms T'y(i27) and I's(iv). For any values of I} and I3, let
Gro € O11(n;a,4,6;14,15,2) and Goi9 € O1(n;6,6,6;1,15,2), where I} = a+1; — 6 and

ly =1y — 2. By Lemma 2.2, we have

boi(Gro) = bai( P gy U Co) + baima(Pily, o U Plyp U Py),

boi(Gor) = bai(Pef, 1101 U C) + baia(Poyyy o U Bl iy U Ps).
By Proposition 2.3, we have G19 = Goig.

Subcase 7.3. k=b=4,1; > 3, I3 =4.

Similar to Subcase 7.2, we have 4 < Iy < 5. Let Gy € Oyr(n;a,4,4;11,1,4) and
Gozo € O11(n;6,6,6;11,15,2), where If = a+1; — 6 and I}, = I — 2. By Lemma 2.2, we
have

bai(Gao) = bZi(Pr:I‘flJ+lz+1 U Pé) + b2i—2(P;+1172 U Pzi§+2 U Fs),
bsi(Gon) = bai(Pyyy 11p41 U Co) + baia(Peyy, o U BL 5 U Ps).

Since Pg1 < Cg and P54 < P5, by Proposition 2.3, we have Goy < Gogo.

ll+a1—2§6
Case 8. ¢ lhb +b—3<6
I3+k—2<6

It is easy to verify that a < 6 and then we have b< k< a <6. lfa=b=k =6, it
follows that this lemma holds. Then we focus on other subcases. Without considering
the graphs with forms I'y(#i7) and T'y(iv), we can distinguish this case into the following
three subcases.

Subcase 8.1. a =k =6, b =4.

It is easy to verify that Iy = I3 = 2. Since n > 20, we have I, = 5. Let Gy €
071(20;6,4,6;2,5,2) and Goa1 € ©77(20;6,6,6;2,3,2). By Lemma 2.2, we have

bgi(Ggl) = 1)21(131644 U Cﬁ) + bg,‘,,z(Cﬁ @] P; U P5),



-203-

boi(Goa1) = boi (PSS U C) + boi—o(Cs U PS U P).
By Proposition 2.3, it follows that Ga; < Goo1.
Subcase 8.2. a =6, k=b=4, 3 =4.

It is easy to verify that [y = 2, I < 5. Since n > 20, we have l; = 5. Let
Gas € O17(20;6,4,4;2,5,4) and Goae € ©77(20;6,6,6;2,3,2). By Lemma 2.2, we have
byi(Gaz) = b2i(Co U PYY) + byia(Ps U B U PY),
byi(Gozz) = b2i(Co U PL°) + boia(P5 U Cs U PF).

By Proposition 2.3, we have Gay = Ggoa.
Subcase 8.3. a=k=b=4,1; =13 =4.
It is easy to verify that I < 5. Since n > 20, we have [ = 5. Let Gog €
©77(20;4,4,4;4,5,4) and Goaz € ©7/(20;6,6,6;2,3,2). By Lemma 2.2, we have
byi(Gas) = bai(Plt UPY) +bay_o( P U P UPY),
byi(Gozs) = bai( P’ U PE) + byi_2(Cs U Cg U Cp).
Since P < Cg, and by Proposition 2.3, we can obtain that Gz < Gpag.

The proof is now complete. 1

Lemma 3.5 For any graph G € ©O1(n;6,6,6;11,15,13), there exists a graph H €
©11(n;6,6,6;11,1,,2) such that G < H.

Proof. For fixed parameters n, Iy, Iy and I3, let Gy € O7(n;6,6,6;11,15,13) and Gy €
O11(n;6,6,6;11,15,2) (as shown in Figure 3.9). It is easy to verify that I, =l + 13 — 2

and it suffices to show that G; < Gy.

By Lemma 2.2 we have

bQi(Gl) = bZi(Gl - u1U1) + b2i—2(G1 —up — U1)

byi(G1 — wrvn) + by o (P 3 U P, U P L)

= bgi(G] - U]’U]) + b2i72(3?+3 @] Plr62+4 @] C@ @] P]372)
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Gi Go

Figure 3.9: Graphs for Lemma 3.5.

