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Abstract

Mining frequent itemsets in a datastream proves to be a difficult problem, as itemsets arrive
in rapid succession and storing parts of the stream is typically impossible. Nonetheless, it has
many useful applications; e.g. opinion and sentiment analysis from social networks. Current
stream mining algorithms are based on approximations. In earlier work, mining frequent items
in a stream under the max-frequency measure proved to be effective for items. In this article, we
extended our work from items to itemsets. Firstly, an optimized incremental algorithm for mining
frequent itemsets in a stream is presented. The algorithm maintains a very compact summary of
the stream for selected itemsets. Secondly, we show that further compacting the summary is
non-trivial. Thirdly, we establish a connection between the size of a summary and results from
number theory. Fourthly, we report results of extensive experimentation, both of synthetic and
real-world datasets, showing the efficiency of the algorithm both in terms of time and space.
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1. Introduction

Mining frequent itemsets in large static so called transaction databases has been the topic
of numerous studies for over the past 15 years. Many efficient algorithms and optimizations
have been discovered, which have already made it into several commercial database and data
mining products. When the given database is a dynamically and fast evolving stream of data, for
which also a continuously up-to-date analysis needs to be provided, these known techniques are
suddenly no longer applicable. Mining frequent itemsets over such streams of itemsets presents
interesting new challenges. The speed of new arriving itemsets excludes revisiting the history,
unless it is stored. But storing large parts of a stream is typically impossible, however, as huge
volumes of data pass. Yet, mining streams has numerous interesting applications, for example,
opinion and sentiment mining from social networks, network traffic analysis, sensor network
analysis, time-dependent market basket analysis, stock price analysis, and much more.

Mining frequent itemsets over streams is an extension of mining frequent items over streams.
For a comprehensive overview of the current state of the are, see Cormode and Hadjielefthe-
riou [9]. Although many of the techniques developed for frequent items can be reused; see, e.g.,
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the hMiner algorithm of Wang and Chen [21] based on hCount and Lossy Counting, there are
specific challenges associated with mining frequent itemsets, including the combinatorial explo-
sion of the number of patterns, and that any transaction arriving over the stream can support an
exponential (in its length) number of patterns. Some interesting approaches have been taken to
tackle these problems, most of them focusing either on (1) a sliding window model [11-14, 17—
19] where only the frequent itemsets in the w most recent transactions is required for a given w; a
slight deviation is the time-sensitive sliding window, where not the length of the window is fixed,
but the time span, (2) the time-fading model [16], or (3) the landmark model [10, 13, 14, 21, 23].
In most of these works, a datastructure is maintained for the current window that either directly
contains the frequent patterns, or is a convenient representation of the transactions in the win-
dow, such as a bit-sequence or a trie, that allows for quickly determining the frequent itemsets.
In order to reduce the memory overhead, sometimes the number of patterns to be monitored
is reduced a condensed set; e.g., the closed itemsets [5, 7], or approximate solutions are com-
puted [10, 15, 21]. Next to mining the frequent itemsets in one stream, further extension to,
for instance, distributed streams [22] have been proposed, or even to mining graph patterns over
streams [1]. For a survey on many of the techniques for mining frequent itemsets over streams,
see [6].

The sliding window or decay models typically require some user-specified parameters, such
as a fixed window length or decay factor. Choosing one value of such a parameter adequately
for every itemset is practically impossible [3, 4]. For example, consider a large retail chain
of which sales can be considered as a stream. Then, in order to find frequent itemsets to do
market basket analysis, it is very difficult to choose in which period of the collected data you
are particularly interested. For many products, the amount sold depends highly on the period of
the year. In summer time, sales of ice cream increase and during the world cup, sales of beer
increase, while during the new-year festivities, the sales of champagne and many other typical
gifts increase. Such seasonal behavior of a specific item can only be discovered when choosing
the correct window size for that item. This size, however, can hide a similar behavior of other
items in another window. Therefore, we introduced the max-frequency measure and a new mining
algorithm for solving this problem [3, 4]. Using this new measure, the window length can vary
for each itemset separately. More specifically, for every itemset, the optimal window length, for
which the itemset’s frequency is the highest, is being considered.

In this article, we significantly extend our previous results. First, we revisit the definitions
for max-frequency and its properties, and we explain the basic algorithm for mining a single
max-frequent itemset in a stream [4]. Essentially, we have to maintain a summary of the stream
in order to provide the max-frequency at any given time, which needs to be kept up to date
continuously with the stream.

Several optimizations for speeding up the algorithm and a worst case analysis, based on
well-known results from number theory, are given.

Then, we extend the work on items to itemsets and we investigate whether we need to main-
tain a summary for every itemset occurring in the stream and dig into compressing the memory
size needed. Unfortunately, as we will show, attempting to exploit the subset relation between
itemsets in order to compact the summaries is futile. Finally, we report results of extensive ex-
perimentation with our software, both on synthetic and real-world datasets. These experiments
show that our algorithm is efficient both in terms of time and space.



2. Max-Frequency Revisited

In this section we review the definition of the max-frequency measure and the problem def-
inition [2-4]. Throughout the paper, we assume that a finite set of items 7 has been given. An
itemset is any subset of 7.

Definition 2.1 ([3]). A stream S, is a sequence of itemsets { s1 sy ... Sy ). n =S| is the length
of the stream. s is considered the first and oldest itemset in the stream, and s, the latest and
youngest. We will use s;, 1 < t < n, to denote the t-th itemset in the stream S. We call s, the
itemset at timestamp ¢ in stream S.

The concatenation of two streams Sy and S, will be denoted S - S,.

Let 1 < i < j < [Sl. S[i, jl denotes the stream { s; Siz1 ... ;). S[i,] denotes S[i,|S|], and
S[, j] denotes S[1, j].

The suffix of S consisting of the last k itemsets of S, denoted last(k,S), is

last(k,S) := S[IS| -k +1,] .

Throughout the paper we will be illustrating our algorithms by a running example based upon
the following stream (the numbers at the top denote the timestamps of the itemsets in the stream):

1 2 3 4 5 6 7 8 9 10 11
S = a b 0 ab 0 b ab a b 0 ab

We use the shorthand a, b, ab as shorthand for the sets of items {a}, {b}, and {a, b} respectively.
For this example stream, [S| = 11, sy = a, s7 = ab, S[5,91 =(0 b ab a b),S[,3]=(a b 0),
and last(3,S) =(b O ab).

A stream is here defined as a static object. In reality, however, a stream is an evolving object
that is essentially unbounded. When processing a stream, it is to be assumed that only a small
part of it can be kept in memory. When analyzing algorithms and in examples we will therefore
assume a stream S of sufficient length. S, will denote the stream S up to timestamp ¢; that is
S[1, t], the part of the stream that already passed at time ¢. At time ¢ only S, has been observed
so far.

2.1. Counts, Frequencies and Max-Frequency

In [2, 4], the following new frequency measure for items in streams was introduced. This
measure was trivially extended to itemsets in [3]:

Definition 2.2 ([2]). count(A,S) denotes the number of times itemset A occurs in stream S and
is defined as:
count(A,S) = {1 <t<|S||ACs} .

The frequency of A in S is defined as

count(A, S)

freq(A,S) = S|

Finally, the max-frequency mfreq(A,S) of itemset A in a stream S is defined as the maximum
of the frequencies of A over all suffixes of the stream; that is:

mfreq(A,S) := kr_r}a)liS I(freq(A, last(k,S))) .
3



Running Example: Frequencies reference chart

1 2 3 4 5 6 7 8 9 10 11
S= a b 0 ab 0 b ab a b 0 ab

M, (Frequencies of a)

1 100

2 50 0

3 33 0 0

4 50 33 50 100

5 40 25 33 50 O

6 33 20 25 33 0 0

7 42 33 40 50 33 50 100

8 50 42 50 60 50 66 100 100

9 44 37 42 50 40 50 66 50 O

10 (40 33 37 42 33 40 50 33 O 0
11 (45 40 44 50 42 50 60 50 33 50 100

M, (Frequencies of b)

50 100

33 50 O

50 66 50 100

40 50 33 50 O

60 50 66 50 100

57 66 60 75 66 100 100

50 57 50 60 50 66 50 O

55 62 57 66 60 75 66 50 100

55 50 57 50 60 50 33 50 O

54 60 55 62 57 66 60 50 66 50 100

—_ = 0 0 3O L A WIN -
(9]
()

— O
[
(=]

M, (Frequencies of ab)

0

0 0
0 0 0

25 33 50 100

20 25 33 50 O

20 25 33 O 0

28 33 40 50 33 50 100

25 28 33 40 25 33 50 O
22 25 28 33 20 25 33 O 0
22 25 28 16 20 25 O 0 0

—_— =0 00 O N A~ W=
p—
(@)

— O
[\
-

27 30 33 37 28 33 40 25 33 50 100

Figure 1: Running example: Reference chart; entry ¢, i of the matrix My of itemset A contains freq(A, S[i, t]) in percent;
i.e., the frequency of A in the suffix starting at position i of S;. mfreq(A, S;) is hence max;=;_,(Mal[t,i])



Example 1. Consider Figure 1 which reports the frequencies for the itemsets a, b, and ab in
our running example stream. The stream S has length 11. For timestamps t = 1,...,11, the
frequencies of the itemsets in suffixes of the stream S; is given. Consider, e.g., the first row in
the first matrix: 100. This number indicates that the frequency of the itemset a in the suffix
starting at position 1, of S| = ( a ) is 100%. Consider now the stream at timestamp 5; i.e.,
Ss =(a b 0 ab 0). The frequency of a in the suffixes of that stream are: 40% (suffix Ss[1,]),
25% (suffix S5[2,]), 33% (suffix Ss[3,1), 50% (suffix Ss[4,]), 0% (suffix Ss[5,1), as indicated by
the fifth row in the matrix M,. The matrices are lower diagonal matrices as a stream of length n
has exactly n suffixes.

The max-frequency at timestamp t of itemset a (b, ab respectively) is now, by definition, equal
to the maximum value in the t-th row in the matrix M, (M, M, respectively). For example,
mfreq(a, S¢) = max{33%, 20%,25%,33%, 0%, 0%} = 33%. Other examples are: mfreq(b,Sy) =
100% (maximum value in the 9th row of the second matrix), and mfreq(ab, S1o) = 28% (maximum
value in the second to last row of the third matrix).

2.2. Minimal Window Length

One of the problems with the max-frequency measure that is clearly illustrated in Figure 1 is
that every time a transaction arrives in the stream, the frequency of all itemsets, that are contained
in that transaction, suddenly peaks and becomes 100%. In Figure 1 we can observe this, e.g., at
timestamp 4 when itemset ab arrives. For itemsets a, b, and ab the frequency peaks to 100%, as
these sets have a frequency of 100% in the suffix ( ab ). The solution for this problem, however,
is simple: we can disallow too short windows by setting a minimal window length mwl:

Definition 2.3 ([3]). Given a minimal window size mwl, the max-frequency with minimal win-
dow length mfreq™"(A,S) of itemset A in a stream S is defined as the maximum of the frequencies
of A over all suffixes of S with a length of at least mwl; that is:

mfreq™!(A,S) = k_m%x|8|(freq(A,last(k, S)) .

If the length of the stream is less than mwl, the max-frequency is defined to be 0.

Example 2. Consider once more Figure 1. Setting a minimal window-length mwl actually comes
down to ignoring the last mwl — 1 entries of all rows in the matrices, as they correspond to
frequencies in suffixes of the streams that are too short. Let mwl = 3; hence, we ignore the
last two entries in all rows. We get: mfreq™" (a,S¢) = max{33%,20%,25%,33%)} = 33%,
mfreq™" (b, So) = 75% (the last two entries 50, 100 are ignored), and mfreq™" (ab,Ss) = 33%
(the last two entries 50, 100 are ignored).

By setting a minimal window length we can reduce the problem of sudden peaks in frequency
for sparse items. Instead of peaking to 100%, the items will peak to a frequency of only 1/mwl.
This behavior can even be further suppressed in the case we only report itemsets that reach
a certain minimal frequency minfreq, as will be the case in the general problem statement as
introduced in the next subsection. In that case, if we carefully chose the minimal window length
such that 1/mwl < minfreq, a single occurrence of a sparse item will no longer result in any peak
in frequency whatsoever.



