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SUMMARY. In many applications, the mean of a response variable can be assumed to be

a non-decreasing function of a continuous predictor, controlling for covariates. In such cases,

interest often focuses on estimating the regression function, while also assessing evidence

of an association. This article proposes a new framework for Bayesian isotonic regression

and order restricted inference based on a constrained piecewise linear model with unknown

knot locations, corresponding to thresholds in the regression function. The non-decreasing

constraint is incorporated through a prior distribution consisting of a product mixture of

point masses (accounting for flat regions) and truncated autoregressive normal densities.

An MCMC algorithm is used to obtain a smooth estimate of the regression function and

posterior probabilities of an association for different regions of the predictor. Generalizations

to categorical outcomes and multiple predictors are described, and the approach is applied

to data from a study of pesticide exposure and birth weight.

KEY WORDS: Additive model; Autoregressive prior; Constrained estimation; Model aver-

aging; Monotonicity; Order restricted inference; Threshold model; Trend test.
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1. Introduction

In many applications, the mean of a response variable, Y , conditional on a predictor, X,

can be characterized by an unknown isotonic function, f(·), and interest focuses on (i)

assessing evidence of an overall increasing trend; (ii) investigating local trends (e.g., at low

dose levels); and (iii) estimating the response function, possibly adjusted for the effects of

covariates, Z. For example, in epidemiologic studies, one may be interested in assessing the

relationship between dose of a possibly toxic exposure and the probability of an adverse

response, controlling for confounding factors. In characterizing biologic and public health

significance, and the need for possible regulatory interventions, it is important to efficiently

estimate dose response, allowing for flat regions in which increases in dose have no effect.

In such applications, one can typically assume a priori that an adverse response does not

occur less often as dose increases, adjusting for important confounding factors, such as age

and race. It is well known that incorporating such monotonicity constraints can improve

estimation efficiency and power to detect trends (Robertson, Wright, and Dykstra, 1988).

Motivated by these advantages and by the lack of a single framework for isotonic dose

response estimation and trend testing, accounting for covariates and flat regions, this article

proposes a Bayesian approach.

Consider a regression model, where a response Y is linked to a vector of covariates X =

(x1, . . . , xp)
′ through an additive structure:

Y = α+
p∑

l=1

fl(xl) + ε, (1)

where α is an intercept parameter, fl(·) is an unknown regression function for the lth covari-

ate, and ε is a zero-mean error residual. Additive models are appealing since they reduce the

problem of estimating a function of the p-dimensional predictor X to the more manageable

problem of estimating p univariate functions fl(·), one for each covariate xl.
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There is a well developed literature on frequentist approaches for fitting additive models,

using a variety of methods to obtain smoothed estimates of each fl(·) (cf., Hastie and Tib-

shirani, 1990). In the Bayesian setting, Denison et al. (1998) and Holmes and Mallick

(2000) have proposed an approach for using piecewise linear splines for nonparametric curve

estimation. A prior distribution is placed on the number of knots and estimation proceeds

via reversible jump Markov chain Monte Carlo (MCMC) and least squares fitting. How-

ever, these methods do not incorporate monotonicity or shape restrictions on the regression

functions.

In the setting of estimating a potency curve, Gelfand and Kuo (1991) and Ramgopal, Laud,

and Smith (1993) proposed nonparametric Bayesian methods for dose response estimation

under strict constraints. Lavine and Mockus (1995) considered related methods for contin-

uous response data, allowing nonparametric estimation of the mean regression curve and

residual error density. These methods focus on estimation subject to strict monotonicity

constraints, and cannot be used directly for inferences on flat regions of the dose response

curve.

To address this problem, Holmes and Heard (2003) recently proposed an approach for

Bayesian isotonic regression using a piecewise constant model with unknown numbers and

locations of knots. Posterior computation is implemented using a reversible jump MCMC

algorithm, which proceeds without considering the constraint. To assess evidence of a mono-

tone increasing dose response function, they compute Bayes factors based on the proportions

of draws from the unconstrained posterior and unconstrained prior for which the constraint

is satisfied. The resulting tests are essentially comparisons of the hypothesis of monotonicity

to the hypothesis of any other dose response shape.

