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Abstract—In recent years, more and more companies provide
services that can not be anymore achieved efficiently using
relational databases. As such, these companies are forced to
use alternative database models such as XML databases, object-
oriented databases, document-oriented databases and, more re-
cently graph databases. Graph databases only exist for a few
years. Although there have been some comparison attempts, they
are mostly focused on certain aspects only. In this paper, we
present a distributed graph database comparison framework and
the results we obtained by comparing four important players in
the graph databases market: Neo4j, OrientDB, Titan and DEX.

I[. INTRODUCTION

Big Data has to deal with two key issues: the growing size
of the datasets and the increase of data complexity. Alternative
database models such as graph databases are more and more
used to address this second problem. Indeed, graphs can be
used to model many interesting problems. For example, it
is quite natural to represent a social network as a graph.
With the recent emergence of many competing implemen-
tations, there is an increasing need for a comparative study
between all these different solutions. Although the technology
is relatively young, there have been already some comparison
attempts. First, we can cite Angles’s qualitative analysis [2]
that compares side-by-side the model and features provided
by nine graph databases. Then, papers from Ciglan et al. [8]
and Dominguez-Sal et al. [5] evaluate current graph databases
from a performance point of view, but unfortunately only
consider loading and graph traversal operations. Concerning
graph databases benchmarking systems, there exist to our
knowledge only two alternatives. First, there is the HPC
Scalable Graph Analysis Benchmark', that evaluates databases
using four types of operations (kernels): (1) bulk load of the
database; (2) find all the edges that have the largest weight;
(3) explore the graph from a couple of source vertices; (4)
compute the betweenness centrality. This benchmark is well
specified and mainly evaluates the traversal capabilities of the
databases. However, it does not analyze the effect of additional
concurrent clients on their behavior. Finally, we can also cite
Tinkerpop’s” effort for creating a generic and easy to use graph
database comparison framework>. However, the project suffers
from exactly the same limitation as the HPC Scalable Graph
Analysis Benchmark.

In this paper, we present GDB, a distributed graph database
benchmarking framework. We used this tool to analyze the per-
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formance achieved by four graph databases: Neo4j 1.9M05%,
Titan 0.3%, OrientDB 1.3° and DEX 4.77.

II. TINKERPOP STACK

Graphs are widely used to model social networks but the
use of graphs to solve real world problems is not limited
to that. Transportation [6], protein-interaction [7] and even
business networks [9] can naturally be modeled as graphs.
The Web of Data is another example of huge graph with 31
billion RDF triples and 466 million RDF links [4]. With the
emergence of all these domains, there is a real proliferation
of graph databases. Most of the current projects are less than
five years old and still under continuous development. Each
of them comes with its own characteristics and functionalities.
For example, Titan and OrientDB were developed to be easily
distributed among multiple machines. Others natively provide
their own query language, such as Neo4j with Cypher, or Sones
8 with GraphQL. Some databases are also compliant with a
standard language, such as AllegroGraph® with SPARQL. In
this multitude of solutions, some are characterized by more
generic data structure, like HypergraphDB!? or SonesDB that
allow to store hypergraphs'!. However, as shown in [2], most
current databases are only able to store either simple or
attributed graphs.

In 2010, Tinkerpop'? began to work on Blueprints'3, a
generic Java API for graph databases. Blueprints defines a
particular graph model, the property graph, which is basically
a directed, edge-labeled, attributed, multi-graph:

G: (‘/7[7W7D7J)’Y7P7Q)R’S) (1)

where V is a set of vertices, I a set of vertices identifiers, w :
V' — I a function that associates each vertex to its identifier, D
a set of directed edges, J a set of edges identifiers, v : D — J
a function that associates each edge to its identifier, P (resp. R)
is the vertices (resp. edges) attributes domain and Q (resp. S)
the domain for allowed vertices (resp. edges) attributes values.

Blueprints defines a basic interface for property graphs that
defines a series of basic methods that can be used to interact
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A hypergraph is a generalization of a graph, where edges can connect
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with a graph: add and remove vertices (resp. edges), retrieve
vertex (resp. edges) by identifier (ID), retrieve vertices (resp.
edges) by attribute value, etc..

Based on Blueprints, Tinkerpop developed useful tools to
interact with Blueprints-compliant graph databases, such as
Rexster, a graph server that can be used to access a graph
database remotely and Gremlin, a graph query language.