+b2i_4(Pff+3 U Pg+4 U P,_5U Ps),
b2i(Go) = bai(Go — ugvg) + bai—2(Go — ug — o)
= ba(Go — ugvo) + bai—2(PL 13U P41y U Co)
= byi(Go — ugvo) + bai—2(PS 3 U PS4 UCs U Py,_s)
+b2i—4(Pl?+3 u 1‘_’162+3 U P,_3UCs).

Since by (G — ugv1) = bei(Go — upvy), then we only need to compare sz(Pf;r4 U Ps)

and by; (P, 3 U Cg). Also by Lemma 2.2 we have

b (P s U Ps) bj(P 5 U Ps U Py) + by o(Pg 5 U Py)
= byj(Plys U Ps U P +byja(Pp UP U P
+baj—a(Ph 10 U P3)
= by (P s UPUDP) + by a(Pl,UPUP)
+baja(Pf 1 U P3U Py) + byj6(PS U Py)
= byj(Plys U Ps UP) +byja(P, UP U P
+baj_a(PL .y UPy U Py) + byj—6(C U Py_g U Ps)
+byj_s(P5 U P,z U Ps),
and
boj(PlisUCe) = boj(PlygU Ps) + baj o(PS 45U Py) + 2y (Pl ys)
= byj(Pl43 U Pe) +byjo(PL. o U Py U P
+baj-a (P U Pr) + 2b2j6(Pp . 5)

= boi(Pi 3 UDPs) +boja(Pl UL UP)
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Fboja(PLyy UPsU Py +boj (PP 4y U Pa) + 2by; (P 5)
= boi(PE 3 UDPs) +bojo(PS ,UPUP)

+boj-a(P 4y UPs U Pp) + byj6(Co U Py5 U Py)

)
+bjs(P5 U Py U Py) + 2baj6(Pp 15)-
By Lemma 2.4 and Proposition 2.3 we have PS , U P; < PJ ;U Cs. Also consider

Proposition 2.3, we can obtain that G; < Gj. [ |

Lemma 3.6 For any graph G € ©O1(n;6,6,6;1,15,2), there exists a graph H €
O11(n;6,6,6;1,2,2) such that G < H.

Proof. For fixed parameters n, l; and Iy, let Gy € O7(n;6,6,6;1,15,2) and Gy €

O11(n;6,6,6;1,2,2) (as shown in Figure 3.10). It is easy to verify that [ =1; + 1y — 2

and it suffices to show that Gy < Gs.
L ly 1
—_——— —_—
o -
g Vg,

Gy Gy

Figure 3.10: Graphs for Lemma 3.6

By Lemma 2.2 we have

bai(Go) = bai(Go — ugvy) + bai—2(Go — ug — )
= by (Go — ugro) + b2i*2(Pl?+4 U PEH U bs)
= byi(Go — ugv) + bai_2(P2 U Cs U P, _s U B)
+byi (P s UPs U P, 53U Ps),
boi(Ga) = bo(Ga — ugwa) + ba—2(Ga — us — v2)

= bz,‘(GQ — ’LL2U2) + b2i72(P161+12+2 U CG U P5)

= byi(Gy — ugvy) + b2i—2(F’[(.25+4 UCsU P, _oU Ps)
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+b2i—4(Pzﬁ2+3 UCsUP,_5U D).

Since by (Go — ugvg) = bei(Ga — uzvy), then we only need to compare sz(Pf;+4 U Ps)
with by;(PE, 53U Cs). With similar analysis in Lemma 3.5, we can obtain that Gy < Ga.
1

From Theorem 3.4, Lemmas 3.5 and 3.6, we can easily obtain the following result.

Theorem 3.7 For any graph G € ©y(n;a,b, k; 11,12, 13), if G is not an element of the
special graph class T'a, then there exists a graph H € ©1;(n;6,6,6;n — 17,2,2) such
that G =< H, and the equality holds if and only if G = H.

Theorem 3.8 For any graph G € ©;(n;a,b,k;ly,l2;2) \ I'1, there exists a graph H €
©1(n;6,6,6;0,15;2) such that G < H.

Proof. Without loss of generality, we may assume that l; > ls. We will discuss the

following four cases.

[ —1>9
Case 1. 1ta -
lb+k—1>8

Considering the values of [; and [y, we distinguish this case into the following four

subcases.
Subcase 1.1. [} > 4.