2.3. The Max-Frequent Itemset Mining Problem
The main problem we study in this paper is the following:
Problem 2.4 ([3]). Given a minimal frequency threshold and a minimal window length, for an

evolving stream S, maintain a small summary of the stream, such that, at any timepoint t, all
currently max-frequent itemsets can be produced instantly from this summary.

Example 3. For minimal frequency minfreq = 0.4, and mwl = 3, the frequent itemsets with their
respective frequencies will be as follows for our running example (cfr. Figure 1):

time Itemsets

a b ab
1 _ _ _
2 — — -
3 33% | 33% -
4 | 50% | 66% -
5 40% | 50% —
6 - 66% -
7 50% | 75% | 50%
8 66% | 66% | 40%
9 66% | 75% -
10 | 50% | 60% -
11 | 60% | 66% | 40%

A dash denotes that the set is not part of the output; only if it is present in the output, its frequency
is reported in the table.

More formally, we will introduce a concise summary, summary(S;), and efficient proce-
dures Update, and Get_mfreq, such that Update(summary(S;), I) equals summary(S; - (I)), and
Get_mfreq(A, summary(S;)) equals mfreq(A, S;).

Because Update has to be executed every time a new itemset arrives, it has to be extremely
efficient in order to be finished before the next itemset arrives. Similarly, because the stream
continuously grows, the summary must be independent of the number of items seen so far, or, at
least grow very slowly as the stream evolves.

3. Mining A Single Itemset

In this section we introduce the algorithms for mining the max-frequency of an itemset with
and without minimal window length and/or minimal (max-)frequency threshold. Before we go
into the details of the algorithms, first some important notions are revisited.

3.1. Maximal Windows, Borders, and Summaries
The longest window in which the maximum frequency is reached is called the maximal win-
dow for A in S, and its starting point is denoted startmax(A,S). That is, startmax(A,S) is the
smallest index such that
mfreq(A,S) = freq(A, S[startmax(A,S),|S|]) .
6



If the minimum window length is set, the starting point of the maximal window, denoted by
startmax™'(A, S), is the smallest index smaller than or equal to |S| — mwl + 1 satisfying

mfreq™"'(A,S) = freq(A,S[startmamel(A,S), ISI]) .

Obviously, checking all possible windows to find the maximal one is infeasible algorithmi-
cally, given the constraints of the stream problems. Fortunately, not every point in the stream
needs to be checked.

Definition 3.1. Timestamp q is called a border for itemset A in S if there exists a stream B such
that g = startmax(A,S - B).

Thus, a border is a point in the stream that can still become the starting point of the maxi-
mal window. Based on the next theorem and corollary, it is possible to give an exact syntactic
characterization of the borders.

Theorem 3.2 ([4]). Let S be a stream of length L, and let S|q, L] be the maximal window for the
itemset A. Then, for any p, r with p < q < r: freq(A,S[p,q — 1]) < freq(A, Slg, r]).

Corollary 3.3 ([4]). Let S be a stream, and let 1 <
itemset A in S if and only if for all indices j,k with 1
freq(A,Sl ], q — 11) < freq(A,Slg. k]).

q < IS|. Position q is a border for target
< j<gqandq <k <) it holds that

Theorem 3.2 and Corollary 3.3 characterize exactly which positions in a stream are borders,
i.e., potential starting points of the maximal window. They state that a position ¢ in a stream S
cannot be a border if there is a block before ¢ (i.e. S[p, ¢ — 1]) with an equal or higher frequency
than a block after ¢ (i.e. S[qg,r]). Thus, if a before- and after-block satisfying the conditions
can be found, the position can be pruned from the summary as a border. This is because the
before-block will boost the frequency of S[p, ] up to or over the frequency of S[g, ].

Example 4. Consider the stream of our running example. The border positions of itemsets a, b,
and ab have been indicated by vertical bars with the set as subscript:

1 2 3 4 5 6 7 8 9 10 11

a|b(2)ab(2)’babab(2) ab
a b ab b a a,b,ab

S =

As can be seen, not all occurrences of an itemset in the stream results in a border for that item,
e.g., for a, there is no border at position 8. Similarly for ab there is no border at 7, since, for
example, the frequency of ab in the block [4, 6] is at least as large as the frequency of ab in the
block [7,10). Therefore, T can never become a maximal position for ab anywhere in the future,
as the position 4 will always represent a window in which the frequency of ab is larger.

This theorem and corollary form the basis of an incremental algorithm to efficiently update
the summary for one itemset A. The summary at timestamp ¢ of the itemset A is denoted S;.
From the summary the current max-frequency of A can be produced instantly. The summary of
itemset A at time-stamp ¢ will consist of the list of all borders of A in S,, together with counters
that store the number of occurrences of A between the borders; e.g., the summary

[(pl:al)v' '-’(praar)]
7



denotes that A has borders at positions py, pa, ..., pr. The count a; equals count(A, S[p;, pir1—1])
fori=1...r—1, and a, = count(A, S[p,, ]).

The algorithm for maintaining the summary is now based upon the following observations
(for a detailed explanation and proofs, see [4]):

e The frequency of A in the suffixes starting at the borders is increasing from left to right;
i.e.,

freq(A,Si[p1,]) < freq(A,Si[p2,]) < ... <freq(A,Sp.]) .

o As such, the maximal border is always the last one; i.e.,

mfreq(A,S,) = Get_mfreq(A, summary(S;)) = 4

t—p,+1
e Borders disappear always from right to left; i.e., if py, ..., p, are the borders in S;, and p;
is no longer a border in S;,, then neither are p;,1, pi+2, - . ., pr- Thus we start from (p,, a,)

and work towards (p1, ay).

e Borders only disappear if non-target items arrive in the stream; i.e., if A C I, and p is a
border in S;, then p is also a border in S; - (I).

o If a target item arrives in the stream, a new border is added to the stream, unless the max-
frequency of A was already 100%; i.e., if A C I, then the summary of S, - (I) will be
[(p1,a1),....(pra), @+ 1,D]ifa, <t-p,+1,and [(p1,a1),...,(p,a, + 1)] otherwise.

In Algorithm 1 it is shown how the summary at timestamp ¢ + 1, denoted S 4, is derived
from the summary at the previous timestamp, S, and I, the itemset at S[¢ + 1]. The algorithm is
illustrated on the running example in Figure 2.

The combination of Update and the max-frequency deduction is called Max-Freq-Miner.
Next, we discuss three extensions of the basic Max-Freq-Miner algorithm to tackle some issues
of Max-Freq-Miner. This results in three algorithms derived from Max-Freq-Miner: Max-Freq-
Miner™, Max-Freq-Miner,, and Max-Freq-Miner”. These three algorithms consider only one
itemset at a time and are potentially very inefficient when tracking all itemsets satisfying the
constraints. Therefore, an optimized algorithm for mining all itemsets, Max-Freq-Miner-All""!
is given as well.

3.2. Minimal Window Length

As noted in the previous section, a minimal window length resolves the frequency peaks of
rare itemsets.

3.2.1. Pruning

In Max-Freq-Miner we use the fact that a border ¢ in stream S can be pruned if we can find
two blocks B; = S[p, g — 1] and B, = S[g, ] such that the frequency of the target in B, is higher
than in B,. The intuition behind the proof of this theorem is that in such a situation, g can never
become a border again, because either the window starting at p will have higher frequency, or
the window starting at r + 1 has. When we are working with a minimal window length, however,
this observation does no longer imply that ¢ can be pruned! Indeed, it could be the case that the
suffix of the stream starting at 7+ 1 does not meet the minimal window length requirement. In that
case, even though the window starting at g has lower frequency than the window starting at 7+ 1,

8



Algorithm 1 Update(S,, I) for one target itemset A on time 7 + 1, without minimal frequency
threshold, and without minimal window length.

Require: S; = summary(S,) = [(p1,a1),- -+, (pr, a,)]

Ensure: S, = summary(S,;1) = summary(S, - {I))

1: Set S, :=1[ 1]

2: if (S, is empty) then

3 if (target itemset A C /) then
4 S =+ 1,1)]

5: else

6:  if (target itemset A C /) then
7

8

9

ifa, =t—p,+ 1 then
S =p1,a1), -, (pr,ar + 1]

else
10: S =[(pr,a1), -, (prrar), (1 + 1, 1)]
11:  else
12: S =95
13: i:=r
14: while i > 1 do
15: if oy < ;25 then
16: ai—1 ‘= aj— +a;
17: remove (p;, a;) from S,
18: i=i—-1
19: else
20: i=1

Running Example: MaxFreq

2 3 4 5 6 7 8 9 10 11
S= a b 0 ab 0 b ab a b 0 ab

t s Summaries Frequencies

a b ab a b ab
1 a | [(1,D] [ [ 100 | O 0
2 b | [(1,D] [(2, )] [ 50 | 100 | O
30 | [(1,D] [(2, D] (] 33 | 50| O
4 ab|[(1,1),4,1)] [(2,1),4, D] [(4, D] 100 | 100 | 100
5 0| [LD,4, D] [(2,2)] [(4, D] 50 | 50 | 50
6 b |[(1,2)] [(2,2),(6,1)] [4, 1)] 33 | 100 | 33
7 ab | [(1,2),(7,1)] [(2,2),(6,2)] [4,1),(7,1)] | 100 | 100 | 100
8 a | [(1,2),(7,2)] [(2,2),(6,2)] [4,1),(7,1)] | 100 | 66 | 50
9 b |I[(1,2),(7,2)] [(2,2),(6,2),(9,1)] | [(4,1),(7,1)] 66 | 100 | 33
10 0 | [(1,2),(7,2)] [(2,2),(6,3)] [(4,2)] 50 | 60 | 28
11 ab | [(1,2),(7,2),(11, D] | [(2,2),(6,3),(11,1)] | [(4,2),(11,1)] | 100 | 100 | 100

Figure 2: Running example: Max-Frequency (no mwl, no minfreq)

9



it can still have the highest frequency of all windows that meet the minimal window requirement!
The next example illustrates this situation.

Example 5. Consider stream S = ( la a a b |a a ) in which the borders 1 and 5 are marked
with a vertical bar. When itemset {b} arrives in the stream, resulting in(|la a a b a a b)), then
position 5 is no longer a border, as the block { a a a b) before position 5 has a higher frequency
of the target item than the block { a a b ) after position 5. Therefore, in the algorithm without
minimal window length, the border at position 5 is pruned, because no matter how the stream
evolves, position 5 will never be a border again.

However, consider now the case where we do have a minimal window length of 3. Then,
position 5 can still become a border again! Indeed, suppose two more target itemsets are added to
the stream, resultingin: {(|a a a b .a a b |a a). In this stream, the window starting at position
5 has the highest frequency of the target items among the windows satisfying the minimal window
length.

