
F. J. P I E R C E 
Assistant Professor of 

Mechanical Engineering, 
Cornell University, Ithaca, 

N. Y. Assoc. Mem. ASME 
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Boundary Layer 

Momentum integral equations for the turbulent flow at the plane of symmetry of a three-
dimensional boundary layer are rigorously derived. The use of orthogonal curvilinear 
coordinates allows a simple physical interpretation to be given to the terms of the re-
sulting equations. Evaluation and comparison are made between the derived results and 
earlier works in Cartesian sets and ambiguities are discussed. 

Results of an experimental program are reported for the case of a plane of symmetry 
flow in a collateral three-dimensional turbulent boundary layer wherein four different 
momentum integral equations are examined in predicting boundary-layer growth. As 
an aside, two common variations of shape parameter equations were also tested to deter-
mine their adequacy in application to this case. 

Introduction 
THE three-dimensional turbulent boundary layer, 

while undoubtedly one of the most common boundary-layer flows 
encountered, is perhaps the least understood. For example, in 
the problem areas of external airflow over nonaxially symmetric 
airframes and the internal flow of turbomachinery and irregular 
shaped ducts, the problem of the three-dimensional turbulent 
boundary layer still is awaiting a satisfactory and hopefully a 
simple treatment. As in the case of two-dimensional turbulent 
boundary-layer flows, the initial works in the three-dimensional 
problem are based on studies of the phenomenological nature of 
turbulent flows. 

The particular problem reported on herein is a special case of 
the more general and considerablj' more complicated three-dimen-
sional turbulent boundary-layer flows. Yet the case considered is 
of importance not only as an introduction to the more complex 
general flow, but in its own right, the plane of symmetry flow 
studied appears in many two and three-dimensional diffusers. 

As is well known, one of the most useful methods of analysis for 
turbulent boundary-layer flows lies in the use of momentum in-
tegral equations. Since a formal and rigorous analysis of the 
plane of symmetry flow is lacking in the literature, the following 
analysis is presented, with specialization to the collateral flow 
case made as a last step. 

Contributed by the Fluid Mechanics Subcommittee of the Hy-
draulic Division and presented at the Aviation and Space, Hy-
draulic, and Gas Turbine Conference, and Products Show, Los 
Angeles, Calif., March 3-7, 1963, of T H E A M E R I C A N S O C I E T Y OF 
M E C H A N I C A L E N G I N E E R S . Manuscript received at ASME Head-
quarters, November 21, 1962. Paper No. 63—A1IGT-3. 

Momentum Integral Equations 
The problem concerns itself with flow over a flat surface and 

the equations of motion are written for a streamline coordinate 
system generated about the physical boundary and its parallel 
planes, the free-stream streamline directions as projected onto 
this family of planes, and the orthogonal trajectories of these 
projected free-stream streamline directions. 

Formally, a triply orthogonal curvilinear coordinate set (£, i), f ) 
is generated about the Lam6 family [l]1 of parallel plane surfaces 
rj = const defined by the physical boundary to the flow. The 
surfaces £ = const and f = const are generated, respectively, by 
the projections of the free-stream streamlines and the orthogonal 
trajectories of these projections onto the ij = const surfaces. It 
is necessar}' to speak of the projections of the free-stream stream-
line direction since the existence of the boundary layer implies 
that, in general, none of the free-stream velocity vectors will 
actually be contained in any of the 77 = const surfaces. 

The coordinate system with its plane of symmetry is pictured in 
Fig. 1. The ^-direction is approximately the free-stream direction, 
f is the lateral direction and t] is the normal direction to the 
bounding surface. The metrics are, respectively, hi, h2, h3 
corresponding to the 17, f directions with the additional 
simplification that if the value of unity is assigned to the constant 
metric h2, the arc length di} is the distance normal to 7; = const 
surfaces. 

The boundiuy-layer equations are obtained following 
Howarth's [2] treatment for laminar incompressible flow. For 
turbulent flow, however, the laminar shear terms in the boundary-
layer equations are replaced by the turbulent shears. There has 
been considerable discussion as to the adequacy of such a simple 

1 Numbers in brackets designate References at end of paper. 
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entire flat plane. The plane of symmetry problem is simplified by 
the following conditions valid on this plane. 