For any values of [y and Iy, let G1 € ©;(n;a,b, k;ly,12;2) and Goy € O1(n;6,6,6;11,15;2),

where l{ = a+[; — 6. By lemma 2.2, we have
a b,k a
boi(Gh) = bai( Py o U Py, o) 4 boia (P g U By, s),
b2z‘(G01) = b2i(Pf+zl—2 U Pffmer) + bZi*Q(PaG-%—ll—fi U Pb6+k+lz—3)'
By Proposition 2.3, we can obtain that G < Go.
Subcase 1.2. [ =1, =3 and b > 6.

It is easy to verify that @ > 8 and &k > 6. Let Gy € O;(n;a,b, k;3,3;2) and
Gz € O1(n;6,6,6;1],15;2), where [} = a—3 and I, = b+ k —9. By lemma 2.2, we have

ba(Ga) = boi(P2%) + baia(Pey U PEy U Pya) + (1) 452054 (P2, U PE),



-207-

bg,;(GgQ) = bgz( )+b21 ( a1 UPbJrk UP4)+2b27 ( a+1UPb6+k75).
Then we compare by;(PF, | U P,_3) with bo;(Pf,,_5 U Py). By Lemma 2.2 we have

boj(PE L UP—s) = boj(Pe1 UDPps) +bojo(Pra UPa U PY),

ij(Pz?+k—5 UP) = bay(Pryr—s U Py) + boj_o(Pysr—11U Py U Py).

Since b > 6 and & > 6, by Lemma 2.4, we have Py U P,y < Byyr_5 U Py and
Pk'*Z U Pb*Z @] P1 < Pk-—Z (@] Pb,g, (@] P4 = PIH»k'fll @] P4 @] P4. Then we can obtain that

PkJrl UP,_y X PP, _sUPy. Also, since b > 6, then k+1 < b+k —5, by Proposition 2.3

we have P,f;rl =< Pk = P,ﬁrkﬁ,). Also by Proposition 2.3, we can obtain that Gy < Gos.
Subcase 1.3. I, =1, =3, b=4 and k = 6.
Tt is easy to verify that a > 8. Let G5 € O;(n;a,4,6;3,3;2) and Goz € O(n;6,6,6;1,,3;2),
where I{ = a — 5. By Lemma 2.2, we have
byi(Gs) = boi(Pyis U PP) + bai_a(Pey 4 U Co),
b2i(Gos) = bai(Prs U PF) + baia(Ply U Cp).
From Proposition 2.3, it follows that G3 < Gos.
Subcase 1.4. [y =1, =3, b=4,k>8orl; =3,y =2o0rl; =1y =2.

The graphs in this case belong to 'y (i) or T'(i7), so we do not consider them.

l —-1<
Case 2. pra=-1s8
lhb+k—1>8

It is easy to verify that a < 6. Without considering graphs of form T’y (iii), we

distinguish this case into the following two subcases.
Subcase 2.1. a = 6.
Tt is easy to verify that iy = 2 or 3. Ifl; = 3, Iy = 3, thenlet G4 € O1(n; 6,0, k;3,3;2)
and Gos = ©7(n;6,6,6;3,1,;2), where I}, = b+ k — 9. By Lemma 2.2, we have
bai(Ga) = b21(Pb+k+1 U PP) + bai_a( Py U Co),

byi(Goa) = boi(Pyy UPE) + baia( Pl U ).
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By Proposition 2.3, we have Gy < Goq.

If I, =3, Iy =2, then let G5 € ©;(n;6,b,k;3,2;2) and Gos = O;(n;6,6,6;3,15;2),
where 1§ = b+ k — 10. With similar analysis, it follows that G5 < Gos. If I} =1 = 2,
then let G € O1(n;6,b,k;2,2;2) and Gog € Or(n;6,6,6;2,15;2), where I = b+k—10.

With similar analysis, we can obtain that Gg < Gog.