This article proposes a fundamentally different approach, based on a piecewise linear model

4



with prior distributions explicitly specified to have support on the restricted space and to

allow flat regions of the dose response curve. The piecewise linear model allows one to

obtain an excellent approximation to most smooth monotone functions using only a few

knots, and we focus on comparing the null hypothesis of a flat dose response function to the

alternative that there is at least one increase. Our prior distribution for the slope parameters

takes the form of a product mixture of point masses at zero, which allow for flat regions,

and truncated autoregressive normal densities, and we allow for unknown number of knots

and knot locations. The structure of this prior, which is related to priors for Bayesian

variable selection in linear regression (Geweke, 1996; George and McCulloch, 1997), results

in simplified posterior computation.

Section 2 proposes the model, prior structure, and MCMC algorithm. Section 3 presents the

results from a simulation study. Section 4 applies the methods to data from an epidemiologic

study of pesticide exposure and birth weight, and Section 5 discusses the results.

2. The Model

2.1 Piecewise Linear Isotonic Regression

We focus initially on the univariate normal regression model,

yi = f(xi) + εi, i = 1, . . . , n, (2)

where f ∈ Θ+ is an unknown isotonic regression function, with

Θ+ = {f : f(x1) ≤ f(x2) ∀(x1, x2) ∈ <2 : x1 < x2}

denoting the space of non-decreasing functions, and εi
iid∼ N(0, σ2) an error residual for the ith

subject. Modifications for f ∈ Θ−, the space of non-increasing functions, are straightforward.
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We approximate f(·) using a piecewise linear model,

f(xi) ≈ β0 +
k∑

j=1

wj(xi)βj = β0 +
k∑

j=1

wijβj = w′
iβ, j = 1, . . . , k, i = 1, . . . , n (3)

where β0 is an intercept parameter, wij = wj(xi; γ) = min(xi, γj) − γj−1 if xi ≥ γj−1 and

wij = 0 otherwise, γ = (γ0, . . . , γk)
′ are knot locations (with xi ∈ [γ0, γk]∀i), βj is the slope

within interval (γj−1, γj], wi = (1, wi1, . . . , wik)
′ and β = (β0, . . . , βk)

′.

The conditional likelihood of y = (y1, . . . yn)′ given θ = (β,γ)′, σ2 and x = (x1, . . . ,xn)′

can therefore be written as

L(y|θ, σ2,x) = (2πσ2)−
n
2 exp

{
− 1

2σ2

n∑
i=1

(yi −w′
iβ)2

}
. (4)

This likelihood can potentially be maximized subject to the constraint βj ≥ 0, for j =

1, . . . , k, to obtain estimates satisfying the monotonicity constraint. However, the resulting

restricted maximum likelihood estimates of the regression function will not be smooth, and

there can be difficulties in performing inferences, since the null hypothesis of no association

falls on the boundary of the parameter space.

2.2 Prior Specification and Model Averaging

We instead follow a Bayesian approach, choosing prior distributions for the parameters β

and γ. For simplicity in prior elicitation and computation, we assume a priori independence

between the different parameters, so that π(θ, σ2) = π(β)π(γ)π(σ2). For the error precision,

we choose a gamma conjugate prior, π(σ−2) = G(σ2; a, b), where a and b are investigator-

specified hyperparameters. For the regression parameters, β, we choose

π(β) = N(β0;µ0, λ
2
0) ZI-N+(β1; π01, 0, λ

2)
k∏

j=2

ZI-N+(βj; π0j, βj−1, λ
2). (5)

Here, we use the ZI-N+(π0, µ, λ
2) notation to denote a zero-inflated positive normal density—

i.e., a density consisting of the mixture of a point mass at zero, with probability π0, and a
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N(µ, λ2) density truncated below by zero. In particular, we have

ZI-N+(z; π0, µ, λ
2) = π01(z=0) + (1− π0)

1(z>0)N(z;µ, λ2)

Φ(µ/λ)
,

where Φ(z) =
∫ z
0

√
2π exp(−s2) ds denotes the standard normal distribution function.