Fortunately, as the next theorem states, this problem can easily be resolved as follows:

Theorem 3.4 ([3]). Let S be a stream of length L, and let mwl be the minimal window length.
Let S denote S[1, L — mwl]. If g = startmax™ (A, S), then,

e cither g =L —mwl+ 1

e o1, g is a border in ST,

Proof (Only a short version of the proof was included in [3]) First of all, because the length
of the maximal window is at least mwl, we have that ¢ < L — mwl + 1. We now can have that
qg=L—-—mwl+1orqg < L—-mwl+ 1. In the latter case, we have to show that g is a border in
S[1, L — mwl]. According to Corollary 3.3, we have to prove that the frequency of target A in
every block before position ¢ is strictly less than the frequency in every block following g. More
concretely, we pick a certain 1 < p < g and we denote the occurrences of target A in S[p, g — 1]
by a and we use the shorthand notation b for the length of this substream, g — p. We also pick
a certain ¢ < r < L — mwl and we denote the occurrences of the target A in S[qg, r] by ¢ and we
introduce the shorthand notation d for the length r — g + 1. Finally, the occurrences of the target
A in S[r + 1, L — mwl] are denoted by x and y is used to express the length of this substream,
L — mwl — r. Remark that in the case of ¢ = L—-mwlorqg < L—mwlbutr = L—mwl, x = 0
and y = 0. We also denote the amount of occurrences of the target A in last(mwl, S) by ¢, and the
length of this last substream equals mwl. This situation is depicted in the following visual:

— b 5 «—d-> «y > « mwl -
| [ a [ e | x t |

T T T

p q r

It is sufficient to show that freq(A, S[p,q — 1]) < freq(A,Slq,r]),i.e. a/b < c/d. Because q is
the starting point of the maximal window of length at least mwl in S, we know that

c+x+t S at+c+x+t c+x+t X+t
an > )
d+y+mwl b+d+y+mwl d+y+mwl y + mwl

10



Notice that the first inclusion is strict, since startmax™"(A, S) is the smallest index on which the
max-frequency is reached in case of a tie. These inequalities are equivalent to:

c+x+t a
—_— > (1
d+y+mwl b
and
[ X+t @)

d ~ y+mwl '

Assume now for the sake of contradiction that a/b > c/d. We then have, according to (1),
that

c+x+t a c X+t c
d+y+mwl > b z a- y + mwl vk
which is not possible, as shown in (2). Therefore, the assumption is wrong, illustrating that
a/b < c/d. O

3.2.2. Max-Freq-Miner™"

Hence, in order to know the maximal frequency with a minimal window length mwl, it suf-
fices to apply the method without any minimal window length to keep track of the borders for the
stream S;[1,1 — mwl] = S,””Wl . Then, when we need the max-frequency, we check the borders of
S,””W’ in the complete stream S, and the minimal window itself, last(mwl,S). The summary of
the stream S, with minimal window length is a pair consisting of the normal summary of S;™!
and the content of the minimal window itself; i.e., MW, := last(mwl, S). We will call this sum-
mary, the mwi-summary of S,. Algorithm 2 explains how the mwl-summary (S,, MW,) of S, is
updated upon the arrival of a new itemset / in order to get the mwl-summary (S, MW,,) for
Si+1 = S; - (I). Notice that for a new stream the first mwl-summary will be created at time-point
mwl, and will be ([], S). Notice also that Update refers to the summary updating method without
minimal window length as described in Algorithm 1.

From the mwl-summary (S, MW) for itemset A in stream S, we can no longer assume that
the max-frequency is in the last entry of the summary S ; the fact that this entry is the maximal
one among all border positions for S;™", does not necessarily imply that this last entry is also
the maximal one among the borders for the stream S, as the following example illustrates:

Example 6. Let mwl be 5. Consider the following three streams (border positions in S;™" and
the minimal window have been indicated by vertical bars and a rectangle respectively):

S' = (labbblaabb|bbbbbl|
S = (labbblaabblbbbbal)
S* = (labbblaabblbbaaal)

All three streams S' have an mwl-summary (S, MW) with S = [(1, 1), (5,2)]}. Nevertheless, the
maximal border startmax™" for these three streams is respectively 1, 5, and 9.

Therefore, the function Get_mfreq,,,, is defined as follows. ¢ denotes the current time and A
the target itemset. Let S, = ([(p1,a1), ..., pr.a,], MW,); [; will denote p; —p;—y fori=1...r—1,
and [, =t — p, + 1. ¢; denotes Z;:i ajforalli=1...r. Furthermore, let a = count(A, MW,).

cit+a

Get_mfreq,,,(A,S;) = max i
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Algorithm 2 Update™'((S,;, MW,), I) for one target itemset I on time 1+ 1, with minimal window
length mwl, and without minimal frequency threshold

Require: (S, MW,), the mwl-summary of S,
Ensure: (S,;1, MW,, ) the mwl-summary of S, - (I}

1: St41 := Update(S ,, MW,[1])
2: MW, := MW,[2, mwl] - (I)

Running Example: Max-Freq-Miner™’

1 3 4 5 6 8 9 10 11
S a 0 ab 0 b ab a b 0 ab
mwl 3

t si3 MW, Summaries (S;_3) Frequencies
a b ab a | b |ab
3 - a,b,0 |] 0 M 3313310
4 a b,0,ab | [(1,1)] 1 [ 50 | 66 | 33
5 b 0,ab,0 | [(1,1)] [(2, D] [ 40 | 50 | 33
6 O ab,0,b | [(1,1)] [(2, )] (1 33|66 | 33
7 ab 0,b,ab | [(1,1),4, D] | [(2, 1,4, D] | [4, D] 50|75 |50
8 0 b,ab,a | [(1,1),4, D] ]| [(2,2)] [(4, )] 66 | 66 | 40
9 b ab,a,b | [(1,2)] [(2,2),(6,D] | [(4, 1)] 66 |75 1|33
10 ab a,b,0 |[(1,2),(7,D] | [(2,2),(6,2)] | [(4,1),(7,1)] | 50 | 60 | 28
11 a b,0,ab | [(1,2),(7,2)] | [(2,2),(6,2)] | [(4,1),(7,1)] | 60 | 66 | 40

Figure 3: Running example: max-frequency with a minimal window length (no minimal frequency threshold)
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3.2.3. Example
Figure 3 shows the summaries and max-frequencies for the itemsets a, b and ab at the various
timestamps.

3.3. Minimal Frequency Threshold

Until now, we assumed that for the target itemset we need to be able to report its frequency
exactly at any timepoint. We will now relax this requirement by setting a minimal frequency
threshold o. That is, at any time we should be able to produce the exact max-frequency of
the target itemset, only if it is above the frequency threshold. This relaxation will allow us to
decrease the size of the summary.

3.3.1. Pruning
Let S; be a stream with summary S; = [(p1,a1), - .., (py, a,)], and suppose that

ay+...+a,
Silpy, ) = LT
freqta Slpioih = <

Then we can safely remove (p;, a;) from the left-side of the summary; even though it is possible
that p; can still become the starting point of a maximal window in the future, it can be proven
that it can never be the starting point of a maximal window in which the target item is above the
threshold. Indeed, suppose that freq(A, (S, - B)[p1,]) exceeds the minimal frequency threshold,
then it is easy to show that freq(A, B) must be even larger, and hence p; is not the maximal border.

3.3.2. Max-Freq-Miner,
In order to be able to perform this pruning efficiently, we store and maintain for the summary,
the count fotal = a; + a, + ... + a,. When the left-most border is pruned, fotal is decreased by a;
to reflect the new total. Algorithm 3 shows how the summary is updated in Max-Freq-Miner, .
Deriving the max-frequency is equivalent to deriving the max-frequency in the case of no
minimal frequency threshold.

3.3.3. Example
Figure 4 shows the summaries and the max-frequencies for the itemsets a, b and ab at the
various timestamps.

3.4. Minimal Window Length & Minimal Frequency Threshold

The last variation of Max-Freq-Miner combines the minimal window length and minimal
frequency threshold constraints into one algorithm. We start from Max-Freq-Miner™", with the
mwl-summary, and extend the update algorithm to incorporate the minimal frequency threshold.

3.4.1. Pruning

A border p; in the summary S of S™" of the mwl-summary (S, MW) of S can be pruned
if A is infrequent in S™"[p;, ], but it cannot necessarily be pruned if A is infrequent in S[p;, ].
The reason of this difference with the situation without mwl is because the argument “the border
can be pruned because every extension that would make it frequent again would itself be even
more frequent” is no longer conclusive to prune the border, as the extension may not satisfy the
minimal window length restriction. The following example illustrates this point:

13



Algorithm 3 Update (S, 1) for one target itemset A on time t + 1, with minimal frequency
threshold o, and without minimal window length

Require: S, = [(p1,a1),...,(pr ay)] the summary of S,

Ensure: S, the summary of S; - (I)

1: total := a1 +a +...+a,
2: St41 := Update(S,, 1)
3: if A C I then
4:  total := total + 1
else
while S,,; not empty and changing do
Let (p, a) be the first entry of S 4
if 755 < o then
total := total — a
10: remove (p, a) from S,

R A A

Running Example: Max-Freq-Miner,

1 2 3 4 5 6 7 8 9 10 11
S = a b 0 ab 0 b ab a b 0 ab
minfreq = 0.4

t s Summaries Frequencies

a b ab a b | ab
1 a |[(1,D] (1 (] 100 | O 0
2 b | [(L,D] [(2, )] [ 50 | 100 | O
3010 (2, D] (1 - |50
4 ab|[4,1)] [(2,1),(4, D] [(4,1)] | 100 | 100 | 100
5 0 |[4 D] [(2,2)] [(4,1)] 50 | 50 | 50
6 b |l [(2,2),(6, 1] (1 - 100 | -
7 ab|[(7,1)] [(2,2),(6,2)] [(7,1)] | 100 | 100 | 100
8 a | [(7,2)] [(2,2),(6,2)] [(7,1)] | 100 | 66 | 50
9 b |[(7,2)] [(2,2),(6,2),(9, D] |II 66 | 100 | -
10 0 | [(7,2)] [(2,2),(6,3)] [] 50 | 60 | —
11 ab | [(7,2),(11,1)] | [(2,2),(6,3),(11,1)] | [(11,1)] | 100 | 100 | 100

Figure 4: Running example: max-frequency with a minimal frequency (no minimal window length). When the max-
frequency is below the threshold, based on the summary a support of 0 will be reported. These situations are denoted by
“-” in the column frequency.
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Example 7. Suppose that we have a minimal frequency threshold of %, and mwl = 3. Consider
the following stream'S (borders in S™™! and minimal window are indicated in the usual way):

(la b lab bl

The max-frequency of the singleton itemset a does not exceed the minimal frequency threshold in
the stream; its max-frequency equals % Suppose now that at timepoint 6, the itemset a arrives,

resulting in the stream
(la bla b b a)

Now the max-frequency with mwl = 3 will be % and startmax™" will be the position 1, that was
infrequent in S. Notice that this is not in contradiction with the observation that in the case
without a minimal window length, position 1 is not a border anymore at timestamp 5, because
without the minimal window length, the maximal border would be at position 6, with 100%
frequency for item a.

Nevertheless, as the following theorem shows, we can apply pruning on the border positions
in S™™!; if the target itemset A is not frequent in the suffix of S™™ starting at position p, then p
will never again become the maximal border under the minimal window length constraint in the
stream S.

Theorem 3.5. Let S be a stream, mwl a positive integer, and 0 < o < 1. Let p < |S™| be a
position in S™™. Suppose there exists an extension B such that:

o p = startmax™'(S - B),
o mfreq(A,S - B) = freq(A,S - B[p,|S - B|]) > o
Then p is a frequent border of S™™; i.e., freq(A,S™'[p,|S™™]) > 0.

Proof Let MW = S[|S| — mwl + 1,|S|] be the minimal window of S. From Theorem 3.4
it follows that p must be a border. We will prove that p is also a frequent border in S™", by
contradiction. Hence, suppose that p is not a frequent border in S™ for A; i.e,

freq(A,S™™ [p,IS™™ ) < o .

Suppose there exists an extension B as in the statement of the Theorem. Then, mfreq(A,S-B) > o,
this implies that
freq(A,MW - B) > freq(A,S[p, S]] - B) .