Kt 0 

biv bw 
w = 0 hence — = •— = 0 

d£ br} 

h H " h3 ^ ~ h3 bt ~ 

(4) 

(5a) 

(56) 

Additionally on this plane the metric hi majr also be assigned the 
value unity, hence df is the distance normal to the £ = const 
surfaces (but only on the plane of symmetry). 

Hence on the plane of symmetry the motion and continuity 
equations in the boundary layer are 

Fig. 1 Coordinate systems and the plane of symmetry 

substitution. Several writers have shown that in the case of 
two-dimensional turbulent flows, the classically accepted momen-
tum integral equation which is based on such a substitution is not 
adequate in predicting skin-friction coefficient values. In par-
ticular, as separation is approached, the integral equation yields 
increasing values rather than decreasing values. Newman [3], 
Hewson [4], Bidwell [5], Goldschmiedt [6], and Ross [7] all 
consider the omission of terms originating from pressure gradients 
through the boundary layer and/or turbulence. There is, how-
ever, a lack of any general agreement as to precisely which terms 
should be included. Clauser [8] indicates that weak migratory 
flows could create the differences in the predicted C f values that 
are attributed to these omitted terms. However, the adequacy 
of simply replacing the laminar shear term by the turbulent shear 
term appears seriously questionable only in regions of separating 
flows. The equations below, and any results which follow, which 
are based on such a simple substitution, should therefore be used 
with caution in regions of separation. 

The boundary-layer equations of motion in the free-stream and 
lateral directions and the continuity equations follow. 

u bit bii w bii „ 
r ^ + ^ + r ^ - Kiiiw + Knv2 
lh £>{ £>r? h3 bt 

bii bii I bp 1 brt 
o f brj p o f p brj 

bu bO 1 bw r r + - + r - r - XIM = O 
df by h, bt 

(6) 

(7) 

Additionally the equation of motion in the ^-direction in the 
free stream is 

S F P 
(8) 

( 1 ) 

(2) 

(3) 

On the plane of symmetry only one boundaiy-layer equation of 
motion remains and the lack of knowledge of the turbulent shear 
distribution through the boundary layer is overcome bj' turning 
to a momentum integral equation. It is convenient to express 
the curvature term Ki in terms of a more easily recognizable 
phj'sical quantity, namely, the projection onto the flat surface of 
the free-stream streamline direction and its orientation with re-
spect to the plane of symmetry. The angle between the tangent 
to the projected free-stream streamline direction and the plane of 
symmetry is designated a. 

The curvature Ki may then be expressed in terms of the equa-
tion relating the rate of change of the unit tangent vector with arc 
length 

K _bT _ boc 1_ da 
1 bs bs h3 bt 

Substituting this expression into equation (7), together with 
equation (8), the motion equation for the boundary layer (6) is 
integrated to yield the momentum integral equation for the 
plan-of-symmetry flow. 

with the usual definitions 

(9) 

where Ki — ^ the nonzero principal curvature of the 
hih3 of 

£ = const surface in the direction of the parameter f and K2 = 

—- the nonzero principal curvature of the t = const sur-
hih3 bt 

face in the direction of the parameter A more readily availa-
ble reference for these equations is Rouse [9). 

It is worth noting that the boundary-layer equations are more 
complex in this form, not, however, due to the curvature of the 
physical bounding surface (whose first and second curvatures are 
both zero since it is by definition flat), but due to the nonzero 
curvature of the other two members of the triply orthogonal 
family of surfaces. 

The preceding boundary-layer equations are valid over the 

i r s _ 
= W2 = J ~ ii^iidri 

i r s _ 
= J (V ~ a)wdr) 

{U - u)dri 

The use of orthogonal curvilinear coordinates permits a simple 
physical interpretation of equation (9) following the suggestions 

1 On of Johnston [10]. The term represents the rate of change, 
hs ot 

with respect to the f-direction, of the transport of free-stream 
dp bet direction momentum m the lateral direction. The term — —r 
h bt 

accounts for the free-stream direction momentum which, while 
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being transported downstream, is also being distributed laterally, 
not by a lateral velocity but by the spreading of the flow. It 
should be emphasized here that a lateral velocity refers to a 
velocity normal to the free-stream streamline direction and not 
necessarily normal to the plane of symmetry. 