Prior (5) assigns probability Pr(βj = 0) = π0j to the case in which f(x) is flat in the jth in-

terval, (γj−1, γj], and Pr(βj > 0) = 1−π0j to the case in which f(x) is increasing. The special

case where β1 = · · · = βk = 0 corresponds to the global null hypothesis, H0 : f(x) is constant

for all x ∈ [γ0, γk]. Thus, the prior probability of H0 is π0 =
∏k

j=1 π0j. The mean of the nor-

mal component of the mixture prior for βj is set equal to βj−1, allowing for autocorrelation

in the slopes, and λ is a hyperparameter measuring the degree of autocorrelation.

Prior density (5) is similar in structure to mixture priors proposed for variable selection

in linear regression (Geweke, 1996; Chipman, George and McCulloch, 2001; George and

McCulloch, 1997; Raftery, Madigan, and Hoeting, 1997). However, previous authors focused

on the problem of selecting an optimal subset of predictors, and prior distributions were

not formulated for isotonic regression or to accommodate autocorrelation. By incorporating

autocorrelation, we are effectively smoothing the regression function, borrowing information

across adjacent intervals. In the variable selection literature, the most common approach

to prior elicitation sets the point mass probabilities, π0j, equal to 0.5 to assign equal prior

probability to models that include or exclude the jth predictor.

In our setting, a predictor can be excluded if H0 holds and β1 = . . . = βk = 0. Hence, as a

default strategy, we recommend letting π0j = 0.51/k to assign 0.5 prior probability to H0 and

H1 : f(γ0) < f(γk). Under this strategy, the prior probability that the response function is

flat in a given interval will increase as the number of intervals increases and the width of the

intervals decreases. This is an intuitively appealing property, since it should be more likely

that there is no change in the response function across a relatively narrow interval.
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A Bayesian specification of the model is completed with a uniform prior for the knot locations,

π(γ) ∝ 1
(
γ0 < γ1 < . . . < γk

)
, (6)

where γ0 = min(x) and γk = max(x). Conditional on the knot locations, the piecewise

linear regression model is not a smooth function of x. However, by placing a continuous

density on the knot locations, the resulting pointwise means of the regression function vary

smoothly with x (Holmes and Mallick, 2001). This smoothness property will also apply to

the posterior means, as we illustrate in Sections 3 and 4.

To account for uncertainty in the number of knots, we propose a simple model-averaging

approach, using an MCMC algorithm to obtain draws from the posterior density separately

for models with k = 0, . . . , K − 1 knots, where K is a small positive integer. This approach

is simpler to implement and has potentially improved computational efficiency for small K

relative to the alternative approach of using a reversible jump MCMC algorithm (Green,

1995). It has been our experience that an excellent approximation can be obtained in a wide

variety of settings using a small number of knots (e.g., K = 2 or 3) with unknown locations.

If we let Mk denote the model with k − 1 knots and ψ = g(θ, σ2) denote a functional of θ

and σ2, the posterior distribution of ψ under this approach is given by:

π(ψ|y) =
K∑

k=1

Pr(Mk|y)
∫

1(ψ = g(θ, σ2))π(θ, σ2|Mk,y) dθ dσ2

=
K∑

k=1

Pr(Mk|y)π(ψ|Mk,y). (7)

The posterior probability for model Mk, Pr(Mk|y), can in turn be written as:

Pr(Mk|y) =
Pr(y|Mk)Pr(Mk)∑K

h=1 Pr(y|Mh)Pr(Mh)
, (8)

where Pr(Mk) is the prior probability of the kth model and Pr(y|Mk) is the corresponding

likelihood marginalized over the parameter space of θ and σ2. To estimate Pr(y|Mk), we
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suggest the commonly used Laplace approximation (Raftery, 1996):

log Pr(y|Mk) ≈
log Pr(y|θ̂, σ̂2,Mk)− (dk/2)logn∑K

h=1 log Pr(y|θ̂, σ̂2,Mh)− (dh/2)logn
, (9)

where Pr(y|θ̂, σ̂2,Mk) is the maximized log likelihood for model k and dk is the number of

parameters in the model. Given prior probabilities for M1, . . . ,MK , with K assumed known,

it is straightforward to obtain a model-averaged posterior summary of any functional ψ that

adjusts for uncertainty in the number of knots. By appropriately choosing ψ, this approach

can be used to obtain model-averaged posterior means of f(x) and pointwise probabilities

of hypotheses of interest.