Working only with Blueprints in an application allows to
use a graph database in a total implementation-agnostic way,
making it possible to easily switch from a graph database to
another one without adaptation efforts. The drawback is that
all the database features are not always accessible using only
Blueprints. Moreover, Blueprints hides some configurations
and automatically performs some actions. For instance, it is not
possible to specify when a transaction is started: a transaction
is automatically started when the first operation is performed
on the graph. Despite this, there is a real interest for Blueprints
and today most major graph databases propose a Blueprints
implementation.

III. GDB: GRAPH DATABASE BENCHMARK
A. Introduction

We developed GDB, a Java open-source distributed bench-
marking framework, in order to test and compare different
Blueprints-compliant graph databases. This tool can be used
to simulate real graph database work loads with any number
of concurrent clients performing any type of operation on any
type of graph.

The main purpose of GDB is to objectively compare
graph databases using usual graph operations. Indeed, some
operations like exploring a node neighborhood, finding the
shortest path between two nodes, or simply getting all vertices
that share a specific property are frequent when working with
graph databases. It can thus be interesting to compare their
behavior when performing this type of operation.

Some of the graph databases we will analyze natively allow
to realize complex operations. For example, Cypher (Neo4j’s
query language), allows to easily find patterns in graphs. We
will not evaluate these specific functionalities for fairness
reasons, as some of the databases we want to compare do not
natively offer such features. By only using Tinkerpop stack
functionalities, we are sure to compare the databases on the
same basis, without introducing bias.

As illustrated in Figure 1, GDB works as follows: the user
defines a benchmark, that first contains a list of databases to
compare and then a series of operations, called workloads to
realize on each database. This benchmark is then executed by
a module called Operational Module, whose responsibility
is to start the databases and measure the time required to
perform the operations specified in the benchmark. Finally, the
Statistics Module gathers and aggregates all these measures
and produces a summary report together with some results
visualizations.

The tool was developed by following three principles:

e  Genericity: GDB uses Blueprints extensively, in order
to be independent of any particular graph database
implementation or specific functionalities.
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Fig. 1. GDB overview

e  Modularity: GDB was developed as a framework
and, as such, it is easy to extend the tool with new
functionalities.

e  Scalability: it is possible to distribute GDB on multiple
machines in order to simulate any number of clients
sending requests to the graph database in parallel.

This last point is one of the main differences between GDB
and existing graph database benchmark frameworks, that only
allow to execute requests from a single client located on the
same machine as the server (which could lead in some cases
to biased results).

B. Workloads

A workload represents a unit of work for a graph database.
GDB defines three types of workloads:

e Load workload: start a graph database and load it
with a particular dataset. Graph elements (vertices and
edges) are inserted progressively and the loading time
is measured every 10,000 graph elements loaded in the
database. The user can control the loading buffer size,
that simply indicates the number of graph elements
kept in memory before flushing data to disk.

e  Traversal workload: perform a particular “traversal”
on the graph. The tool is delivered with two traversal
workloads:

o  Shortest path workload: find all the paths that
include less than a certain number of hops
between two randomly chosen vertices

o Neighborhood exploration workload: find all
the vertices that are a certain number of hops
away from a randomly chosen vertex

Under the hood, a traversal workload will in fact exe-
cute a Gremlin traversal script. Each time the traversal
workload is executed, the script is parametrized with
a different source/destination vertex pair. Traversal
workloads are always executed by one single client.

e Intensive workload: a certain number of parallel
clients are synchronized to send together a specific



number of basic requests concurrently to the graph
database. The tool is delivered with three types of
intensive workloads:

o  GET vertices/edges by ID: each client asks the
graph database to retrieve a series of vertices
using their unique identifier

o  GET vertices/edges by property: each client
asks the graph database to retrieve a series of
vertices by one of their property value

o  GET vertices by ID and UPDATE property:
each client asks the graph database to update
one of the properties of a series of vertices
retrieved by their ID

o  GET two vertices and ADD an edge between
them: each client asks the graph database to
add edges between two randomly selected ver-
tices

An important preliminary point is that GDB is a client-
oriented benchmarking framework, in the sense that all mea-
sures, except for loading the databases, are performed on the
client side, in order to have a better idea on the total time the
clients have to wait to get answers for their requests. We chose
to measure the time to load the databases on the server machine
because this procedure does not really concern clients but
the database administrator. The database-oriented approach is
also interesting because it allows to analyze each database for
example in terms of number of messages exchanged between
the machines inside the cluster (if the database is distributed) or
the evolution of memory consumption. However, we decided
to focus our analysis on the first approach, which allows to
have a better overview of the performance from a client point
of view.