Subcase 2.2. a = 4:

It is easy to verify that [; < 5. Since we do not consider graphs with form I'; (i), we
have 4 <1y < 5. If [} =5, let G € ©1(n;4,b, k; 5,15;2) and Gor € ©7(n; 6,6,6;3,1;2),
where Iy = b+ k + Il — 12. By Lemma 2.2, we have

boi(Gr) = bo(Prl sy UPH) + boa(Pfy s U P,
bsi(Gor) = bai(Pyiissyo U PP) 4 bai a( Py gy —s U Co)-
From Proposition 2.3, it follows that G7 < Go7. If I; =4, let Gs € O1(n; 4,0, k;4,15; 2)
and Gog € ©1(n;6,6,6;2,15;2), where I, =b+ k + Il — 12. By Lemma 2.2, we have
boi(Gg) = b2i(P:fk+1272 UPY)+ bzi—z(PzﬁrkHrs U Py,

bsi(Gos) = bai( Py 1,5 U Co) + baia( B yisy s U Pr).

Since P54 < Ps, then from Proposition 2.3, it follows that Gg < Gg.

l —-1>9
Case 3. 1ra -
Lh+k—1<7

Without considering graphs with form I'y(iv), we distinguish this case into the

following two subcases.
Subcase 3.1. k= 6.

It is easy to verify that I, = 2. For any value of [;, let Gy € ©;(n;a,b,6;1,2;2) and
Goo € O1(n;6,6,6;1,2;2), where Iy = a+ b+ 1, — 12. By Lemma 2.2, we have

bsi(Go) = bai(Peyy 1,5 U Ce) + baia(Plyyysy 5 U Ps),

bsi(Goo) = bai( Py, o U Co) + b a(Plyyyy, 5 U Ps).

By Proposition 2.3, we can obtain that Gy < Gg.
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Subcase 3.2. k = 4.

It is easy to verify that [» < 4. Since we do not consider graphs with form
Iy (iv), we have I = 4. For any value of l;, let Gi9 € Or(n;a,b,4;1,4;2) and
Goio € O1(n;6,6,6;11,2;2), where I} = a+b+1; —12. By Lemma 2.2, we have

boi(Gro) = bQZ(P;berll ZUPY) + bai—a(Pyypig, 3 U Py,

a

boi(Gowo) = bas( PYS, oty —2 U C6) + baia(Pey iy, 3 U Ps).

Since P54 < Ps, by Proposition 2.3, we can obtain that Gy < Gop.

[ —-1<8
Case 4. 1ra -
Lh+k—1<7

It is easy to verify that a < 6 and k < 6. Without considering graphs with form
I'y(v), we distinguish this case into the following two subcases.

Subcase 4.1. a = 6:

It is easy to verify that {; < 3. If I; = 3, then let G13 € ©;(n;6,b,k;3,1»;2) and
Goi1 = ©1(n;6,6,6;3,15;2), where I, = b+ k + I — 12. By Lemma 2.2, we have

b2i(G11) = bai(Pyiiysy 0 U PP) + bai a(Pfis,—5 U Co),

boi(Gont) = bai(Pysy—a U PY) + baia(Pyy gy 5 U Cs).

By Proposition 2.3, we can obtain that G11 =< Goqy.

If I} = 2, since I; > Iy, we have Iy = 2. Let G2 € O7(n;6,b,k;2,2;2) and Goio €
©;(n;6,6,6;2,15;2), where I, = b+ k — 10. With similar analysis, it follows that
Gi2 = Gona-

Subcase 4.2. a = 4.

It is easy to verify that I; < 5. Since we do not consider graphs with form I’y (iv),
then we have 4 < [, < 5. If I} = 5, then let Gi3 € ©;(n;4,b,k;5,15;2) and
Goiz € 91(n;6,6,6;3,05;2), where I, = b+ k + Iy — 12. By Lemma 2.2, we have
boi(Gis) = bai( Pyl sy o U P) 4 baia(Pf s, 5 U Pd) and bai(Gors) = bai(Pyy 4, U

P8) + by _o(Pf,}.41,_5 U Cs). By Proposition 2.3, we can obtain that Gi3 =< Gous.
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Ifl; =4, then let Gi4 € O1(n;4,b,k;4,15;2) and Gora = O(n; 6,6, 6;2,15;2), where
ly = b+ k+ Iy —12. With similar analysis we can obtain that G4 =< Goya.