2.3 MCMC Algorithm for Posterior Computation

For posterior computation, we propose a hybrid MCMC algorithm consisting of Gibbs

steps for updating β, σ2 by sampling from their full conditional posterior distributions and

Metropolis steps for updating γ. The full conditional of σ2 follows a standard conjugate

form:

π(σ−2|β,γ,y)
d
= G

(
a+

n

2
, b+

1

2
(y −Wβ)′(y −Wβ)

)
, (10)

where W = (w′
1, . . . ,w

′
n)′. The full conditional for β0 also follows a conjugate form:

π(β0|β(−0), σ
2,γ,y)

d
= N(E0, V0), (11)

where β(−j) denotes the vector β with the jth element removed, V0 = (σ−2n + λ−2
0 )−1,

and E0 = V0

{
σ−2

n∑
i=1

(yi −
k∑

j=1
wijβj) + λ−2

0 µ0

}
. The full conditional distribution for βj,

j = 1, . . . , k, is more complicated due to the constrained mixture structure of prior (5), and

is described in Appendix A.

The MCMC algorithm is run separately under models M1, . . . ,MK , and we let θ
(s)
k denote

the value of θ at iteration s (s = 1, . . . , S) under model Mk (k = 1, . . . , K), where s = 1

9



represents the first iteration after a burn-in to allow convergence. Let P̂r(Mk|y) denote the

estimate of Pr(Mk|y) obtained by using expression (9) with the MLE underMk approximated

by choosing the sample {θ(s)
k , σ

2(s)
k } with the highest likelihood. Our model-averaged estimate

of f(x) can then be computed at a point x as follows:

f̂(x) =
1

S

K∑
k=1

P̂r(Mk|y)
S∑

s=1

w(x; γ(s))′β(s),

where s = 1, . . . , S indexes MCMC iterations collected after apparent convergence, and γ(s)

and β(s) are the values of γ and β, respectively, at iteration s. Similarly, to estimate the

model-averaged posterior probability of H0, we use:

π̂ =
1

S

K∑
k=1

P̂r(Mk|y)
S∑

s=1

1(β
(s)
1 = β

(s)
2 = · · · = β

(s)
k = 0),

which is related to the approach described by Carlin and Chib (1995). Similar approaches can

be used to obtain pointwise credible intervals for f(x) and to estimate posterior probabilities

for local null hypotheses (e.g., H0j : βj = 0).

2.4 Extensions to Multiple Predictors

The piecewise linear model can easily be extended to accommodate multiple predictors

through the additive structure outlined in equation (1). In particular, let xi1, . . . , xip denote

a p× 1 vector of predictors with corresponding regression functions f1(xi1), . . . , fp(xip), and

let zi1, . . . , ziq denote a q×1 vector of additional covariates, which are assumed to have linear

effects. Note that some of the regression functions fl(·) (l = 1, . . . , p) may be unconstrained

while others are assumed monotonic. If a particular regression function is unconstrained,

we can fit the piecewise linear approximation described above without incorporating the

constraint.

The mean regression function for the ith response, yi, can be expressed in terms of the
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piecewise linear approximation (3) through an additive structure:

E(yi|α,β,γ,xi, zi) = α0 +
q∑

h=1

αhzih +
p∑

l=1

fl(xil) = z′
iα +

p∑
l=1

kl∑
j=1

wj(xil; γ l)βjl

= z′
iα +

p∑
l=1

w′
ilβl = w′

iθ, i = 1, . . . , n, (12)

where zi = (1, zi1, . . . , ziq)
′, wil = (w1(xil; γ l), . . . , wkl

(xil; γ l))
′, α = (α0, . . . , αq)

′, βl =

(βl1, . . . , βlkl
)′, γ l = (γl1, . . . , γlkl

)′, wi = (zi,wi1, . . . ,wip)
′ and θ = (α,β1, . . . ,βp,γ1, . . . ,γp)

′.