Therefore, p is not the starting point of the maximal window, since suffix MW - B satisfies the
minimal window length restriction and has a higher frequency. This is a contradiction and hence
the theorem is proven. O

3.4.2. Max-Freq-Miner™"

By Theorem 3.5 we know that a border for target itemset A in stream S is also a frequent
border of S™"!. We can thus maintain a summary for target itemset A over the stream S~ as if
only the minimal frequency threshold o is set. Algorithm 4 shows that implementing procedure
Updateng((S » MW), I) is simple, because it is largely the same as Update,,. Extracting all max-
frequent itemsets is demonstrated in Algorithm 6.
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Algorithm 4 Update"(;”'l (S, MW), I) for one target itemset A on time ¢+ 1, with minimal window
length mwl, and with minimal frequency o

Require: (S;, MW), the mwl-summary of S,

Ensure: (S,.;, MW’) the mwl-summary of S, - (I)

1: S := Update (S, MWI[1])
2: MW’ := MW[2, mwl] - {I)

Running Example: Max-Freq-Miner”™"

S = a b 0 ab 0 b ab a b 0 ab
mwl = 3
minfreq = 04

t si.3 MW, Summaries (S;_3) Frequencies

a b ab a | b |ab

3 - ab0 |[] [ (1 ol
4 a b,0,ab | [(1,D] | [(2,D] [1 50 | 66 | —
5 b 0,ab,0 | [] [(2, D] 1 40 | 50 | -
6 0  ab,0,b | [(4,D]|[(2,D,4, 1] [4,D]]| — | 66| —
7 ab 0,b,ab | [(4,1)] ] [(2,2)] [(4,1)] | 50 | 75 | 50
8 O b,ab,a | [] [(2,2),(6,1)] [1 66 | 66 | 40

9 b ab,a,b | [(7,D] | [(2,2),(6,2)] [(7,1)] |66 |75 —
10 ab a,b,0 | [(7,2)] ]| [(2,2),(6,2)] [(7,D] | 50 | 60 | —
11 a b,0,ab | [(7,2)] | [(2,2),(6,2),(9,D] | [1 60 | 66 | 40

Figure 5: Running example: Max-Frequency with a minimal window length and a minimal frequency. When the max-
frequency is below the threshold, based on the summary a support of 0 will be reported. These situations are denoted by
“-” in the column frequency.
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3.4.3. Example
Figure 5 shows the summaries and the max-frequencies of the itemsets a, b and ab at various
timestamps.

4. Mining All Itemsets

Until now, we focused on mining a single frequent itemset. Of course, in reality, the goal
is to find all frequent itemsets in the stream. A straightforward way to do this is to apply Max-
Freq-Mineff;W’ for all itemsets at the same time. Hence, for all itemsets A we need to store the
positions in the stream that can become a maximal border. Theorem 3.5 reduces the number of
borders we need to store: either the minimal window is the maximal window, or the maximal
border is a maximal border in S™". Hence, it suffices to store the minimal window, and, for
every itemset, its summary in in S™/. This straightforward approach, however, is not practical.
The reason is as follows: suppose that a transaction 7 with n items leaves the minimal window,
and enters S, Then, for each of the 2" subsets of T we have to start a new summary, even if a
subset is not frequent in (7') - MW. For large transactions, the number of new summaries would
hence become intractable.

The next lemma will explain how we can avoid this exponential blow-up; if we are willing to
store the last 2mwl transaction of the stream; that is, twice the minimal window, it suffices to only
start a summary for those subsets of T that are frequent in S™" just before T left the stream.
Usually the number of frequent itemsets in the minimal window will be much smaller than the
number of subsets in an arbitrary transaction. Of course, if the minimal support is set too low,
for example, lower than 1/mwl, we may still experience an exponential blowup. Nevertheless,
the lemma below reduces the number of summaries to be generated from “all subsets of 7" to
“all subsets of T that were frequent in the last minimal window.”

In other words, if an itemset A is mwl-frequent in S;, then either the maximal border p of A
in S, is among the last 2mwl positions of the stream, or A is frequent in the sub-stream S,[p, p +
mwl — 1]. In the latter case, at time point p + mwl, A was a subset of the transaction leaving the
minimal window and A was frequent in the minimal window at time point p + mwl — 1. This
situation is also depicted in the following figure:

Border position p of itemset A:

e Either L —2mwl < p < L —mwl + 1:  (border at one of the black positions)

mwl mwl
| — 1 \
S[1, L — 2mwl] MW,
eort ACT =S,,AfrequentinS[p, p+mwl—1] (border at T)
mwl mwl
——— —
T ]
MW,

§-mwl

Lemma 4.1. Let S be a stream of length L. MW, denotes S[t — mwl + 1,t]; i.e., the minimal
window at the time t.
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Let mfreq™"(A,S) > o, with q the starting point of the maximal window; i.e.,
q := startmax™"(A, S)
then,

o cither L —2mwl + 1 < g < L —mwl; i.e., q left the minimal window less than mwl steps
ago, or

o A is frequent in S|q, q + mwl — 1]; that is: A is frequent in MW, for t = g + mwl — 1 (S,
leaves the minimal window at time t + 1)

Proof

Clearly ¢ < L — mwl, otherwise the minimal window length requirement would be violated
for the maximal window S[gq, L]. Therefore, either the first statement holds, or ¢ < L —2mwl + 1.
We will show that if ¢ < L — 2mwl + 1, then the second statement holds.

Denote the number of occurrences of A in S[g, g + mwl — 1] by a, the number of occurrences
of A in stream S[g + mwl, L] by c, and the length of S[g + mwl, L] by d:

— mwl — — d -
| [ _a | ¢

T T

q q + mwl

a+c

We know that freq(A, S[q, L]) > o, i.e.

of A in S[q, g + mwl — 1]; i.e., a/mwl, is also greater than or equal to 0. Assume, for the sake of
contradiction, that a/mwl < 0. We then have

> o, and we have to show that the frequency

a+c a c a a+c

>0 > ¢ :
mwl +d mwl d mwl d mwl +d

This result shows that A is even more frequent in S[g + mwl, L] than it is in S[g, L], which is not
possible because ¢ is the starting point of the maximal window of length at least mwl for A in S,
and [S[g + mwl, L]| > mwl, since g < L — 2mwl + 1. Hence, our assumption is wrong, meaning
that a/mwl > o. O

4.1. Algorithm

Hence, we do not need to maintain a summary for all itemsets, but we only need to store
those borders for itemset A that were once the starting point of a minimal window in which A
was frequent. Furthermore, we can prune any border that does not satisfy the minimal frequency
threshold in S™/. The only price we have to pay is that we need to check for the frequent
itemsets in the mwl windows S[L — 2mwl + 2, L], ..., S[L — mwl, L].

The algorithm to update the summary when a new itemset / arrives is as follows: for every
itemset A for which we are maintaining a summary, update the summary with the itemset that
leaves the minimal window. Next we prune the infrequent borders. We start pruning at the oldest
border and move toward the youngest one, because the frequency, in S™" of the borders is
strictly increasing. Thus we can stop pruning if we encounter a frequent border. Remember that
we keep track of the sum fotal = a; +. ..+a, in every summary, to efficiently assess the frequency
of a border. Then, for all subsets of I that are frequent in the minimal window and for which we
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Algorithm 5 UpdateAll,,,; (S, ..., S, MW, )MW,, 1) for all itemsets on time ¢ + 1, with
minimal window length mwl, and with minimal frequency o

Require: (S f‘,...,S?”,MW), the mwl-summary for all itemsets of S, and MW, the second
minimal window

Ensure: (S il, oS f MW?’) the mwi-summary for all itemsets of S, - (I) and MW, the second
minimal window of S; - (I}

MW’ := MW[2, mwl] - (I)
MW, := MW, (2, mwl] - MW][1]
for all A frequent in MW, and A C I do
if $# exists then
S;‘H := Update,(S#, MW[1])
else
SA =1+ 1,1)]
for all A such that S exists and A is not frequent in MW, do
S4 := Update,(S*, MW[1])

R A A R ol S

are not yet maintaining a summary, start a summary. In this way, we guarantee that we are able
to capture all maximal windows with ¢ < L — 2mwl + 1. Furthermore, we always keep the last
2-mwl—1 transactions. When the frequent itemsets are required, we need to generate all frequent
itemsets from the summaries plus all itemsets frequent in one of the windows S[L —2mwl +2, L],
... S[L — mwl, L]. This can be done efficiently with a small adaptation to efficient incremental
algorithms that have already been proposed in literature [20], or with an incremental version of
existing frequent itemsets miners. Algorithm 5 shows the procedure for updating all summaries.
Figure 6 illustrates the UpdateAll,,,, , on the running example. Notice, e.g., that when at step 7,
s4 = ab is appended to S™". In the original algorithm Max-Freq-Miner™", this arrival resulted
in a summary being started for all its subsets that did not yet have a summary; i.e., for a and ab
(see Figure 6). For Max—Freq—Miner—All’ng , however, these summaries are not created as a and
ab were not frequent in MWy = (ab @ b). Algorithm 6 shows how to extract the max-frequent
itemsets and their max-frequency.

4.2. Complexity

Let R be the maximum number of borders in any summary while mining a stream. Let F be
the number of frequent itemsets in the stream with respect to the minimal window length mw!
and the minimal frequency threshold o-. Both the UpdateAll,,, , and Get_mfreq,,,, , need to be
executed at each timestamp of the stream.

The procedure UpdateAll,,, , consists of two main for-loops. The first for-loop (lines 2-
6) can be executed at most O(F) times. In the worst case, the code in this for-loop needs to
investigate every border of the current summary (if Update, is executed). As a result, the first
for-loop takes at most O(FR) time. Note however, that in practice, only one or zero borders
will be pruned at a time. Also note that our experiments (on the blocks-10 and compounds-60
streams) show that there are on average only about 10 borders present in all summaries. Thus
the real-world complexity will be in the order of O(F’) rather than O(FR). The second for-loop
(line 7) can also execute at most O(F') times (if all frequent itemsets are currently frequent).
In the worst-case all borders need to be removed, implying O(R) time. In total, the procedure

UpdateAll,,, , consumes in the worst-case O(FR) time.
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Algorithm 6 Pseudo-code of Get_mfreq,,,, ,((S f“,...,S f‘”,MW),MWz,O') for extracting the
max-frequent itemsets with minimal window length mwl and with minimal frequency threshold
o. Parameter MW? is the double minimal window.

1: frequentltemsets := []

2: freqltemsets :=

(A, p. f) | mfreqg™" (A, MW, - MW) = f > o, p = startmax™"(A, MW, - MW)}

3: for all A such that S# exists or A € freqltemsets do

4:  if A e freqltemsets then
5 (mFreqPos, mFreq) := freqltemsets[A]
6: else
7
8
9

(mFreqPos, mFreq) := (0, 0)
if S/ exists then
¢ := count(A, MIW)

10: for (p,a) € S* do

11: c:i=c+a

12: if mFreq < ,_[‘) — then

13: mFreqPos :=p

14: mFreq := z—,§+1

15:  if mFreq > o then

16: frequentltemsets := frequentltemsets - (A, mFreqPos, mFreq)

17: return frequentltemsets

An important step in Get_mfreq,,,, , is finding max-frequent itemsets in MW, - MIW. Sec-
tion 7.1.2 describes how we can find the max-frequent itemsets in S,[z — 2mwl + 1, ] such that the
starting position is smaller than or equal to ¢t — mwl + 1. This procedure resembles the iterative
candidate-generation-then-pruning structure of Apriori. This strategy traverses a portion of the
itemset-lattice. The number of states visited in the lattice is polynomial in F, the number of
frequent itemsets. Visiting a new state requires merging at least two position summaries. Let
G be the size of the largest frequent itemset. We can estimate the running time of this step by
O(mwl X G X poly(F)), in which poly(F) is a polynomial of F.

There are at most O(F) frequent itemsets, thus the for-loop (lines 3-16) can be executed at
most O(F) times. Within the for-loop the procedure loops (lines 10-14) over all borders of the
summary of the current itemset (if the summary exists). The total complexity of the for-loop is
thus O(mwl X G X poly(F) + FR).

The combined worst-case time complexity is thus O(mwl X G X poly(F) + FR). In section 6
we show that the number of borders grows (in the worst-case) sublinearly with respect to the
length of the stream. In section 7 we show that our algorithm can easily process long streams
(+4 million transactions) with large itemsets (about 85 items). In our experience the performance
of the algoritms depends largely on the number of frequent itemsets.