The proof is thus complete. 1

Lemma 3.9 For any graph G € ©1(n;6,6,6;1y,1s; 2), there exists a graph H € O1(n;6,6,
6;11,2;2) such that G < H.

Proof. For fixed parameters n, a, b, k, l; and Iy, let Gy € O1(n;a,b, k;ly,15;2) and Gy =
Or(n;a,b, k;1,2;2) (as shown in Figure 3.11). It is easy to verify that I{ =1, + 1y — 2

and it suffices to show that G; < Gy.

Gy Go

Figure 3.11: Graphs for Lemma 3.9.

By Lemma 2.2 we have
boi(G1) = boi(Gr — ugvr) + bai—o (G — uy — v1) + 2b9i—6(G1 — Ci)
= boi(Gr — wyv1) + bai o (P2, U P2, U Py) + 2byi (P 4 U By,
bZi(GO) = b2z‘(Go - UOUO) + b2i—2(G2 — Up — Uo) + 2b2i76(G0 - CG)
( ) 2(

= b2i G() — UpVg + bgi, Bﬁ+4 U C()- U P4) + 2b2i76(P[(’i+4 U C@)

1
Since by (G — uyv) = bai(Go — ugug), and considering Proposition 2.3, we try to
compare by (P, U P ,) with ij(Pﬁ1+4 U (). Also by Lemma 2.2 we have
boj(PhaU Pia) = boj(Ply UCs U Pyoa) + byja(P 4 U Py—s U Py),
b (Pf 1 U Cs) = baj(Pf 4y UCs U Piya) 4 bajo(Pf 5 U Py U Cp).
With similar analysis in Lemma 3.5, we have P’ , U P; < PP 53U Cs. Applying

Proposition 2.3, we can obtain G < Gj. [ |
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Lemma 3.10 For any graph G € ©;(n;6,6,6;11,2;2), there exists a graph H €
O11(n;6,6,6;1,2,2) such that E(G) < E(H).

Proof. For fixed parameters [y and [, let Gy € ©;(n;6,6,6;11,2;2) and Gy € O/(n; 6,6,
6;1,2,2) (as shown in Figure 3.12), where [ =1 — 1, i.e., [ = [ + 1. It suffices to show
that GQ =< Gz.

Gy Gy

Figure 3.12: Graphs for Lemma 3.10.

By Lemma 2.2 we have

b2i(Go) = bai(Go — ugvo) + bai—a(Go — upg — vg)

= bsi(Go — ugvo) + bai—a(Pf 1 U P5)

= boi(Go — ugv) + bay—o( P, U Py U Ps) + bay_a(Pf 5 U Ps U By),
b2i(Ga) = bo(Ga — ugva) + byi—2(Ga — Uz — v3)

= by(Go — upv2) + by (L5, U Cs U P5)

= boi(Ga — ugv2) + bai2(Pfy U P U P3) + baia (P U Py U P5).

Since by (Go — ugvg) = bei(Ga — upvs), then we only need to verify PS, U Ps U Py <
PFf U PyU P;. By Lemma 2.2, we have

b2i(131(13 UP;) = boi(PrysUPs) 4 boio(P3U Ps U Py) + 2bg; (P35 U Ps),

bzi(Pﬁr4 UPy) = by(PryaU Py) + boi—o(P—o U Py U Py) + 2by;_6(P—2 U Py).
From Lemma 2.4, we can obtain that P 3 U Ps < PhqsUP; and if I #5, P_3U P5 <
P _oUPy, then P_sUP;UP; < P_oUP,UP,. So from Proposition 2.3, it follows that

Pﬂg UP; < P,(EH U Py and then Gy < Gs. If [ =5, then Gy € ©/(22;6,6,6;6,2;2) and
Gy € ©//(22;6,6,6;5,2,2). By calculating, we know that £(Gy) < £(Gs).
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Therefore, the proof is complete. 1

From Theorem 3.8 and Lemmas 3.3, 3.9 and 3.10, we can easily obtain the following

theorem.

Theorem 3.11 For any graph G € O(n;a,b, k;ly,ls;1.) and G ¢ Ty, there exists a
graph H € Or1(n;6,6,6;n — 17,2,2) such that G < H, and the equality holds if and
only if G = H.

From Theorems 3.7 and 3.11, we can obtain our main result Theorem 2.5.
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