If a boundary-layer flow has a velocity component lateral to the 
free-stream streamline direction, the flow is commonly called 
skewed as in reference [11], It is clear then that if no lateral 
flows exist in the boundary layer with 9^ = 0, only the 
0( ba 
— — term discussed previously will remain. Such a nonskewed 
"3 " f 
(or collateral flow) may occur on two and three-dimensional dif-
fuser walls and in the case of some axisymmetric flows. The 

9( ba 
term remaining - — is related to the spreading of the stream-

h £>f 
lines in such a wedge type flow. 

This plane-of-S3mimetry momentum integral equation may also 
be written in a Cartesian set. The Cartesian set is oriented with 
respect to the curvilinear coordinates at the plane of symmetry as 
shown in Fig. 1. Near the plane of symmetry one may write 

U ~ U 

u ~ u wot 

w « w — ua 

From these it may be shown that 

Sf* = 8X* 

9e = 9X 

ddM = ll3 _ g 
Ss x bz 

and 

b9s = bO^ 
bx 

Since on the plane of symmetry 

bx 

cte 

= o 

= o 

dx 

5K
 = 

a r 
and 

a a 
a f ~ , i3 

;a 
a * dx 

These relations are used to express equation (9) as follows, 

With the usual definitions 

1 r s 

= Jjt J (U-u)ucly 

i r s 

= U~2 J (U-u)wdy 

i r 
V Jo 

8* = (U - u)dy 

b9x 

due to either or both "skewing" and "spreading." This indis-
tinguishability occurs since in a Cartesian set even the wedge-type 
flow has a boundary-layer velocity in the lateral or ^-direction. 

It is important to observe the differences between equations (9) 
b9xe 

and (10) and to note that the —— term of the Cartesian system is 

the equivalent of the two terms , 9( , , and — — of the curvi-h3 df h3 ar 
linear set. In particular, the distinction between derivatives in 
the 2 and f-directions must be carefully made as these derivatives 
are not equal even on the plane of symmetry. These distinctions 
are not clear in references [10 and 12]. 

The Plane of Symmetry for Collateral Boundary-Layer Flow. F o r t h e 
particular problem investigated experimentally, the boundary-
layer flow is assumed collateral. With this assumption equation 
(9) is slightly simplified. 

^ x ^ x P ^ ^ A ^ C> - + (2flt + 9 { . ) - _ + = -

Using the previously stated plane-of-symmetry conditions 

da Q ba b9x, 
ha df " bz dz 

(11) 

equation (10) may be written as 

b9x „ „ 1 bU . ba C, 
— + (2 9X + 8X*) — — + ex — = 
bx U bx bz 2 (12) 

and this is the most convenient form of the momentum integral 
equation to work with. The momentum integral equation for a 
two-dimensional flow is written 

(13) 

The similarity between the two-dimensional case and the plane 
of sjonmetry in collateral flow is clear. The additional term 
ba/bz may be evaluated from either the assumption of an ideal 
wedge flow or from a continuity consideration of the free-stream 
flow, the former giving 

da 
bz 

I 
Xo 

where ,r0 is the distance from the point source of the wedge flow, 
and the latter 

ba 
bz 

I ^E 
U bx 

(10) 

These together with equation (12) yield the momentum integral 
equations for the plane of symmetry in the collateral flow in their 
most useful forms as 

bO, 0* bU 8S bU = C, 
bx U bx U bx 2 

bdx 

bx + "2 bU 
U bx + I I + = <±1 

•To J " U bx 

(14) 

(15) 

In this case, the physical meaning of the term —— is not as clear 
oz 

as in the curvilinear streamline set since one may have a rate of 
change of the s-direction momentum transport in this z-direction 

The latter of these was used by Kehl [13] and Norbury [14] while 
the former, which has stronger physical basis for use, was used 
by this writer. 

In addition to equations (14) and (15) which were derived for 
the special case of plane-of-symmetry flow for the collateral 
boundary layers, the momentum integral equation of Johnston 
[15, 16] for the plane of symmetry in a skewed boundao' layer 
was considered. 

In the notation of the coordinate system of Fig. 1, Johnston 
writes 
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h a f &r i f <*'-*> 
This result, based on calculations and some experimental evi-
dence, together with other plane-of-symmetry conditions already 
stated, allows equation (9) to be written as 

bx 
2 _ C _ L 

+ U dx ~ 2 (16) 

Equation (16), which has no dependence on shape parameters, 
is for plane-of-symmetry flows in skewed boundary layers. The 
result, however, appears independent of the amount or strength 
ol skewing, and the relation was examined experimentally in this 
work on the assumption that this relation would still be valid for 
a weakly skewed (or nearly collateral) flow. While agreement 
would be perhaps fortuitous, the simplicity in the absence of the 
shape parameter is clearly desirable. 