An important remark about workloads is that we want to be
sure that the results obtained for each graph database are really
comparable. One of the conditions for that is that exactly the
same series of operations must be realized in the same order
on each graph database compared. In order to do that, the first
time a load or traversal workload is executed, we log all the
operations realized together with their arguments. Then, when
executing the same workload on another database, we make
sure that exactly the same series of operations with the same
parameters are executed. Concretely, for load workloads, we
make sure that the same dataset file is used for loading all
the databases. For traversal workload, we log the source and
destination vertex. For intensive workload, we did not use this
kind of approach: the vertices are always selected randomly as
we found that the results obtained are not really influenced by
the specific set of vertices obtained or modified but more by
the performance of the graph databases to retrieve and update
vertices.

C. Architecture overview

GDB can be used to simulate any number of concurrent
clients sending requests to the database in parallel. In order to
do that, GDB can be distributed on multiple computers, where
each machine creates and controls up to a certain number
of concurrent clients (threads). All these machines are then
managed and synchronized by a special machine called the
master client.

In order to be scalable, we developed our framework
using the actor model. The actor model is an alternative to
thread or process-based programming for building concurrent
applications. In this model, an application is organized as a
set of computational units called actors, that run concurrently
and communicate together in order to solve a given problem.
We built GDB using AKKA'4, a Scala framework that allows
building distributed applications using the actor model.

As shown in Figure 2, GDB uses four types of actors, each
running on different machines: the server, that creates, loads
and shuts down the graph databases, the master client, that
executes traversal workloads and manages a series of slave
clients, whose role is to send many basic requests to the graph
database in parallel, and the benchmark runner, that executes
benchmarks and thus attributes workloads to the master client
and the server.

The main responsibility of the server is to host the graph
databases. More precisely, the server executes load workloads
assigned by the benchmark runner. It has thus the responsi-
bility to measure the time needed to load the databases with
randomly generated datasets. When each database is loaded, it
starts a Rexster server in order to make the database accessible
remotely to the clients.

The first role of the master client is to execute and measure
the time required to perform traversal workloads. Moreover,
the master client also measures the time required to perform
intensive workloads. These intensive workloads are not directly
executed by the master client but split into parts. Then, all
these workload parts will be assigned to different client threads
and all executed in parallel. In order to do that, the master
client has at its disposal a client-thread pool that will be
used to execute parts of intensive workloads. However, the
responsibility of the master client for intensive workloads is
limited to measuring the time required to get an answer from
all the clients assigned to the intensive workload and does not
take part to the workload execution.

This client-thread pool is provided by a series of slave
clients: each of these slaves obeys the master client and
controls a series of client-threads. The number of threads
controlled by a slave is equal to the number of cores available
on the machine on which they are executed. For example, if the
slave client runs on a two-cores machine, the slave client will
control at most two concurrent threads, so that we are sure
that the threads are really executed in parallel by the slave.
Moreover, the slave clients are also centrally controlled and
synchronized by the master client, so that each slave client
starts its client-threads at approximately the same moment
when performing an intensive workload.

Finally, the benchmark runner plays the role of actors
coordinator: it receives as input a benchmark defined by the
user and assigns workloads to the server or the master client
accordingly. Finally, it also logs and stores the measures
returned.

The communication between the clients and the databases
is made using two different communication mechanisms de-
pending on the type of workload executed:

Yhttp://www.akka.io
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Fig. 2. GDB Actor System

e For intensive workloads, the clients communicate with
the Rexster server using Rexster’s REST API, as it
simply leaded to better and more stable performances.
As REST requests are self-contained, they are exe-
cuted as a single transaction by the databases.

e Rexpro is used during traversal workload, as, con-
trary to REST communication, this protocol offers
the possibility to make a Gremlin traversal script
directly executed by the database and not by the
client. This scheme leads to better performances, as it
reduces drastically the number of messages exchanged
between the client and the Rexster server during the
traversal.