4.3. Optimizations

Whenever a non-target itemset arrives at the head of the stream, all four algorithms try to
prune borders from the summary. Even if we could have predicted at the previous timepoint that
such an attempt would be in vain.
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Running Example: Max-Freq-Miner-All"""

S = a b 0 ab 0 b ab a b 0 ab
mwl = 3
minfreq = 0.4
t sz MW, Summaries (S,_3) Frequencies
a b ab | a b | ab
3 - a,b0 |]] (] 0| -1-1-
4 a b0,ab 0 [l |50 |66 —
5 b 0,ab,0|[] (2,1 [l | =40 |50 | -
6 0 ab,0,b|[] [(2, 1] nl| - 1le6| -
7 ab 0,b,ab | [] [(2, 1)@, 1)] [1 | %50 | 75 | %50
8 0 byaballl [(2, 1)@, 1)] 0166 | 66|40
9 b abab |l [, D@ D6,D] 11| 66 |75] -
10 ab  ab0 | [(7,D]] 12 DE& DG, |1 | 50 |60 —
11 a b0,ab|[(7.2]][2 DA DG | | 60 | 66 | x40

*: an element s,_3 is only added to the summary of S,_3 at timestamp ¢ if it was frequent in the
minimal window MW,_;. Sometimes the frequency of an itemset is reached within the last mwl
elements of the summarized stream S;_3, and is not a border in its summary. These cases are
marked by a star.

Figure 6: Running example: Max-Frequency with a minimal window length and a minimal frequency. When the max-
frequency is below the threshold, based on the summary a support of 0 will be reported. These situations are denoted
by “-” in the column frequency. The algorithm is modified for mining all itemsets; we only start a summary for an
itemset entering S~ that was frequent in MW the step before. The summaries for which this implies a difference are
underlined.

Example 8. Suppose we are mining the following stream {la b b |a a a a b ) with Max-Freq-
Miner. The border positions for itemset a are indicated by vertical bars. The frequency between
the first and second border is % From the second border to the end of the stream, the frequency is
equal to ‘5—‘. The second border can only be pruned from the summary if there is a before block with
a higher frequency than an after block. Concretely, if x non-target itemsets extend the stream,
and thus % > % holds, the second border can be pruned. In other words, at this timepoint we
can be certain that the second border will remain in the summary for at least another 7 more

timepoints (x > 7).

Therefore, we introduce the checkscheduler, for delaying prune checks as long as possible.
Intuitively, this optimization should prove most valuable in the context of a long minimal window
and a low minimal frequency threshold. Because borders will remain put in the summary for
quite some time.

One could say that the checkscheduler is lazy in trying to prune borders from a summary.
This laziness can be taken one step further as the following example shows.

Example 9. Suppose we are mining the following stream ( la a b b |a ) with Max-Freq-Miner.

Again, there are two borders, indicated by the vertical bars. The checkscheduler would, at this

timepoint, predict that the second border might be pruned at the next timepoint. Indeed, if the next
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itemset arriving in the stream is a non-target itemset, the frequency between the border equals
the frequency from the second border to the end of the stream. However, if the next three itemsets
arriving in the stream are also target itemsets, the checkscheduler could have been even lazier
in the sense that it could have waited until after the arrival of the last target itemset to make
a prediction. This would result in just a single prediction (x = 4), instead of four predictions
(x =1, x =2, x =3 and x = 4), one after the arrival of each of the four target itemsets.

A sequence of itemsets is called a burst of itemset A if each of the itemsets is a superset of
A. If the checkscheduler waits until the end of a burst to predict the timepoint at which a border
might be pruned, it is called lazy. We call this optimization of the checkscheduler lazy handling.
Intuitively, lazy handling will perform best if a stream contains many bursts.

During experiments with our software prototype, we found that the lazy checkscheduler out-
performs the Max-Freq-Miner”™! on bursty streams. The results are listed in section 7.

The length of the predicted minimal delay depends on the pruning methods available to an
algorithm and depends on the exact value of the minimal window length and minimal frequency
threshold. For each of the four algorithms we derive the equation to calculate the minimal delay.

The Max-Freq-Miner algorithm prunes a border if there exists a before block with a fre-
quency that is higher or equal to the frequency of an after block. Let [(ay, p1), ..., (a,, p,;)] be the
summary of stream S,. Then we can prune the youngest border (a,, p,) if:

Ar-1 > Ay
Pr— Pr-1 a t_pr+1+x

Indeed, the frequency of the youngest border drops if non-target itemsets are added to the
top of the stream. We find the smallest satisfying integer value of x by means of the following
formula:

x> ar(pr - pr—l) _(
ar-1

t_pr+1)

If the minimal window length is set, Max-Freq-Miner™ keeps a summary for S;"". Calcu-
lating the minimal delay is thus equivalent to the calculation for Max-Freq-Miner.

Two pruning criteria are employed when a minimal frequency threshold is set. The first is the
same as in the Max-Freq-Miner algorithm. Denote the delay for this first criterion by x;. The
second pruning criterion prunes the oldest border if its frequency in S; drops below o-. Again, the
frequency of a border drops fastest if non-target itemsets arrive: at least x, non-target itemsets
have to arrive to make the oldest border prunable:

total

— <0
t-p1+1+x

Remember that fotal denotes the sum of all the itemset counts in the summary, i.e. fotal =
ay + ...+ a,. Rewriting the previous equation results in:

total
R
o

Now, we can delay checking for a before-after block violation until #+x; and for an infrequent
oldest border until timepoint ¢ + x;.

When both the minimal window length and the minimal frequency threshold have been set,
the minimal delay calculation is identical to the calculation for the Max-Freq-Miner,- algorithm,
except that it is now carried out on the summary of S7",
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5. Greater Border Efficiency

In this section we will show some negative results w.r.t. exploiting the relation between the
itemsets in order to increase the efficiency of mining all max-frequent itemsets. More concretely,
we will show that even though the max-frequency measure is anti-monotone, the border positions
of super- and subsets do not possess any straightforward relation; for any collection of sets we
can find a stream and a position in that stream such that exactly the given collection of itemsets
has a border at that position. The collection of itemsets does not need to be subset-closed and
is not restricted in any way. As an intermediate step towards this result we first show that the
border positions of the items do not contain enough information to derive the border positions
of larger itemsets, hence invalidating the extensions to borders of state-of-the-art techniques for
itemset frequency based on maintaining tid-lists of items [24].

5.1. Item Borders Only

In this subsection we answer the following question: “Do we need to keep track of the sum-
maries of all itemsets or is it possible to keep track of the item-summaries (the summaries of
itemsets of length 1) and reconstruct the itemset-summaries (the summaries of itemsets of length
greater than 1) from the item-summaries whenever needed?” The next example will answer this
question negatively by showing two streams in which all item summaries are the same for both
streams, yet the summary for the itemset composed of the individual items is not. As such we
can conclude that the item summaries do not contain enough information to derive the border
positions of non-singleton itemsets.

Example 10. Suppose the following two streams: S' = (a b ab ¢ ¢)and S* = (a b a bc c).
The item-summaries for both streams are equal: S} = S? = [(1,2)],S lly =S i = [(2,2)] and
Sl = 82 = [4,2)]. However, the summary for the itemset ab is different in both streams:
S;b =[@3, )] and Sﬁb =[], as is the summary of itemset bc: S},C =[] and Sic =[4, D).

The underlying reason for this result is in the fact that in the summary of an itemset we only
keep enough information to predict future maximal border positions of that itemset, effectively
reducing the storage needed. Storing all occurrences of all items clearly is not an option as this
comes down to storing the complete stream into the memory.

5.2. Border Closure

In frequent itemset mining, a set of itemsets is frequently abbreviated by its top elements.
The top-elements are those itemsets that are not a strict subset of another element in the set. The
set of these top elements is called the set border®. In frequent itemset mining, where all subsets
of itemsets are frequent if the itemset itself is frequent, the set border of a set of itemsets is in
many cases exponentially smaller than the original set.

Secondly, we observe: if at timestamp p itemset ab arrives at the top of the stream, then p
will be a border for all the subsets: a, b and ab.

Combining both observations leads to the question: “Can we share borders between the
summaries of related itemsets?” For example: if itemset ab arrives, the current timestamp can
be a border for ab, a and b at the same time.

3Note that in the literature this is called simply border. However, as we already use the term border and to avoid a
naming clash in our terminology, we call it the set border.
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Unfortunately, we will prove that for every arbitrary collection of itemsets 8 there exists a
stream and a position p in that stream such that the itemsets that have a border at p is exactly
8. This theorem shows that there is no relation between the border positions of the itemsets; at
a given timestamp literally any combination of itemsets can have a border. This shows that there
is no obvious way to combine the summaries of the different itemsets.

Example 11. Ler A = abced, and B = {abc, a}. In the following stream at the indicated position,
exactly the itemsets abc and a have a border position and no other itemset:

{abcd ab ac bc O O |abcd abc a a 0 0)

A first step in the proof consists in identifying the bag L of transactions that will come before
the border position, and the bag of transactions R occurring after the border position. Remember
that a position p is a border for an itemset if and only if its frequency in every block ending
at position p — 1 is less than its frequency in every block starting at position p (Theorem 3.2).
In our construction this property will translate into the requirement that for every set in B, the
frequency in R (the transactions to the right of the border) must be larger than the frequency in
L. For the other sets, the opposite must hold.

We will denote the number of times a set J occurs as a subset of an element in a bag R by
count(J,R); i.e.,

count(J,R) := Z RR) ,

JCR
where R(R) denotes the multiplicity of the set R in R.

Lemma 5.1. Let A be an itemset, and B C 24. Then there exist bags L and R such that for all
J C A it holds that:
J € B o count(J, L) < count(J, R)

Proof We will prove this lemma by induction on the number of elements in 8.

The base case |B| = 0 is trivially fulfilled by £ =R = {}.

In the general case, let J be a minimal set in B w.r.t. set inclusion. By induction we assume
that the lemma holds for 8\ {J}. Let £ and R’ be the bags. Let n = count(J, L) — count(J,R’).
Then, add n + 1 copies of J to R’ to get R, and if |J] > 1, for all j € J, add n + 1 copies of all
sets J \ {j} to L to get L, otherwise £ = L'. The resulting .£ and R satisfy the conditions of the
lemma. O

Example 12. Consider again A = abcd. We construct the bags for B = {abc,a} using the
inductive procedure given in the proof:

B L R

{} {} {}

{abc} {ab, ac, bc} | {abc)
{abc,a} | {ab,ac,bc} | {abc,a, a}

Hence, the following bags L and R satisfy the inequalities of the lemma for B = {a, abc}:

L := {ab,ac,bc}

R := {a,a,abc}
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Indeed; for example: count(a, L) = 2 < count(a,R) = 3, and count(ab, L) = 2 £ count(a,R) =
1. Notice incidentally that these bags correspond to the example before; in the stream given in
that example, the non-empty transactions to the left of the position p are those in L, and the ones
on the right are those in R.