Posterior computation proceeds by first sampling α from its multivariate full conditional and

then updating βl, γ l (l = 1, . . . , p) and σ2 sequentially using the procedure outlined in the

previous subsection.

2.5 Probit Models for Categorical Data

It is straightforward to extend this approach for categorical yi by following the approach of

Albert and Chib (1993). Suppose that y1, . . . , yn are independent Bernoulli random variables,

with

Pr(yi | zi,xi,θ) = Φ
(
z′

iα +
p∑

l=1

w′
ilβl

)
= Φ(w′

iθ), (13)

where xi = (xi1, . . . ,xip)
′ and the remaining notation is defined as in the previous sub-

section. As noted by Albert and Chib (1993), model (13) is equivalent to assuming that

yi = 1(y∗i > 0), with y∗i ∼ N(w′
iθ, 1) denoting independent and normally distributed random

variables underlying yi, for i = 1, . . . , n. Under the conditionally conjugate prior density

for θ defined in subsection 2.2, posterior computation can proceed via an MCMC algorithm

that alternates between (i) sampling from the conditional density of y∗i ,

π(y∗i | yi, zi,xi,θ)
d
= N(w′

iθ, 1) truncated below (above) by 0 for yi = 1 (yi = 0),

and (ii) applying the algorithm of subsection 2.3.

3. Simulation Study

To study the behavior of the proposed procedure, we conducted a simulation study, applying
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the method to data generated from three N(f(x), 2) models, with f(x) chosen to be (i) con-

stant, (ii) piecewise linear with a threshold and (iii) sinusoidal. In each case, 200 covariate

values were generated from a uniform distribution over the range (0, 10). For each scenario,

we applied the model-averaging algorithm of subsection 2.3 with equal prior probability as-

signed to models with 0, . . . , 3 knots (and hence k = 1, . . . , 4 slope parameters). The initial

knot locations were spaced equally across the range of the data, and the prior probability of

the global null (i.e., H0 : (β1, . . . , βk)
′ = 0) was set at .5 (unless otherwise noted). For the

precision parameter, σ−2, we chose a G(1, 1) prior; for the intercept, β0, we chose a N(1, 1)

prior; and for the slope parameters, β1, . . . , βk, we chose prior variance λ2 = 1. We ran the

MCMC algorithm for 100, 000 iterations with a burn-in of 5000, and retained every fiftieth

sample to reduce autocorrelation. Standard MCMC diagnostics, such as trace plots, sug-

gested rapid convergence and efficient mixing. For each simulated data set, we calculated (1)

the estimated posterior model probabilities Pr(M1|y), . . . ,Pr(M4|y); (2) posterior estimates

and credible intervals under the preferred model (i.e., the model with the highest posterior

probability); (3) the model-averaged posterior probabilities of the global null; and (4) the

model-averaged estimate of f(x).

The estimated regression functions for the three simulations are presented Figures 1 and 2.

Figure 1a shows the estimate of f(x) under the null model (i.e., constant mean regression

function centered at β0 = 3). Here, the one-slope (zero-knot) model had highest posterior

probability (Pr(M1|y) = .79). As expected, the estimated regression function was flat, and

the posterior probability of H0 was high at .98. To test sensitivity to different choices of prior

for H0, we reran the analysis with Pr(H0) = .25. The parameter estimates and variances

were essentially unchanged, and the posterior probability of H0 was .87, suggesting that the

method is fairly robust.

Figure 1b presents the model-averaged estimate of f(x) for the threshold model, f(xi) =

12



3 + .5 × I(xi> 8). Our aim here was to determine if the proposed trend test could detect

slight changes in the regression function. For this study, the preferred model had two slope

parameters (Pr(M2|y) = .93). The posterior mean of the single knot, denoted in the graph

by the vertical line, was 8.1. The model-averaged posterior estimate of H0 was .02 (Pr(β1 =

0) = .96 and Pr(β2 = 0) = .02 for the preferred model), suggesting that the method is

powerful enough to detect even a modest threshold effect.

Figure 2 presents results for the sinusoidal mean regression function f(x) = sin(x) + x.