Wall Friction. In the evaluation of boundary-layer parameter 
growth (i.e., momentum thickness, shape factor), it is necessary 
to predict the local skin-friction coefficient, generally with a 
closed form expression of the type of Ludwieg and Tillmann [17]. 

C, = 0.246 [exp(-1.56ff )]/?„" 

TUBE SCREEN 
P A C K — t PACK-

(17) 

There appear to be, however, no measured data for wall shear in 
any three-dimensional, turbulent boundary-layer flows, and since 
the flow model under consideration was analogous to an axisym-
metric flow, the precedence established for the axisymmetric 
case was followed and, in fact, equation (17) was used in all 
calculations reported herein. Since the flows were of variable 
Euler number, it is clear from Fig. 2 that a constant value or a 
simple expression such as the Squire and Young or Schultz-
Grunow law would be in fact inadequate. 

Solution of Plane-of-Symmetry Flow. S o l u t i o n of a p l a n e - o f - s y m -
metry flow would require simultaneous solution of a momentum 
integral equation such as (14) or (15), a wall shear coefficient law 
as equation (17), and a variation of shape parameter equation. 
It is not implied that these equations would predict a separation 
point since, while it may be argued that in a three-dimensional 
diffuser a separation point will be first expected at the plane of 
symmetry, the three-dimensional separation problem has not been 
sufficiently investigated, and criteria for separation points and 
lines in three-dimensional boundary-layer problems are not clear. 
In particular, the notion that shape factor alone should predict 
separation on the plane of symmetry is not established, although 
Johnston [10] does show evidence which supports the two-
dimensional rule for a singular separation point encountered 
with a plane-of-sjonmetry flow. Additionally, as discussed 
earlier, the adequacy of the momentum equation used here in 
regions of separation is questionable. 

Experimental Apparatus and Program 
The plane-of-symmetry flow for a collateral three-dimensional 

turbulent boundary layer was examined experimentally in the 
apparatus shown schematically in Fig. 3. Room air was forced 
through a plenum 35-in. square filled with flow straighteners and 
several screens ranging from 14 X 18 mesh to 40 mesh. Follow-
ing a flow nozzle with contraction ratio of approximately 15 to 
1, a two-ft long two-dimensional 7.5 X 10 in. section led directly 
into the test section. The test section was a two-dimensional 
diffuser with a variable included angle /3. That is, the floor and 
roof were parallel and the two sides could be adjusted from 0° 
to 14°, included angle. While the actual diffuser was approxi-
mately five feet long, only the leading 48 in. were used as the test 
section proper, the last 12 in. being present to accommodate effects 
of the free discharge which preliminary probing indicated were 
influencing the boundary-layer development just prior to the free 
discharge. 

The floor of the test section was aluminum and the roof and side 
walls were acrylic so that tufts placed on the walls could be easily 
observed. In particular, flow separation from the constant width 

ELEVATION 

Fig. 3 Schematic v iew of experimental apparatus 

side walls could be detected easily. Static pressure orifices were 
located along the floor of the tunnel and 24 access ports for prob-
ing the floor were located in the roof, ten of these on the plane of 
symmetry and 7 on either side. These latter were probed at 
random to detect any skewing of the boundary layer. Wire trips 
of 0.0625-in. dia were used all around the nozzle exit to insure an 
early turbulent boundary-layer flow. 

The principal boundary-layer probe was circular with a tip 
OD of 0.018 in. stepped up to a 0.125-in. stem. The traverse 
used a dial indicator to position the probe; wall contact being 
established ±0.001 in. by electrical contact. The random prob-
ings made off the plane of symmetry were with a United Sensor 
Corporation claw probe No. CA-120-12-CD which allowed prob-
ing of the flow to within 1/64 in. of the wall. All probes used 
were calibrated against two United Sensor Corporation standard 
Kiel type probes. Pressure readings were made on a 10-in. 
Meriam Instrument Company Micromanometer with a least 
count unit of 0.001 in. of water and a Statham pressure trans-
ducer with a strain bridge having an equivalent least count unit 
of approximately 0.010 in. of water. Error analysis indicated the 
tunnel free-stream velocity was measured to ± 'A percent and the 
lowest velocity read on the plane of symmetry was read to ±2 .0 
percent. 