For the proof it is important to get a grip on the before and after block for position p in
which an itemset reaches respectively its maximal and minimal frequency. The following two
lemmas are essential. The first extension lemma shows that we can extend streams by appending
a sequence of empty transactions such that for every subset of the first transaction of the stream,
the suffix of the stream in which the frequency of the itemset is maximized among all suffixes, is
the whole extended stream itself. We will call such a stream suffix-maximized. We will use Z, to
denote a stream consisting of n empty transactions; i.e.,

Xn

—_——
Z, =(00 ..0)

Lemma 5.2. Let S be a stream of length m. There exists an ny such that for all n > ny it holds
that for any itemset J C S[1],

_max freq(J, last(i,S - Zy)) = freq(J,S - Zy)

1=1..m+n
Proof Let J be any itemset and split S in an arbitrary way: S = S; - S,. Let count(J,S;) = j,
count(J,S,) = j., |S)| = my, and |S,| = m,. Notice that, since J C S[1], j; > 1. Let us consider
the effect of extending S by appending Z,. We get the following frequencies for J in the suffix
S, - Z, and in the whole stream S; - S, - Z,:

freq(J,S, - Z,) = Jr
m, +n
jl + jr
LSS, 2,) = ———
freq(J. 5 ) my+m,+n

The ratio between these two frequencies (whole stream divided by suffix S, - Z,) is:

Ji+Jr Jr _ Jitjr me+n _(1+J_'z)( m. +n )
Jr

m+m,+n'm,+n jr mp+m,+n my+m,+n

It is easy to see that with increasing n, this ratio will converge in the limit to 1 + %, which is

strictly greater than 1, since j; > 1. Therefore, from a certain index né on, the frequency of J in
the whole stream will be larger than in the suffix S, - Z,. Since the choice of J C S[1] and the
division S as S; - S, were arbitrary, we can extend the result to all subsets of S[1] and divisions of
S by taking the maximum of all né, which proves the lemma. O

Example 13. Consider the stream S := ( abcd ab ac bc ). For this stream it suffices to append
ny = 2 or more empty transactions to make the maximal suffix equal to the whole extended stream
for all subsets of abcd. Let’s consider the frequencies of the subsets of abcd in the suffixes of the
stream S- 7, (since all transactions with d also contain abc, there is no need to display the results
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of the itemsets with a d, except for abcd itself):

suffix frequencies
a b ¢ | ab | ac | bc | abcd

(abed ab ac be 0 0y | 1/2 | 1/2 [ 1/2 [1/3 [ 1/3 [ 1/3 | 1/6
(abacbc®0)|2/5(2/5]2/5|1/5]1/5]1/5] 0
Cacbc ®0) [ 174174172 0 |1/4|1/4
(bc®O)Y| O [1/3]1/3] 0 | 0 |1/3

(00Y| 0 | 0| 0] 0] oO0]oO

0y ool o] o] o0]|oO

(=Nl e)

The second extension lemma shows the opposite of the first lemma; any stream can be ex-
tended by appending a sequence of empty transactions such that for every subset of the first
transaction of the stream, the prefix of the stream in which the frequency of the itemset is mini-
mized among all prefixes, is the whole extended stream itself. We will call such a stream prefix-
minimized.

Lemma 5.3. Let S be a stream of length m. There exists an ny such that for all n > ny it holds
that for any itemset J C S[1],

freq(J,S - Zy) = min freq(J,(S - Zy)[1,i])

Proof The lemma can be proven in a similar way as the previous lemma: Clearly for any
itemset it holds that its frequency in any prefix of a stream S - Z,, that contains the complete S is
more than the frequency of that itemset in S - Z,,; adding empty transactions only decreases the
frequency. Therefore we only consider prefixes that do not contain the full S. Splitting a stream

S arbitrarily into S; - S, gives the following frequencies for the prefix S; and the whole stream
S-Z,:

g
m

jl+jr
my+m,+n

freq(J,Sy)

freq(J,S - Zy,)

The ratio between the frequency in the whole stream and in the prefix is:

Jitr / g (g4I my
my+m,+nlm gi)\my+m.+n) "’
which goes to 0 in the limit, indicating that the frequency in the whole stream becomes eventually

less than that in the prefix. Again, since the subset J of S[1] and the prefix were arbitrary, the
result can be extended to all subsets and divisions and hence the lemma is proven. O

Example 14. Consider the stream S := { abcd abc a a ). For this stream it suffices to append
no = 1 or more empty transactions to make the minimal prefix for all subsets of abcd equal to the
whole stream. The frequencies of the subsets of abcd in the prefixes of the extended stream are
as follows (since all transactions with d contain abcd, there is no need to display the results the
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itemsets with d, except for abcd itself; and every transaction with ab, ac, or bc contains abc as
well; therefore of these four sets, only abc is displayed):

prefix frequencies

a | abc | abed
(abcd abc a a 0) | 4/5|2/5] 1/5
{abcd abc a a) 1 1/2 | 1/4
{abcd abc a) 1 [2/3]| 1/3
{abcd abc) 1 1 1/2
(abcd ) 1 1 1

Theorem 5.4. Let A be an itemset, and let B C 2% be a collection of itemsets over A. Then, there
exists a stream S and a position 1 < p < [S| such that for any subset J of A it holds that p is a
border for J in' S if and only if J € B.

Proof Let £ and R be bags as in Lemma 5.1; i.e., the sets that occur more as a subset of
transactions in R than as subset of transactions in £ are exactly the sets in 8. Put the transactions
of L, respectively R, in an arbitrary order to get the stream S/, respectively Sg. According to
Lemma 5.2, there exists a number n; such that for alln > n;, ( A ) - Sz - Z, is suffix-maximized.
Similarly, according to Lemma 5.3, there exists a number n, such that for all n > n,, (A )-Sg-Z,
is prefix-minimized. Now choose n; > n; and n, > n, such that n; + [Sy| = ny + [Sg|. The
following stream and position p = 1 + |Sz| + n; satisfy the conditions of the theorem (position p
is indicated by a vertical bar):

(A)-Sg-Zn[(A)-Sg - Ln,

Let us now analyze which itemsets have a border at position p. Because ( A ) - Sy - Z,, is
suffix-maximized, for all itemsets J C A, among all before-blocks ending at position p — 1, the
frequency of J is maximal in the whole part before p. Similarly, since ( A ) - Sg - Zj, is prefix-
minimized, among all after-blocks starting at position p, the frequency of J is minimized by the
whole part starting at position p. Hence, J has a border at position p if and only if its frequency
in(A)- Sy Zy, is strictly smaller than its frequency in ( A ) - Sg - Z,. As n; and ny have been
chosen to make both of equal length, this means that the absolute number of occurrences of J in
(A)-Syg-Zy,,whichis 1 + count(J, £) must be smaller than the absolute number of occurrences
of Jin(A):Sg:Z,,, whichis 1 + count(J,R). Because L, R satisfy by definition Lemma 5.1,
this implies that J € B. Since J was chosen arbitrarily, the itemsets having a border at position p
are exactly those in B, which proves the theorem. O

In the next example we illustrate the proof of Theorem 5.4 by bringing all examples together.

Example 15. The construction of the stream and position p in the proof of Theorem 5.4 for the
collection of sets B = {abc, a} will be the one given in Example 11. As Example 12 shows, the
bags L and R that are generated using the procedure described in the proof of Lemma 5.1 are:

L = {ab,ac,bc}
R = {abc,a,a}

We form the streams Sy and Sg by putting the elements in the bags in any order. Suppose that
we chose for:

S
Sg

(ab ac bc)

(abc a a)
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Then we need to find numbers ny and ny such that: abcd-S -7y, is suffix-maximized, abcd-Sg-Zy,
is prefix--minimized, and both have the same length. According to Example 13 and Example 14,
the smallest numbers for which this holds are: ny = ny = 2, which results in the stream and
position:

{abcd ab ac bc O O |abcd abc a a ® Q)

6. Worst Case Analysis

In this section we study how large the summary can become in worst case. For streams of a
specific length L, we will identify a stream of this length that maximizes the number of borders
and we show the asymptotic behavior of this tight bound. Farey sequences play an important role
in this analysis.

6.1. Farey Streams

Consider a stream S; of length L and a target itemset A. In the following, py, ... p, will denote
the borders of A in S;. Consider the following r blocks: B; := S[p;, pi+1], fori=1...r -1, and
B, := S[p,,]. Leti = 1...r, b; := |By|, and a; = count(A,B;). We visualize these settings as

follows:
[ | aaa] | - | [a)

From Theorem 3.2, we know that the frequencies of the target itemset in the blocks must be
increasing:
aq ar a,

by < b, <o < b
Thus, every stream with r borders corresponds to such an increasing sequence of r fractions.
We call this sequence of fractions the block frequency sequence of the stream. We can assume
without loss of generality, that the length of the stream is the sum of the denominators b; +. . .+b,
(we can always omit the leading non-targets in the stream). The other direction is also true: for
every increasing sequence of numbers

’ ’ ’

a, a a
0<—,1<—,2<~--<—f§1,

by b b

we can find a stream of length b} + ... + b; with r borders, namely:

% bi—a}x ax by—ajx alx bl.—al.x
——T e PN
la...ab...bla...ab...b|...|a...ab...b

We will call this stream the canonical stream associated with the sequence a\[b] < a,/b} < ... <
a, /b, . Therefore, finding the maximal number of borders for a stream length L corresponds
to finding the largest number of different fractions between O and 1, of which the sum of the
denominators adds up to L. In this context, the notion of Farey sets and Farey sequences [8] will
be crucial.
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Figure 7: Farey sequences of orders 1 to 5.
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Figure 8: Illustration of F5, the Farey Stream of fifth order.

Definition 6.1. The Farey set of order k, denoted Fy. is the following set of completely reduced
fractions *:

Fi = {g|gcd(a,b)=1, 0<a$b£k} :

The Farey Sequence [8] of order k, is the list where the elements of F). are ordered in increasing
order.

In Figure 7, the Farey sequences of orders 1 to 5 are given.

Just like any other increasing sequence of fractions, also the Farey sequence F can be asso-
ciated with its canonical stream Iy, which has |F| borders, and a length that equals the sum of
the denominators of the elements in F;. For example, consider the Farey sequence of the fifth

order:

1 1 2 1 3 2 3 4 1
—<-<=-<-<=-<=-<=-<=-<-.

4 3 5 2 5 3 4 5 1

The corresponding Farey stream of the fifth order, Fs, is given in Figure 8. This stream has
|Fs| = 10 borders and a total lengthof 5 +4+3+5+2+5+3+4+5+1=37.

We will now show that the Farey streams have the maximal number of borders; that is, for
every stream S of length equal to the length of Fy, the number of borders in S is less than or equal
to the number of borders in F; = |Fy|. This property is based on the following straightforward ob-
servation. Let dsum({ai /by, ...,a./b,}) = Xi_, b;, i.e., dsum(S) is the sum of the denominators

of the (completely reduced) fractions in S'.

Lemma 6.2. Let S = {a;/by,...,a,/b,} be a set of r different fractions, with 0 < a; < b;, for all
i=1...r. Let k be such that |S| > |Fy|, then

dsum(S) > dsum(Fy) .

4Note that in our definition, the fraction 0/k is not included in the Farey set Fy.
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Length of [y, # borders of [F;

Fy] = (1) =1 [Fil=¢() =1
[Fil+2-92)=1+1x2=3 [Fil+e2)=1+1=2
[Fol +3-903)=3+2%x3=9 [Fol+9(3)=2+2=4
[Fs]+4-04)=9+2x4=17 |F35/+9(4)=4+2=6
[Fal +5-05)=174+4x5=37 | |[F4l +(5)=6+4=10
[Fs|+6-¢(6)=37+2Xx6=49 | |Fs5|+¢6)=10+2 =12
[Fel+7-0(7)=49+6XxT =91 | |Fg| +(7)=12+6 =18

NN N AW~

Table 1: The length of Fy, a Farey stream of order k.

Proof It is easy to see that dsum(S) — dsum(Fy) = dsum(S — Fy) — dsum(F; — §), and that
|S — Fy| > |Fy —S|. Furthermore, any fraction in S — F; must have a denominator of at least k + 1,
and every fraction in F; — S has a denominator of at most k. Therefore,

dsum(S) — dsum(F})
dsum(S — Fi) — dsum(F, — S)

> k+1D)-|S=F—k-|Fr,=S]|
> |S—F > 0.
Hence, dsum(S) must be larger than dsum(Fy). O

Theorem 6.3. Let S be a stream with |S| = |Fi|. Then, the number of borders in S is at most the
number of borders in Iy,

Proof Consider the block frequency sequence S := {a,/bi,..., a,/b,} of S. The number of
borders in S equals |S|, and the number of borders in [y equals |Fy|. Suppose now, for the sake
of contradiction, that the number of borders in S is larger than the number of borders in F. Then,
|S| > |F|, and thus, because of Lemma 6.2, dsum(S) > dsum(F}). This is in contradiction with
the fact that dsum(S) = [S| = |F| = dsum(F}). Hence, the number of borders in S can maximally
be the number of borders in Fy. O

Corollary 6.4. Let L = dsum(Fy,), and r = |Fy|, for a fixed k. A stream of length L has maximally
r borders.

6.2. Bounds

For a Farey stream [F; the number of borders in it equals |F| and the length equals dsum(Fy).
This representation does, however, not reveal the actual ratio between the size and the number
of borders of a stream. Therefore, the asymptotic behavior of these quantities has been worked
out, based on known results in number theory about Euler’s totient function ¢ and the Mobius
function pu.