IV. RESULTS

In this section, we present the measures obtained when
using GDB on four graph databases: Neo4j, DEX, Titan and
OrientDB. In order to analyze the impact of the graph size
on the performances of the databases, traversal and intensive
workloads were executed on two graph sizes: first 250,000 (ap-
prox. 1,250,000 edges) and 500,000 vertices (approx 2,500,000
edges). Although we only included the figures that concern the
bigger graph, we will mention the measures obtained on the
smaller graph when they significantly differ.

A. Experimental setup

e We ran the Server actor (and therefore the graph
databases) on a 2.5Ghz dual core machine with 8G
of physical memory (5G allocated to the process) and
a standard hard disk drive (non-SSD).

e  All the clients actors (both the Master Client and the
Slave Clients) were executed on a 2.5Ghz single core
with 2G of physical memory computers.

e All the machines are located on the same local area
network.

e We used the embedded version of each database.
Particularly, Titan-Cassandra also uses Cassandra in
embedded mode, which allows to increase the per-
formance, as Titan and Cassandra are running on the
same JVM. Moreover, for this configuration, Cassan-
dra is configured to run on one single node.

e In order not to favor one database over another, we
have not done any performance tuning specifically for
a database: we left the settings with the default value.

B. Load workload

1) Benchmarking conditions: The workloads were exe-
cuted using the following settings:

e All the datasets were randomly generated using a
scale-free network generator based on the Barabasi-
Albert model [1] using a mean node degree set to
five. The graphs generated using this model are char-
acterized by a power-law degree distribution with a
preferential attachment: the more a node is already
connected, the more likely it will be connected to new
neighbors. Each graph vertex got a string property.

e  Each database was configured in batch loading mode
for loading the datasets. In this mode, the database
uses one single thread to load the dataset.

e Each vertex inserted is also indexed on its unique
property.

2) Results: Figure 3 shows the evolution of the insertion
time during the loading process of a randomly generated social
network dataset composed of approximatively 3,000,000 graph
elements (500,000 vertices and approx. 2,500,000 edges). We
opted for this size for two reasons. First, we think that 500,000
vertices is enough to model already interesting problems (for
example, June 1, 2013, the graph of co-purchasing Ama-
zon items was composed of 403.394 vertices and 3,387,388
edges'®). Secondly, after that point, the loading time became
quite significant, specifically for one of the databases tested.

We used two different buffer sizes for loading the
databases. Like mentioned earlier, this buffer size simply indi-
cates the number of vertices/edges inserted before committing
a transaction, and thus, the number of elements inserted in the
database before flushing to the disk.

As shown in Tables I and II, using a bigger buffer leads
to better performances for almost all databases. Using a buffer
size of 20.000 elements, Neo4j in particular took two times
less time to fully load the dataset than using a buffer size
of 5.000. Indeed, using a larger buffer allows the database to
access the hard disk drive less often during the loading process.
Therefore, the time needed to load the dataset is reduced. The
conclusion is the same for DEX, Titan-BerkeleyDB and Titan-
Cassandra, but the impact of the increased buffer size is less
important. The measures obtained with OrientDB does not
seem to be impacted by the buffer size: the loading rate for
this database is always much lower than the other candidates.

From Figure 3, we can see that, regardless the buffer size
used, the loading time is increasing approximatively linearly

Shttp://snap.stanford.edu/data/amazon0601.html
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for DEX, Titan-BerkeleyDB and Titan-Cassandra. Concerning
Neo4j, graph elements were inserted at a constant rate until
a specific moment when the insertion speed tumbled. This
phenomenon can clearly be observed in Figure 3(a): the time
measured after inserting the 2,500,000th graph element was
33.1 seconds, while inserting 10,000 additional elements took
up to 83.4 seconds, making the 2,510,000th graph element
inserted after 116.5 seconds. After that point, the loading time
continued to increase linearly until the phenomenon reappeared
later. This does not seem to be linked to the buffer size, as
the phenomenon seems to happen randomly. Our hypothesis
is that this is due to a background daemon (probably related
to data reorganization on disk) that starts at a specific moment
when loading the dataset. Concerning OrientDB, the loading
time is growing linearly at the beginning, but starts to increase
more rapidly at always approximatively the same moment
(after having inserted between the 520,000th and 550,000th
graph element). This phenomenon reappeared later during
the loading process between the 2,300,000th and 2,600,000th
graph element inserted (not visible in the figure).