Here, the preferred model had four slopes (Pr(M4|y) = .99). The model-averaged posterior

estimate of H0 was close to 0, as expected. Plotted along with the model-averaged estimate of

f(x) (solid line) in Figure 2 are the true function (dotted line) and a nonparametric estimate

using a typical kernel smoother (dashed line). The results indicate that our approach can

provide a precise estimate of a smooth and highly non-linear regression function. This is

an appealing feature since, as Schell and Singh (1997) point out, traditional approaches

to nonparametric isotonic regression often fit too many knots to the data, resulting in a

uneven estimate of the regression function that is hypersensitive to noise. Because our

procedure uses piecewise linear functions rather than the step functions typically used in

isotonic regression, we can obtain an accurate estimate of the true function with relatively

few knots, thus avoiding an overfit of the data.

4. Application: Effect of DDE on small for gestational age infants

To motivate our approach, we re-analyzed data from a recent study by Longnecker et al.

(2001) examining the effect of DDE exposure on the occurrence of small for gestational

age (SGA) births. DDE is a metabolite of DDT, a pesticide still commonly used in many

developing countries. The sample comprised 2379 pregnant women who were enrolled as

part of the US Collaborative Perinatal Project, a multi-site prospective study of infant

health conducted in the 1960s. Infants were classified as SGA if their birth weight fell in the
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lowest 10th percentile among the sample at each week of gestation. There were 221 SGA

infants in the study. Serum DDE concentrations (in µg/l) were collected for each woman in

the sample, along with potentially confounding maternal characteristics, such as cholesterol

and triglyceride levels, age, BMI and smoking status (yes or no).

The aim of our analysis was to incorporate a non-decreasing constraint on the regression

function relating level of DDE to the probability of SGA in order to improve efficiency

in estimating the function and to increase the power to detect a trend. In addition, study

investigators had a strong a priori belief that the curve should be non-decreasing, and wanted

an estimate consistent with this assumption.

For comparative purposes, we first conducted a frequentist regression analysis using a probit

generalized additive model (GAM), with SGA as the response and with the predictors con-

sisting of a smooth, nonparametric regression function for DDE in addition to the control

variables mentioned above. Specifically, letting yi denote SGA response for ith subject, we

assumed that:

Pr(yi|θ,xi, zi) = Φ
(
α0 +

5∑
l=1

zilαl + f(xi)
)

= Φ(z′
iα + f(xi)), (14)

where zi1, zi2, zi3, zi4 and zi5 are covariate values representing, respectively, cholesterol level,

triglyceride level, age, BMI and smoking status (yes or no), f(x) is an unconstrained, non-

parametric regression function relating the response yi to DDE level, xi, for the ith subject,

zi = (1, zi1, . . . , zi5)
′ and α = (α0, . . . , α5)

′ . All continuous variables were centered at the

median value and rescaled to reduce their ranges.

Next, we conducted unconstrained and constrained Bayesian analyses. For the unconstrained

analysis we applied the MCMC algorithm of subsections 2.3 and 2.5 but with an uncon-

strained normal prior for β; the constrained analysis used the Bayesian isotonic regression

method described above. For both analyses, we fit probit regression models with SGA as
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response and modelled DDE using four piecewise linear models with k = 1, . . . , 4 slopes,

respectively. For both analyses, we chose a conditionally conjugate N(m0,Σ0) prior for α,

with m0 = (1, 1, 1, 1, 1)′ and Σ0 = diag(10, . . . , 10). Priors for the other model parameters

were similar to those described in Section 3 above. (Sensitivity analysis using different pri-

ors yielded nearly identical results.) We ran the simulations for 100, 000 iterations with a

burn-in of 5000, retaining every fiftieth observation to reduce autocorrelation.

The results are presented in Table 1 and Figure 3. The estimates and standard errors of the

auxiliary parameters, α, were similar under all three models (Table 1), which suggests that

our proposed approach does not induce bias. Figure 3 plots the estimated risk difference

across DDE exposure for the reference group under the various models. The y-axis shows

the change in probability of SGA compared to minimum exposure. Figure 3(a) presents

the risk difference for both the unconstrained GAM and unconstrained Bayesian models.

The GAM model indicated a significant overall effect for DDE (p=.02, 2.9 nonparametric

df). For both analyses, however, the effect was highly nonlinear, with a modest positive

effect for low to moderate exposures and a strong negative effect for very high exposures.