The Euler’s totient function ¢ maps positive integers j to the number of integers i, 1 <i < j
that are co-prime to j; that is, ged(i, j) = 1.

Example 16. ¢(5) =4, as 1,2,3,4 are all co-prime to 5. $(8) = 4, as only 1,3,5,7 are co-prime
to 8.
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It is not too hard to see that the number of elements in the Farey set Fy, i.e. |Fy| equals
Zf-; 1 9. Indeed, for k = 1, this identity obviously holds. Furthermore, the number of new
elements in Fy — F} are exactly those fractions ﬁ suchthat 1 < x < (k+1) and ged(x,k+1) =1
(57 must be completely reduced). Hence, the number of new fractions equals the number of
integers x, 1 < x < k+ 1 that are co-prime to k + 1, which is ¢(k + 1). For some values of k, these
numbers have been given in Table 1.

Obviously, these characterizations are still not that useful for getting insight in how the num-
ber of borders relates to the size of the streams. Therefore, we show the following asymptotic
behaviors of the above sums:

k 2
NG % +O(klogh)
i=1 T

k
2k3
Z i (i) = + 0K logk) .
i=1 4
For the first equality, it is well-known that

Il 3 log(k)
ﬁ;ﬂ” = ;+0(—k ) : 3)

Hence, asymptotically, |F| becomes 371—";

For the second sum we could not find a similar result in the literature. Therefore, we give our
own proof of the asymptotic result for the second sum:

LS = 2 oY)

2 k

Our proof of this result uses similar techniques as the known proofs for the asymptotic behavior

of (3). This result shows that asymptotically, dsum(F}) becomes ZKL;

2+ L3

il

l l
Proof Indeed, if i fk + 1, then L’%IJ equals HJ Therefore, in this case, the expression trivially
evaluates to 0.

On the other hand, if i|(k + 1), then L@J =kl and I_H equals kel=i ask+1—iis the largest

Lemma 6.5. For all integers 1 <i <k, it holds that

L)

+3
6(k + 1)°
equals (;2) ifilk + 1, and is 0 otherwise °.
i

2
+

k+

1

k+1

1

1

3
]—<J +3

1 l
integer divisible by i that is smaller than k. Therefore, in this case, the expression equals:

3 2 ) 2 .
2(k-|.-1) +3(kf1) +(k-|.-1)_2(k+¥—z) _3(k+?—z) _(k+?—z)
l 1 l 1 l l
6k + 12k + 6
.2 .

l

5 As usual, ilk + 1 denotes that i is a divisor of k + 1.
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O

Let now u(j) denote the Mobius function. u(j) is defined as follows: u(j) is 1 if the prime

factorization of j is square-free and has an even number of factors, is —1 if the factorization is
square-free and has an odd number of factors, and is O otherwise.

Example 17. u(3) = —1, because the prime factorization has 1 factor and is square-free. u(8) =
0, as the prime factorization is 23, which is not square free. u(6) = 1, because the factorization
6 =2 - 3 is square free and has an even number of terms.

(1) is defined to be 1, as the number of factors can be considered to be 0, which is even. The
Mobius function has some nice properties when combined with Euler’s totient. For example, the
following identity will be very useful in the remainder of our proof:

k) _ N HOD
ko Z i @
ik
We have the following interesting relationship:

Lemma 6.6. Let k be a positive integer.

k 1 k
D000 = 52:‘-#(1‘).(2
i=1 i=1

3 2
41
i i i
Proof We will prove this identity by induction.

Fork=1,¢(1)=1= %,u(l)(z +3+1).

For k+1: suppose that the equality holds for 1 ... k. Then, we still need to prove the following
equality in order to extend to k + 1: 6(k + 1)¢(k + 1) equals:

k+1 3 2 k 3 2
Zi-,u(i)-(ZVi,lJ PR LA I s ]—Zi-,u(i)-[2 KU eslX) s ]fJ)
i=1 ! ! pr i i
2
=y i-,u(i)-6(kl+1)+6(k+l)-,u(k+1) (By Lemma 6.5)
e
= 6(k+ 1) Z H@)
ikt
= o+ P25 D dentity @)

k+1)
= 6k+Depk+1) .

Theorem 6.7. Let k be a positive integer.
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Figure 9: Worst case number of borders.

Proof The proof is based on the identity given in Lemma 6.6, and the fact that we can lower and
upper bound this identity, using x — 1 < [x] < x. Therefore, we get the following lower bound

on & ¥k i ¢G):
1 Zk o kN (ko (k

i=1

S (o3 o) )

Because fozl "1(7’) converges to 6/n%, we get the following asymptotic behavior for the lower

bound:

2 log(k)

= +0(———] .

n? ( k
Similarly, the same asymptotic behavior can be proven for the upper bound, thus establishing the
theorem. O

This leads to the observation that, asymptotically, the number of borders r and the length of

the stream L in worst case are related as follows:

2L\ 3
r= (T) 2

Figure 9 shows the number of borders for Farey streams of lengths up to 107 together with the
upper bound given by this formula. As can be seen, the bound on the number of borders is almost
exactly the actual worst case number.
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7. Experiments

7.1. Implementation Details

We have implemented a prototype of the max-frequency stream mining algorithms using
Python. Max-Freq-Miner, Max-Freq-Miner”! and Max-Freq-Miner,, are straightforward to im-
plement. The implementation of Max-Freq-Miner™! and Max-Freq-Miner-All""", however, is
more involved. Three problems need to be dealt with. (i) We only need to create a summary
for those itemsets that leave the minimal window and that were frequent in the minimal window.
Thus, we need to find the frequent itemsets in the minimal window in an efficient manner. (ii) In
order to calculate the frequency of the borders in the summary on S over the whole stream,
we need to know the number of occurrences of an itemset in the minimal window. Thus, we
need an efficient counting procedure. (iii) The starting point of the maximal window is either
L —mwl + 1 (i.e. the start of the minimal window), or a border in the summary on ST or it is
a position between L — 2mwl + 1 and L — mwl. Thus, for all frequent itemsets occurring on these
positions, we need to find the positions at which they are most frequent.

To solve the first two problems we implemented an incremental version of Eclat, see sec-
tion 7.1.1. The tid-lists used in Eclat are not deleted after mining the minimal window. They
can thus be reused at the next timestamp and can also be used to efficiently count the number
of occurrences of an itemset in the minimal window. The third problem is resolved by using a
condensed per-item representation of the window S[L — 2mwl + 2, L — mwl + 1], see section 7.1.2.

Note that because the minimal window length is typically extremely small compared to the
size of the stream, any itemset miner can be used to mine the minimal window.

7.1.1. Incremental Eclat

Our incremental implementation of Eclat is identical to Eclat (with the diffset optimization)
[24, 25], except that we keep the diffsets of the iterns in main-memory and update them incre-
mentally, according to the itemset that is entering (resp. leaving) the minimal window. Finding
the frequent itemsets is done by running the Eclat algorithm.

We can also use the incrementally updated diffsets of the items in the minimal window to
count the number of occurrences of an itemsets. Suppose we want to count how many times
itemset X occurs in the minimal window. First, we check whether all the items of itemset X are
present (i.e. have a diffset). If all itemsets are present, we calculate the diffset of X by taking
the union of the diffsets of the items of X. Subtracting the size of the diffset from the minimal
window length results in the number of occurrences of X in the minimal window.

One could opt to keep all the diffsets (for items and itemsets) in memory and update all of
them incrementally, instead of the method we employ. While this alternative “incrementaliza-
tion” of Eclat will definitely prove valuable in the case where several of the frequent itemsets are
relatively long, storing all these diffsets will require a large amount of memory.

7.1.2. Position Summaries

Call the window of length mwl just behind the minimal window, i.e. S[L—2mwi+2, L—mwl+
1], the second minimal window, denoted by MW,. We keep a condensed per-item representation
of the second minimal window in memory, called position summaries. A position summary is
similar to a the summaries used in our main algorithm, except that no positions are pruned and
the summary is always on a substream of length mwl.

How do we find the frequencies of the frequent itemsets in the second minimal window?
For each item, occurring in MW,, we keep a list of pairs (p, ¢), stating that the item occurs ¢
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consecutive times starting at position p. Next we apply a two-stage iterative algorithm, similar to
the candidate generation and pruning in Apriori, to find for all frequent itemsets, their maximal
frequency and the position at which this frequency is attained. The iterative algorithm starts with
copies of the position summaries of the items present in the second minimal window.

Stage 1: Given the position summary of an itemset and the count of that itemset in the minimal
window, it is easy to calculate position producing the highest frequency®. The position
summaries of infrequent itemsets are pruned.

Stage 2: In the second step, we combine the frequent items into candidate frequent 2-itemsets.
The position summary of a 2-itemsets ab can be derived from the position summaries of
a and b. We keep two pointers, one pointing to a position in the position summary of a,
the other pointing to a position in the position summary of b. At each iteration, we check
whether there is an overlap between the sequence of a’s and the sequence of b’s as defined
by the position-count-pairs pointed to by the pointers. The pointer pointing to the oldest
position (count is used to break a tie), is moved to the next position-count-pair. It is easy
to generalize this procedure to n position summaries. A new iteration starts.

7.2. Datasets

7.2.1. Synthetic Datastreams

Table 2 provides an overview of the synthetic datasets. Column Probability Distribution
defines which probability distribution was used to model the occurrence of items in a stream.
For a uniform distribution the uniform chance is provided. For a sine distribution the period of
the sine function is provided. A sine distribution equals a sine function plus with 0.5, i.e., the
probability goes up and down between 0 and 1. A Gaussian peak distribution looks like a Gauss
probability distribution with a mean and a standard deviation but it is not normalized, i.e., the
probability rises from O to 1 and then drops back to 0.

The Bursty 10, Bursty 20 and Sparse & Bursty streams are composed of “bursts” of an
itemset, i.e., an itemset occurs multiple consecutive times. In the case of Bursty 10, the length of
a burst is modeled by a normal distribution with mean 10 and standard deviation 5. For Bursty
20 a normal distribution with mean 20 and standard deviation 5 was used. The Sparse & Bursty
stream was created with a normal distribution with mean 40 and standard deviation 5. Moreover,
during the creation of the Sparse & Bursty streams, a burst of the empty itemset was inserted
with a 50% chance.

Does the max-frequency measure discover the frequencies embedded in these synthetic streams?
Figure 10 shows the embedded frequency and the max-frequency of three itemsets in one of the
Short streams. We clearly see the embedded frequency (at the top of the plot) reappear in the
max-frequency (at the bottom of the plot), proving the practical relevance of max-frequency.

7.2.2. Real-world Datastreams: Alarms

From a data mining company we received a dataset of alarms. An alarm occurs when a
sensor value exceeds a prespecified threshold value. Alarms are grouped in blocks. For example:
the alarms of the sensors on a single machine form a single block. Blocks are grouped into
compounds. For example: the alarms of the sensors of all the machines on a single floor of a
factory form a single compound.

%Note that we, again, need to count the number of occurrences of an item(set) in the minimal window).
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Figure 10: A comparison between the actual frequency used while constructing one of the short streams and the frequency
as mined by Max-Freg-Miner”" in the actual stream. Top: frequency used for constructing itemsets a, b and ac. Bottom:
mined frequency of itemsets a, b and ac.

From the raw timestamped data a stream of itemsets was constructed by making 10-second
and 60-second slices of blocks (resp. compounds). There are 3873 blocks and 290 compounds
in the data. All four streams are sparse, as the median length of an itemset is zero. The char-
acteristics of the four streams are presented in table 3. Because very large itemsets occur in the
streams and most of them occur at the end of the stream, we have to set appropriate values for the
minimal window length and the minimal frequency threshold. Indeed, without a mwl and o each
and every subset of the 87-item itemset would become frequent at some point, and thus require a
summary. Clearly, we would run out of memory instantaneously. By setting the minimal window
length and minimal frequency threshold, only for those itemsets that are frequent in the minimal
window a summary is started.