TABLE 1. LOAD WORKLOAD RESULTS (SEC.) USING A BUFFER SIZE OF

5,000

Graph el. Neodj DEX Titan-BDB | Titan-Cassandra OrientDB
loaded

500k 5.74995 19.44911 18.53484 52.51524 56.75998
1000k 12.04847 32.03252 33.23480 81.62522 588.83879
1500k 16.98259 51.85323 50.31449 115.72004 1005.19257
2000k 22.15680 66.73069 65.55982 139.48701 1359.54699
2500k 33.10645 82.25261 80.15614 178.41247 1986.79631
3000k 297.87892 99.1784 94.44010 215.78923 4350.20323

TABLE II. LOAD WORKLOAD RESULTS (SEC.) USING A BUFFER SIZE
OF 20,000

Graph el. Neo4j DEX Titan-BDB | Titan-Cassandra OrientDB
loaded

500k 3.98751 19.06939 19.52635 50.56084 54.59390
1000k 8.25654 30.99353 31.43026 80.49548 588.90165
1500k 11.06476 44.76818 44.60898 118.12311 1010.05765
2000k 14.02776 64.67971 55.74031 144.46303 1388.35480
2500k 18.81234 79.394 66.35664 171.19640 1808.26900
3000k 143.57329 | 95.60929 77.19206 206.45922 5552.70849

C. Traversal workloads

1) Benchmarking conditions: The workloads were exe-
cuted using the following settings:

e All the databases are loaded with the same graph
before starting to execute the workloads.

e We did 100 measures for each traversal workload,
selecting each time a different source vertex (and
destination vertex for the shortest path workload).

e  We have limited the number of results (ie. number
of paths returned for the shortest path workload and
the number of vertices returned for the neighborhood
exploration workload) evaluated when executing the
traversal workloads to 3,000. It was particularly re-
quired for the shortest path workload, as the number
of paths between two randomly selected vertices may
potentially be really high if the source and/or the
destination vertex is strongly connected.

2) Shortest path workload: Figure 4 summarizes the results
obtained by each database with four different configurations of
the shortest path workload (using 2, 3, 4 and 5 hops limits). We
can see that Neo4j outmatches all the other candidates, with a
mean and median time always inferior to the other databases.
It is also the database that had the most predictable behavior
with a much lower results variance than the other candidates.

Based on the same figure, it is clear that Titan-Cassandra
is much slower than the other solutions for this workload,
as its mean and median measures are always superior to the
other databases. Moreover, its results are generally much more
fluctuating than the other candidates: as shown in Figure 4,
orange boxes are always taller than the other boxes. Its results
variance follows the same trend.

Concerning DEX and OrientDB, they obtained at first
sight equivalent results: sometimes the former obtained better
performances, while the latter outperformed DEX in other
situations. However, by looking at the results more closely,
we noticed that OrientDB obtained in general better perfor-
mances than DEX but sometimes got really poor results that
strongly influenced the mean value. Indeed, the results variance
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Boxes contain all the values between first (Q1) and third quartile (Q2).
Bold points represent the mean measure, horizontal bar inside boxes the
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observed for OrientDB is generally much higher than what we
observed for the other databases.

Finally, we conclude that the hops limit does not really
seem to influence the results: the above conclusions are valid
regardless the number of hops used.

3) Breadth first exploration of nodes neighborhood work-
load: The results obtained for this workload confirm our
previous analysis: as shown in Figure 5, Neo4j gets the best
results, while Titan-Cassandra is still way behind the other
solutions. We also see that the performances of OrientDB are
again particularly unstable. Indeed, the database obtained good
results with a 1 and 2 hops limit but they totally crumbled
for the last workload configuration. Particularly, the maximal
time recorded for OrientDB during this workload is up to
15 times higher than the maximal result obtained by Neo4j.
Moreover, the memory consumption of OrientDB seems to
be more significant that the other databases, as it is the only
candidate that ran out of memory when we tried a four hops
limit.

D. Intensive workloads

1) Get vertices by ID intensive workload: Similarly as for
traversal workloads, we did 100 measures for each intensive
workload execution. At first sight, we notice in Figure 6 that
the shape of the curves are all very similar: the performance
increase is relatively important (between +100 % and +120%)
when we switch from one to two concurrent clients to perform
the workload. Then, this increase becomes less and less
important to be finally almost inexistent for the transition from
three to four concurrent clients.
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Fig. 5. Neighborhood exploration workload on a 500,000 vertices graph

The reason is simple: as the databases are running on a dual
core machine, they can serve up to two clients “really” in
parallel. Therefore, the time required to execute the same
number of request is almost halved when performed by two
concurrent clients. Then, if an additional client joins and starts
to send requests to the database, the latency is likely to increase
for the two previous clients. This is exactly what happens here,
except that the time required to complete the workload does
not immediately start to increase when we execute it with more
than two concurrent clients. Again, the explanation is simple.
Indeed, although the clients are executed really in parallel, they
do not keep constantly the database busy, as for each request,
the client has to wait a result before sending a new request.
During the time interval between the moment when it sends
an answer to a client and when it receives a new request from
this client, the database can possibly handle a request from an
additional third client.