This somewhat counterintuitive finding is due, in part, to the relatively few subjects with

very high exposures, most of whom were SGA negative. In absence of the monotonicity

constraint, these subjects exert a strong influence on the regression function f(x) in these

models. Incidentally, these SGA negative women with high exposures do not invalidate the

monotonicity assumption. Few would argue, for example, that DDE is less detrimental at

higher exposures. Rather, in this sample, there appear to be some women who were resistant

to the effect of DDE, even at high doses. It is possible that women who were susceptible to

high DDE exposures had fetal loss rather than SGA-positive deliveries (Longnecker et al.,

2003), and hence only SGA-negative pregnancies were reported at these extreme exposures.

Figure 3(b) presents the estimated risk difference and 95% credible intervals under the pro-
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posed constrained Bayesian approach. For this analysis, the preferred model had two slope

parameters (one knot), with a posterior model probability Pr(M2|y) = .76, followed by the

model with only one slope parameter (Pr(M1|y) = .22). The model-averaged posterior prob-

ability of the global null was .04, indicating strong evidence of a trend. In particular, there

appears to be a 5% increase in the effect of DDE for low exposure levels, with the effect

tapering off after a threshold of about 20 µg/l. The figure also shows larger variance at

high exposure levels. Again, this is due to the relatively few subjects in this range, most of

whom were SGA negative. Nevertheless, the posterior variance for the constrained regression

function was 44% lower than that for the unconstrained regression function, suggesting an

improvement in efficiency.

5. Discussion

This article has proposed a practical Bayesian approach for order restricted inference on

continuous regression functions in generalized linear models. This approach has several

distinct advantages. First, monotonicity constraints can be incorporated for a wide class of

models, resulting in improved efficiency and increased power to detect effects. Second, flat

regions in the regression curve (i.e., regions of no effect) are easily accommodated and can

be used as a basis for trend testing. Third, the analyst can specify the prior probability

of the global null and can conduct multiple hypothesis tests over subregions of the data

in way that controls the Type-I error rate. As the simulations demonstrated, a smooth

but accurate estimate of the regression curve can be obtained with relatively few knots.

Moreover, knot locations are data driven, rather than arbitrarily chosen. And finally, a

simple model-averaging approach can be used to account for uncertainty in the number of

knots.

As illustrated through the DDE application, the proposed method also enables one to ac-
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curately estimate thresholds, a feature that should find wide appeal among toxicologists,

environmental epidemiologists and other researchers concerned with threshold estimation.

The results from simulation studies also suggest that the procedure is robust to different

prior specifications and to number of knots chosen. The approach can easily be generalized

to handle more complex models, such as random effect and survival models. One can also

extend the procedure to accommodate more complex ordering structures, such as umbrella

orderings, by allowing the peak to occur at a knot having an unknown location and extending

the MCMC algorithm appropriately.
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Appendix A: Full Conditional for βj

The form of the full conditional for βj(j = 1, . . . , k) depends on the value of βj+1, for

j = 1, . . . , k − 1. In the simple case, where βj+1 = 0, for j = 2, . . . , k − 1, we have:

π(βj|β(−j), βj+1 = 0,γ, σ2,y) = ZI-N+(βj; π
(1)
j , E

(1)
j , V

(1)
j ), (15)

where E
(1)
j = V

(1)
j

(
σ−2

n∑
i=1

wijy
∗
i +λ−2βj−1

)
, V

(1)
j =

(
σ−2

n∑
i=1

w2
ij+λ

−2

)−1

, y∗i = yi−
k∑

l: l 6=j
wilβl,

and π
(1)
j =

π0jΦ(βj−1/λ)N(0;E
(1)
j ,V

(1)
j )

π0jΦ(βj−1/λ)N(0;E
(1)
j ,V

(1)
j )+(1−π0j)Φ

(
E

(1)
j /

√
V

(1)
j

)
N(βj−1;0 , λ2)

.