7.3. Memory Efficiency

A crucial point for the performance and applicability of the stream mining algorithms in
this paper, is the number of borders in the summaries. Large summaries may require too much
memory to remain feasible. The performance of the algorithms with minimal window length
(Max-Freq-Miner™!, Max-Freq-Miner™! and Max-Freq-Miner-All”"") will also degrade: the
max-frequency in these algorithms is computed by comparing the frequency of all the borders.
Note that if the minimal window length and minimal frequency threshold have been set, some
additional memory is used to store the minimal window, the second minimal window and for
mining both. However, as noted before, the minimal window length is constant and very small
compared to the size of the stream.

Therefore we computed, for several different streams and various values of mwl and o, the
mean, the median and the maximum number of borders (summed over all summaries) maintained
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Table 2: Overview of the synthetic data streams used in the experiments. The column Probability Distribution contains
information on the probability distribution used to generate the items.

Name Length | #

=
[«
=

Probability Distribution
Uniform 0.5

Sine period 100

Gaussian Peak (4000, 100)
Gaussian Peak (6000, 200)
Uniform 0.57

Uniform 0.57

Uniform 0.57

Uniform 0.57

Uniform 0.57

Uniform 0.57

Uniform 0.5

Uniform 0.3

Sine period 200

Gaussian Peak (3000, 1000)
Gaussian Peak (4000, 1000)
Gaussian Peak (5000, 1000)

Short 10000 | 5

Bursty 10 10000 | 5

Bursty 20 10000 | 5

Sparse & Bursty | 10000 | 5

O Q0 o 90 T e0 o0 o

Table 3: Characteristics of the blocks and compounds streams.

Stream Length Largest itemset | Median Itemset Length
blocks-10 85 0
compounds-10 3,968,417 28 0
blocks-60 87 0
compounds-60 661403 31 0
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Figure 11: Mean and median number of borders in all summaries while mining a Short stream.

during the run of the mining algorithms. The results are shown in Figures 11 and 12 for a Short
and a Sparse & Bursty stream (results for the Bursty 10 and 20 streams are omitted as they are
very similar to the results of the Short streams). As expected, the number of borders tends to
zero for high values of o (i.e. virtually no border is frequent). On the other hand, if the minimal
frequency threshold is low (0 and 0.01), there are on average between 30 and 35 borders in all the
summaries together while mining the Short, Bursty 10 and Bursty 20 streams, and the maximum
number of borders does not exceed 120. Evidently, more borders are needed to mine the Sparse
& Bursty stream, as this stream features five items. Nonetheless, these results show a highly
efficient memory usage: in the median case, about 10 borders are present.

How about the memory consumption in our real-world datasets? We show the results of the
blocks-10 and compounds-60 streams. Figures 13 and 14 show the mean and median number of
borders used, over all summaries, in the respective streams. Despite the fact that the blocks-10
stream consists of 3873 distinct items, at most 4000 borders need to be maintained. Even more
strikingly, on average only 2.5 borders are present, summed over all summaries. Similarly, the
compounds-60 stream consists of 290 distinct items and requires, on average, less than 8 borders
to track all frequent itemsets.

Figure 15 shows the running time required to mine the blocks-10 stream. Notwithstanding
that this stream contains itemsets of up to 85 items, with suitable minimal window length and
minimal frequency threshold they can be effectively mined.

Conclusion: On average (and even in the maximum case), a very limited amount of memory
is consumed by the summaries, both in the synthetic and in the real-world dataset. We also
showed that our algorithm can effectively cope, both in terms of memory and time, with long
streams containing many items and large itemsets.
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Figure 12: Mean and median number of borders in all summaries while mining a Sparse & Bursty stream.
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Figure 13: Mean, median and maximum number of borders in all summaries while mining the blocks-10 stream.
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Figure 14: Mean and median number of borders in all summaries while mining the compounds-60 stream.
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Figure 15: The running time of Max-Freq-Miner”*! on the blocks-10 stream. At the origin mwl = 100 and o = 0.25,
the running time starts to increase dramatically. Further lowering the minimal frequency threshold will make too many
itemsets max-frequent.
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Figure 16: The relative difference in average running time of the mining algorithms with and without the lazy handling
checkscheduler on the Sparse & Bursty streams. Negative numbers imply that the algorithm with checkscheduler is
faster, whereas positive numbers imply the algorithm without checkscheduler is faster.

7.4. Checkscheduler & Lazy Handling

The checkscheduler and lazy handling are straight-forward optimizations Max-Freq-Miner-
Al In this section we investigate their effectiveness both on synthetic and real-world datasets.

7.4.1. Sparse and Bursty Streams

A stream is called sparse if many of its itemsets are empty. A stream is called bursty if an
itemset mostly occurs on multiple consecutive time points. A sparse and bursty stream thus has
many stretches of empty itemsets, interrupted by bursts of an itemset. On such streams, one
would except a lazy handling checkscheduler to be advantageous, because a burst forms a solid
foundation for a slowly decreasing frequency.

The experiment consists of running the mining algorithm with and without the lazy handling
checkscheduler on the following parameter values: mwl = 1, 20, 100, 250, 500, 750, 1000 and
o =0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99. Each parameter combination is run five
times on each of the Sparse & Bursty streams.

Figure 16 shows the relative difference in the average running times of the algorithm with and
without the lazy handling checkscheduler. If the minimal frequency threshold is not too high, say
below 0.3, a speed-up of at least 10% percent is achieved. In the most extreme case, i.e. mwl = 1
and o = 0, a speed-up of about 50% is achieved. However, with higher frequency thresholds,
the speed-up becomes a slow-down. Also, longer minimal windows incur lesser speed-ups. This
comes as no surprise, because scheduling a check for an itemset implies assessing the frequency
of that itemset in the minimal window. The cost of computing the frequency in the minimal
window grows linearly with the minimal window length.
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7.4.2. Bursty Streams

The sparseness is favorable for the lazy handling checkscheduler. If no check is scheduled,
nothing happens. Therefore we test in this experiment whether the performance gain is preserved
when sparseness is left out of the equation.

Each algorithm is run five times with the lazy handling checkscheduler and five times without
the lazy handling checkscheduler on the Bursty 10 and Bursty 20 streams. The parameter values
are: mwl = 1, 20, 100, 250, 500, 750, 1000 and o = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
0.99.

Figure 17 shows the relative difference in running time between the mining algorithm with
and without a lazy handling checkscheduler. The speed-up effect on small minimal window
length and minimal frequency threshold values is more pronounced on the Bursty 20 streams.
Nonetheless, the speed-up is far less pronounced than what we have seen on the Sparse & Bursty
streams.

7.4.3. Short Streams
Thirdly, the “burstiness” is also eliminated from the streams. The possible parameter values
are unaltered with respect to the previous experiments, but this time the short streams are mined.
Figure 18 shows the relative difference in the average running time of the algorithms with
and without lazy handling checkscheduler. In this case, the lazy handling checkscheduler is only
a slow-down for all combinations of mwl and o.

7.4.4. Alarms

We also investigated the effect of the checkscheduler on the time required to mine the four
alarms streams. Figure 19 shows the run times of Max-Freq-Miner-All"! for various o- and
mwl-values when mining the blocks-10 alarms stream. Again, we see that the difference in run
time is in favor of the miner without checkscheduler. Although the stream is sparse, large itemsets
become very frequent (up to 25% frequency) at the end of the stream. The checkscheduler
requires counting the number of itemsets in the minimal window. This becomes expensive if
many (larger) itemsets are frequent.

7.4.5. Conclusion

On the synthetic datastreams, four factors have an effect on the speed-up achieved by a lazy
handling checkscheduler: (i) the minimal window length, (ii) the minimal frequency threshold,
(iii) the sparseness of the stream and (iv) the length of the bursts. On the real-world datastreams,
the lazy handling checkscheduler always underperformed. We have yet to figure out the specific
reason for this behaviour.

Surprisingly enough, lazy handling on its own and the checkscheduler on its own are not able
to achieve substantial speed-ups. The combination is more efficient than the sum of the parts.

7.5. Border Positions

In theory a border can occur at any position in the stream, but where are the borders positioned
in practice? To find out how the borders are distributed over the stream in practice, we let the
algorithm output the positions of all the borders in the active summaries, (mw/ = 1 and o = 0),
while mining on one of the short streams. A plot was generated from this data. On the x-axis we
have the length of the stream thus far. The y-axis shows the positions of the border relative to
the length of the stream, i.e. the range of the y-axis is [0, 1]. The plots for items a, b and ¢ are
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Figure 17: The relative difference in running time of the mining algorithms with and without lazy handling checksched-
uler on the Bursty 10 and Bursty 20 streams. Negative numbers imply that the algorithm with checkscheduler is faster,
whereas positive numbers imply the algorithm without checkscheduler is faster.
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Figure 18: Relative difference in running time of the mining algorithms with and without lazy handling checkscheduler
on the Short streams. Negative numbers imply that the algorithm with checkscheduler is faster, whereas positive numbers
imply the algorithm without checkscheduler is faster.
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Figure 19: The relative difference in running times of Max-Freq-Miner-All”! on the blocks-10 stream of alarms, with
and without lazy handling checkscheduler. Positive number imply that the algorithm without checkscheduler is faster.
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Figure 20: Position of the borders in the summary of item a, relative to the length of the stream. Parameters of the
algorithm: mwl = 1 and o = 0.

shown in Figures 20, 21 and 22. From the plots of a and b (i.e. items which occur throughout the
stream) we can deduce that there are three kinds of borders. First of all we see a lot of borders
at the end (the most recent itemsets) of the streams. Because the windows are short and the
itemsets potentially plentiful in this part of the stream, a lot of borders are needed to capture all
potential maximal windows. This illustrates that our algorithm can effectively find sudden bursts
of an itemset. The second kind of border can be found between the relative positions 0.8 and
0.2. These borders mark the starting of a period with a relatively high occurrence of the target
itemset. Thirdly, we have the borders under relative position 0.2. These are the borders that are
at the start (the oldest itemsets) of the stream. These borders capture the average frequency of
the target itemset in the whole stream. If the minimal window length is set to a higher value we
get largely the same plot, except that the relative border positions start somewhat lower. If the
minimal frequency threshold is set, we will see the same three regions, where the third kind of
border will now be at more recent positions.

In figure 22 we see that there is only a single “fang”. A lot of borders are created at the
moment that the frequency of item c is rising rapidly. Once the peak-frequency is attained few
new borders are created and the oldest borders start absorbing the younger ones. Eventually only
a single border remains.

8. Conclusion

The max-frequency measure is apt for mining frequent itemsets in a datastream. It truthfully
captures the frequency of itemsets, as is shown by figure 10. Frequent itemsets can be mined
efficiently, both in terms of time and space. The efficiency of the algorithm can be derived
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Figure 21: Position of the borders in the summary of item b, relative to the length of the stream. Parameters of the
algorithm: mwl = 1 and o = 0.
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Figure 22: Position of the borders in the summary of item c, relative to the length of the stream. Parameters of the
algorithm: mwl = 1 and o = 0.
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theoretically by linking the number of borders to the concept of Farey streams, from number
theory. From this connection we can deduce that, even in the worst case, the number of borders
increases slower than the length of the stream. Experiments on datasets, in which itemsets occur
in varying patterns, show that the number of borders in a summary, in practice, remains relatively
stable over time.

We showed that no edge can be gained from exploiting the subset relation between itemsets.
Simply storing item-summaries results in space issues. Sharing borders among summaries linked
by the subset relation on itemsets is impossible because at any given point a position might be a
border for itemsets A; and Az but not for itemset A,, where we have that A; C A, C A3. As a
result, further optimizations of the algorithm will need to be based on non-trivial insights.

From the experiments with our software prototype on both synthetic and real-world datasets,
we draw three conclusions. Firstly, on average very few borders are needed to derive the max-
frequency of all itemsets in a stream. Secondly, streams that are sparse and bursty over the whole
course of the stream benefit from the lazy handling checkscheduler. Thirdly, even stream with
large transactions can be mined efficiently if suitable values for the minimal window length and
minimal frequency threshold have been set.
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