For purposes of comparison, all data were obtained with a 
tunnel inlet parameter U/v fixed at 7.50 X 105 ( f t - 1 ) ± 1 per-
cent. This resulted in a range of Reynolds number based on 
momentum thickness for the program of approximately 4000 to 
9000. Turbulence intensity at tunnel inlet averaged at 0.8 
percent, measurements being made with an Air Flow Corp., 
Model HWB2 hot wire anemometer. A complete tabulation of 
all the data on which the following results are based is contained 
in reference [18]. 

Experimental Results and Discussion. A series of five runs was 
made, at included angles of 0° through 12° at 3° intervals. 
Skin-friction coefficients obtained from the Ludwieg and Till-
mann shear law were compared to those obtained from the Law 
of the Wall after the method suggested by Clauser [8] with the 
constants reported in that reference. While the plane-of-sym-

SCHULTZ-GRUNOW 

10 2 4 6 8 10 2 4 6 

R, 
Fig. 2 Comparison of one and two-parameter skin-friction coefficient 
laws 

230 / J U N E 1 9 6 4 Transactions of the A S M E 

Downloaded From: https://fluidsengineering.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



.005 

. 0 0 4 

Z 
< 

5 . 0 0 3 _! h-
<s 
o 
a .002 
Q 
-1 

u. .001 o 

0 
0 .001 . 0 0 2 . 0 0 3 . 0 0 4 .005 

CF LAW OF THE WALL 

Fig. 4 Comparison of skin-friction coefficients as predicted by the two-
dimensional Law of the W a l l and the Ludwieg-Ti l lmann l a w 

0 . 3 5 

0 . 3 0 

0 . 2 5 

0.20 

0 .15 

0 . 0 5 m 

0 . 0 5 

0 . 0 5 

0 . 0 5 

0 . 0 5 

0 

metry flow may be described as a "locally" two-dimensional flow, 
one cannot assert, a priori, the validity of the two-dimensional 
Law of the Wall. The use of such a law here is only for purposes 
of comparison. Fig. 4 is a comparison of such skin friction co-
efficients for the plane-of-symmetry flow reported here, the plane-
of-symmetry flows of Johnston [16], and Norbury [19] and, for 
comparison purposes, the two-dimensional flow of Schubauer 
and Klebanoff [20]. In the range of Cf values encountered in this 
work the Ludwieg and Tillmann formula gave lower values than 
the Law of the Wall. Johnston [16], using the same Law of Wall 
constants, shows this same trend in this Cf range. A reversal of 
this trend is seen in the data of references [16,20] at the lower Cf 

values indicative of separation and at the higher Cf values re-

0.020 
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az 
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Fig. 6 Potential f low and free-stream continuity equation values of 
da 
dz 

corded in [19]. The two sets of C/ values in this study were, with 
one exception, within 5 percent. This difference could have been 
altered in either direction by choosing slightly different constants 
for the Law of the Wall expression as there is some indecision in 
the literature regarding these constants. While the agreement 
shown between the two sets of values is perhaps fortuitous, it is 
reassuring in that the Law of the Wall results are based on flow 
only very near the wall while the Ludwieg and Tillmann results 
are based on integrated boundary-laj'er parameters. These re-
sults were used as a posteriori support for using the two-dimen-
sional shear laws for the plane-of-symmetry flow which, as stated 
earlier, may be argued as "locally" two-dimensional. Clearly 
this matter should be verified experimentally. 

Using experimentally determined values of H, U, AU/A.X, the 
plane-of-symmetry momentum integral equations (.14), (15), and 
(16) and the two-dimensional momentum integral equation (13) 
were used to compute momentum thickness development. Fig. 5 
shows the agreement between measured and computed values 
obtained with the apparatus for included angles of 0°, 3°, 6°, 9°, 
and 12°. Equation (16), which was used here on the hypothesis 
that weak skewing did exist, and equation (15) gave very similar 
results, sufficiently close to warrant only a single curve to repre-
sent both sets of results for the purpose of clarity. As the in-
cluded angle increases, the inadequacy of the two-dimensional 
equation becomes clear. The use of the potential approximation 
for the da/dz term generally rerults in a lower growth rate than 
measured. By probing the boundary-layer flow off the plane of 
symmetry, it was found that all flows generated were collateral 
within ± 2 ° , and hence any attempt to compute lateral transport 
of free-stream direction momentum was clearly impractical. 
For all intents and purposes, the flows were justifiably called 
collateral and equation (16), which was developed for strongly 
skewed flows, yielded values which were generally lower than 
measured values. 