Again, we observe that Titan-Cassandra offers lower per-
formances than the other databases, regardless the number of
clients used to perform the workload.

The results obtained by the other databases are really close.
Moreover, we observe in Figure 6 that the gap between the
databases narrows as the number of clients increases. By only
looking at the previous figure, it is quite hard to determine
which database got the best results for this workload, partic-
ularly with four clients. However, by looking at Table III, we
observe that DEX and OrientDB outperform Neo4j and Titan-
BerkeleyDB.

Determining which database between between DEX and
OrientDB is the most adapted for this workload is not an easy
task, as they obtained really close results. The only criteria
that can be used to differentiate the two implementations is the
results dispersion. Indeed, similarly as the previous workloads,
we observe in Table III that the results variance and maximal
measure of OrientDB are respectively 4748 and 385 % higher
than the same measures obtained by DEX.
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Each point represents the average time to get an answer for 200 GET vertex
by ID requests performed by X clients (each client sends 200/X requests).

TABLE III. GET VERTICES BY ID INTENSIVE WORKLOAD RESULTS
(SEC.) WITH 4 CLIENTS DOING 200 OPS TOGETHER ON A 500.000
VERTICES GRAPH

Neo4j DEX |[Titan-BDB|Titan-Cassandra|OrientDB
Mean (0.094484/0.092099| 0.095918 0.129590  |0.097085
Median |0.089267(0.090383| 0.090163 0.123343  [0.084364
Variance|0.000480(0.000128| 0.000514 0.000255  [0.006205
Min. [0.076205|0.079224| 0.081593 0.113491 0.074536
Max. [0.242574(0.177440| 0.272045 0.204182  |0.859757

2) Get vertices by property intensive workload: The pur-
pose of this workload is to evaluate the indexing mechanism
provided by each database. The first thing we observe in Figure
7 is that all the curves have the same shape. However, they
all are flatter than previously. Indeed, while the performance
increase between using one and two clients during the previous
workload was between +100 % and +120%, here the increase
is between +85 % and +90 %. Here again, we observe that
Titan-Cassandra is way behind the other solutions. Then,
similarly as the previous workload, the other databases results
are pretty close but this time the two databases that stand out
are Neo4j and OrientDB. Here, as shown in Table IV, the latter
did not suffer from variable results so we can not differentiate
the two databases on this criteria.

Get vertices by property intensive workload
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Fig. 7. Read vertices by property intensive workload on a 500,000 vertices

graph

TABLE IV. GET VERTICES BY PROPERTY INTENSIVE WORKLOAD
RESULTS (SEC.) WITH 4 CLIENTS DOING 200 OPS TOGETHER ON A
500.000 VERTICES GRAPH

Neodj DEX [Titan-BDB|Titan-Cassandra|OrientDB

Mean {0.222720(0.233231| 0.235028 0.302582  [0.218648

Median [0.219277]0.226657| 0.230678 0299175  [0.217392
Variance|0.000424/0.000601| 0.001383 0.000287  [0.000094
Min. |0.203823|0.210744| 0.207254 0.282349  0.200086

Max. ]0.385821]0.419826| 0.590591 0.383336  |0.249710

Add edges intensive workload
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Fig. 8. Add edges intensive workload on a 500,000 vertices graph

3) Add edges intensive workload: This workload is totally
different as it no more only requires to read the database but
also to write (insert) data. Transactions were activated for all
the databases during the workload. Note that communicating
with the Rexster server using REST does not allow to control
how and when transactions are committed: the server itself
automatically commits transactions.

First, we observe in Figure 8 that the curves are all quite
different: they are decreasing for DEX, Titan-Cassandra and
Titan-BerkeleyDB and increasing for OrientDB, meaning that
the first three scale much better when the number of clients
writing simultaneously the database increases. Concerning
Neo4j, we can see that its results do not seem to be influenced
by the number of clients.