In the case where βj+1 > 0 for j = 2, . . . , k − 1, we instead have:

π(βj|β(−j), βj+1 > 0,γ, σ2,y) = π
(2)
j 1(βj=0) + (1− π

(2)
j )

N(βj;E
(2)
j , V

(2)
j )1(βj>0)

Φ(βj/λ)
∫∞
0

N(βj ;E
(2)
j ,V

(2)
j )

Φ(βj/λ)
dβj

, (16)

where E
(2)
j = V

(2)
j

(
σ−2

n∑
i=1

wijy
∗
i + λ−2(βj−1 + βj+1)

)
, V

(2)
j =

(
σ−2

n∑
i=1

w2
ij + 2λ−2

)−1

,

and π
(2)
j =

2π0jΦ(βj−1/λ)N(0;E
(2)
j ,V

(2)
j )

2π0jΦ(βj−1/λ)N(0;E
(2)
j ,V

(2)
j )+(1−π0j)N(βj−1;0 , λ2)

∫∞
0

N(βj ;E
(2)
j

,V
(2)
j

)

Φ(βj/λ)
dβj

.

For j = 1, the full conditional distribution follows the same form, but with βj−1 set equal

to 0. For j = k, the form is as shown in expression (15). The MCMC algorithm proceeds

by sampling βj directly from its full conditional (15) if β
(0)
j+1 = 0 or if j = k. If j < k

and β
(0)
j+1 > 0, draw a value from the full conditional (16) by using the following sampling

importance-resampling procedure:

1. Draw δj Bernoulli(π
(2)
j ) where π

(2)
j =

∫∞
0

N(βj ;E
(2)
j ,V

(2)
j )

Φ(βj/λ)
dβj (obtained numerically);

2. If δj = 1, set βj = 0 and otherwise draw r values βj1, . . . , βjr fromN(βj;E
(2)
j , V

(2)
j )1(βj>0),

and then choose one of these values by sampling from βj1, . . . , βjr with probabilities

Φ(βj1/λ)−1, . . . ,Φ(βjr/λ)−1. For our analyses, we chose r = 100.
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Table 1

Estimates of control variable regression coefficients for the DDE Analysis.

Description Parameter GAM† (sd) Constrained‡ Unconstrained?

Mean (sd) Mean (sd)

Intercept α0 -1.5 (.42) -2.2(.44) -1.87 (.41)
Cholesterol α1 -.13 (.06) -.12 (.006) -.13(.06)

Triglycerides α2 -.13 (.05) -.13(.06) -.13 (.05)
Age α3 .01 (.006) .01 (.006) .01 (.006)
BMI α4 -.26 (.10) -.28 (.10) -.27(.10)

Smoking Status α5 .38 (.08) .38 (.07) .39 (.08)

† Results using frequentist GAM with nonparametric function for DDE.

‡ Analysis using approach described here with one random knot (preferred model).

? Unconstrained Bayesian analysis with one random knot.
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Figure 1. Model-averaged estimated posterior regression functions for a) the

null model f(x) = 3 and b) the threshold model f(x) = 3 + .5 × I(x>8).

The dotted lines represent 95% credible intervals. The vertical line in Fig-

ure (b) denotes the posterior mean of knot γ for the preferred model.
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Figure 2. Model-averaged estimated posterior regression function for f(x) = sin(x) + x.

The solid line is from a Bayesian isotonic regression analysis, the dotted line is the

true regression function, and the dashed line is from a typical kernel smoother. Ver-

tical lines denote the posterior means of the interior knots for the preferred model.
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Figure 3. Estimated risk difference plots for (a) the unconstrained GAM and Bayesian

analyses and (b) the constrained Bayesian analysis. The vertical lines denote the

posterior means of the interior knots for the preferred (a) unconstrained and (b) con-

strained Bayesian models. Dotted lines in Figure (b) represent 95% credible intervals.

Serum DDE (micro g/L)

R
is

k 
D

iff

0 20 40 60 80 100 120 140 160 180
-0.05

0.0

0.05

0.10

0.15

0.20

(a)

Unconstrained Bayes   
 
Unconstrained GAM 

Serum DDE (micro g/L)

R
is

k 
D

iff

0 20 40 60 80 100 120 140 160 180
-0.05

0.0

0.05

0.10

0.15

0.20

(b)

 pr(H0 | y) =.04

25