Fig. 6 shows results of the two means used in this study for 
evaluating the da/dz term of the momentum integral equations. 
The higher values for the potential evaluation of da/dz results 
directly in the lower momentum growth rate of Fig. 5. This 
potential solution for da/dz is based on a wedge type source flow 
where da/dz = 1 /x0. In terms of the tunnel geometry of Fig. 3, 

a-0 = a + x 

where a = rf/2 tan ((8/2) 

Thus the comparison of equations (14) and (15) is made biasing 
the latter since measured data were used to evaluate da/dz in 
(14). Accurate inclusion of sidewall boundary-layer growth in the 
potential evaluation of da/dz should result in much better agree-
ment between equations (14) and (15) in Fig. 5. 

Fig. 5 may be discussed in light of previously reported work on 

10 2 0 3 0 4 0 5 0 

X ( INCHES ) 

Fig. 5 M o m e n t u m thickness growth 
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spreading three-dimensional flows. Kehl's run K-3 of reference 
[13] is for a two-dimensional diffuser with included angle of 
9°39', and Norbury [14] reports on a two-dimensional diffuser 
with a continuously varying included angle. 

Kehl shows excellent agreement between computed and meas-
ured values of momentum thickness where calculations were 
based on a potential evaluation of the term da/5z in equation 
(12) neglecting sidewall boundary-layer growth and where a 
constaut wall shear coefficient of 0.0034 was used. Using data 
reported in the reference and assuming that the lower and upper 
values of Rq reported for the run occurred at the first and last 
stations at which boundary-laj'er parameters were measured, use 
of equation (17) gives wall shear coefficients of approximately 
0.0032 and 0.00173. Assuming that it is reasonable to expect a 
monotone decreasing wall shear coefficient in adverse pressure 
gradient plane-of-symmetry flow, then the constant value used in 
the reference ranges from a value that is initially essentially 
correct, and then increases in error by approximately a factor of 
two. It was this apparent inconsistency which promoted in part 
this further investigation. The use of a constant average shear 
coefficient value was no doubt justified in that two-parameter 
shear laws were lacking at the time of Kehl's work, and in fact 
only since 1949 has the more renown Ludwieg and Tillmann law 
been available. Use of the higher shear coefficient, however, 
would have tended to raise the computed values of momentum 
thickness which, based on a potential evaluation of ba/bz, would 
have been deficient. Hence an apparent explanation for the 
fortuitous agreement is available. 

Although boundary-layer trips were used in the apparatus re-
ported on here, their small size was such that comparison is made 
only with Norbury's Series A data. Norbury shows a computed 
momentum growth based on a potential evaluation of ba/bz, 
which is slightly higher than the measured values for the plane-
of-symmetiy flow. From the results presented in this paper one 
would expect lower computed momentum thickness values when 
using the potential evaluation of ba/bz. However, it should be 
noted that Norbury used experimentally determined values of 
1/x for the ba/bz term and, as pointed out earlier, this then com-
pares equations (14) and (15) without bias, and hence Norbury's 
Series A work is in general agreement with the results presented 
here. Since the shape factor reported was of the order of 1.35 
and essentially invariant with distance, Norbury's use of the 
Squire and Young wall shear law is reasonable except at higher R0 

values as seen from Fig. 2. It should be pointed out that neither 
Kehl nor Norbury made any mention of examining their boundary 
layers for skewing. 

In order to predict the displacement thickness of the boundary 
layer, an auxiliary equation of some sort is required. Two such 
relations were examined here, both involving the shape factor II 
and both developed for two-dimensional flows. The first was 
that of Tetervin and von Doenhoff [21], chosen because of its 
earl}' origin and simplicity in use. 