We also observe that the results obtained by Neo4;j, Titan-
Berkeley DB and OrientDB are much inferior to those ob-
tained with DEX and Titan-Cassandra. This is likely linked
to the transaction mechanism that limits the number of clients
concurrently adding records in the database. We tried to tune
the settings to improve that situation but did not succeed:
Neo4j and OrientDB really seem to complain for this type of
operation. Moreover, the results obtained by OrientDB varied
much more than the other databases. Particularly, the gap
between the minimal and maximal measure observed is quite
huge.

Finally, which database between DEX and Titan-Cassandra
got the best performances? We observe in Figure 8 that the
behavior of the two databases is similar: they scale really well
when the number of clients increases. However, by looking at
Table V more closely, we observe that DEX always obtained
the best results.

4) Write properties intensive workload: This workload
differs from the previous one as it implies to modify vertices



TABLE V. ADD EDGES INTENSIVE WORKLOADS RESULTS (SEC.) ON A

500,000 VERTICES GRAPH

1 client 2 clients 3 clients 4 clients
DEX | Titan-C | DEX | Titan-C | DEX | Titan-C | DEX | Titan-C
Mean |(0.783084(1.100030|0.430438]0.610036|0.308893]0.455871|0.271001{0.392483
Median |0.782582|1.091260(0.426864|0.605103|0.307174|0.445380|0.271813(0.392073
Variance|0.000658|0.008100|0.000558(0.000314{0.000084{0.003657|0.000176(0.000500
Min. |0.721273|0.938597|0.406419|0.577281]0.290249|0.410409(0.247047|0.354945
Max. [0.972766|1.751364|0.648427]0.646169(0.337645|0.955497|0.309281|0.440967

GET vertices by ID and UPDATE intensive workload
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Fig. 9. Write properties intensive workload results (sec.) on a 500,000 vertices
graph

properties and thus also to update the index. However, many
conclusions from the previous workload still apply here. As
shown in Figure 9, the behavior of Neo4j does not seem to be
dependent on the number of concurrent clients, while the mea-
surements for OrientDB are again really variant. However, its
performances are globally superior compared to the previous
workload.

Concerning the three other databases, Titan-BerkeleyDB
gets this time better results, while Titan-Cassandra and DEX
still obtain the best performances. Again, these two databases
scale really well when the number of clients increases. As
shown in table VI, DEX still obtained the best performances
compared to the other solutions, with a lower mean and median
measures and more stable results.

V. CONCLUSION

We presented GDB, an extensible tool to compare different
Blueprints-compliant graph databases. We used GDB to com-
pare four graph databases: Neo4j, DEX, Titan (BerkeleyDB
and Cassandra) and OrientDB (local) on different types of
workloads, each time identifying which database was the best
and the less adapted.

Based on our measure, the database that obtained the

TABLE VI. WRITE PROPERTIES INTENSIVE WORKLOADS RESULTS
(SEC.) ON A 500,000 VERTICES GRAPH
1 client 2 clients 3 clients 4 clients
DEX [ Titan-C | DEX | Titan-C | DEX [ Titan-C | DEX [ Titan-C

Mean [0.552040(0.855709|0.299732(0.449373]0.216897|0.337556|0.189509(0.306128
Median (0.548127(0.835181(0.295415|0.438381{0.216063|0.314306|0.187603|0.292751
Variance|0.000686(0.011076(0.000855[0.000469{0.000049(0.011797|0.000134{0.003635

Min. [0.508350(0.736268|0.279791|0.420570|0.202632|0.301302|0.170240|0.266679

Max. [0.617997|1.542111|0.579817(0.501984/0.232145|1.396984|0.226531(0.824158

best results with traversal workloads is definitely Neo4j: it
outperforms all the other candidates, regardless the work-
load or the parameters used. Concerning read-only inten-
sive workloads, Neo4j, DEX, Titan-BerkeleyDB and Orient
achieved similar performances. However, for read-write work-
loads, Neo4j, Titan-BerkeleyDB and OrientDB’s performances
degrade sharply. This time DEX and Titan-Cassandra take
their game with much more interesting results than the other
databases.

As GDB was developed as a framework, we plan to
improve and extend the tool in the future. For example, it
might be really interesting to add new traversal workloads such
as centrality or graph diameter computation workloads to the
tool.
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