0 — = <>4.86(H • 
clx 

2.975) [ _ 9 dq2q _ 
L g dx T0 

2.035(H - 1.286) 

The second was that of Rubert and Persh [22] 

dx 2 q 
t^ ( 3 H - I ) 2 

2q 2 
6 clg H(3H - 1 )(H - 1) 
q dx 2 

(18) 

(19) 

This latter relation is quoted by the authors as applicable to 
axisymmetric flows and was used because of the similarity be-
tween the plane of symmetry in a collateral flow and any meridian 
plane in a true axisymmetric flow which has no circumferential 
flows. In using (18) this writer chose to evaluate wall shear stress 
To with the Ludwieg and Tillmann formula rather than the Squire 
and Young relationship. In reference [21 ] it is pointed out that 
the inclusion of a wall shear stress was needed to correlate certain 

two-dimensional data. The Squire and Young relationship was 
"tentatively assumed" because it gave generally good agree-
ment between calculated and measured drag on air foils. The 
Ludwieg and Tillmann formula, being dependent on two parame-
ters, would presumably give a more accurate wall shear stress 
value over a wider range of variables; hence its use here. AYhile 
the range of shape factor encountered in this present work was 
very small, Fig. 7 shows that either of the two equations cited 
appear to be satisfactory for the early development of the plane-
of-symmetry flow. There is, however, an increasing difference in 
the computed and measured values at the larger included angles, 
particularly at the discharge end of the tunnel. Maximum dif-
ferences of the order of 15 percent occur at the 12° run. Similar 
though fewer differences appear in the momentum thickness 
parameter of Fig. 5. These differences (both in 9 and H), which 
become progressively more pronounced as the included angle in-
creased, were assessed as due to free discharge effects communi-
cated through the outer portions of the boundary layer as the 
discharge was approached. Preliminary additional work has 
shown that the good agreement in predicting both 9 and H by the 
relations cited here over the early length of the test section can 
be extended over the entire length of the existing unit. This is 
done by extending the existing test section in length. The dif-
ferences in predicted and measured values in 9 and H are still 
detected, having been apparentlj' only moved to the more remote 
discharge end. Extensive probing rules out existence of any 
strong secondary flows at exit and the abilitjr to extend the good 
agreement between measured and predicted momentum thickness 
and shape parameter over the entire length of the test section 
suggests that streamline curvature induced by and occurring at 
the discharge of the tunnel are being communicated to the latter 
part of the flow and such three-dimensional effects are not con-
sidered in the analysis presented earlier. 

The results of Fig. 7 support the observation of Johnston [10] 
who, for a plane of symmetry in a strongly skewed flow, also used 
a two-dimensional shape factor equation and obtained good re-
sults. In the case of reference [10], Rotta's method based on 
energy considerations was used, and good agreement, up to 
separation, in the prediction of shape factor was obtained. 
Johnston's flow was, however, well contained and guided by an 
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Fig. 7 Shape parameter growth 
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extensive roof-floor arrangement, and streamline curvature that 
might be induced by discharge from his test section would be far 
removed from this region of measurements. Only the work of 
Norbury is available for direct comparison, however, and the 
work reported herein agrees with his general results. Both works 
indicate that shape parameter tends to a constant value along the 
plane of symmetry, and both works show a drop in this parameter 
as the exit to the diffuser is approached with the effect more pro-
nounced in this work. 

Conclusions 
Following a rigorous development of a momentum integral 

equation for a plane-of-symmetry flow in a three-dimensional 
turbulent boundary layer in a streamline coordinate set, it is clear 
that two fundamentally different cases result: the case of skewed 
boundary-layer flow and the case of collateral boundary-layer 
flow. For the latter case, the difference is a single term which can 
be evaluated from potential flow assumptions or from free-stream 
continuity considerations. In the experimental work reported on 
herein, the continuity considerations appears to agree better with 
the experimental results. This is due principally to the lack of 
consideration given to sidewall boundary-layer growth in the 
potential flow. 

Prediction of momentum growth by two-dimensional equation 
was poor, giving very high rates of development, while an 
equation based on strongly skewed flow adjacent to the plane of 
symmetry predicted values lower, in general, to those measured. 

The limited investigation into the use of ordinary two-dimen-
sional variation of shape parameter equations and their applica-
bility to plane-of-symmetry flow in collateral boundary layers 
does not show as good agreement as that of Johnston [10], who 
examined a plane of symmetry in a skewed boundary layer up to 
separation. 
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