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Economic load dispatch (ELD) problem is an important issue in the operation and control of modern control system. The ELD
problem is complex and nonlinear with equality and inequality constraints which makes it hard to be efficiently solved. This
paper presents a new modification of harmony search (HS) algorithm named as dynamic harmony search with polynomial
mutation (DHSPM) algorithm to solve ORPD problem. In DHSPM algorithm the key parameters of HS algorithm like harmony
memory considering rate (HMCR) and pitch adjusting rate (PAR) are changed dynamically and there is no need to predefine these
parameters. Additionally polynomialmutation is inserted in the updating step ofHS algorithm to favor exploration and exploitation
of the search space. The DHSPM algorithm is tested with three power system cases consisting of 3, 13, and 40 thermal units. The
computational results show that the DHSPM algorithm is more effective in finding better solutions than other computational
intelligence based methods.

1. Introduction

Economic load dispatch (ELD) is an important issue in
the operation and control of modern control system. The
objective of ELD problem can be defined as determining the
real power outputs of generators so as to meet the required
load demand at minimum operating cost while satisfying
system equality and inequality constraints [1]. The objective
of ELD is to minimize the total operating cost, but the
various types of physical and operational constraints make
ELD a highly nonlinear constrained optimization problem.
Traditionally different approaches have been suggested to
solve ELD, including linear programming [2], dynamic pro-
gramming [3], and nonlinear programming [4]. The main
drawback of these techniques is that they may not be able to
give an optimal solution and may get stuck at local optima.

Recently, different heuristic approaches have been used
to solve ELD problem with promising performance, such

as genetic algorithm (GA) [5], evolutionary programming
(EP) [6], differential evolution (DE) [7], and particle swarm
optimization (PSO) [8]. In spite of the fact that these heuristic
methods do not always guarantee finding global optimal
solutions in specified time, they often provide fast and rea-
sonable solution. Although several heuristic methodologies
have been developed for the ELD problem, the difficulty of
the problem reveals the need for development of efficient
algorithms to exactly locate the optimum solution.

Harmony search (HS) is a new metaheuristic algorithm
proposed by Geem et al. [9], which is inspired by the natural
musical performance process that happens when a musician
searches for a better state of harmony. HS algorithm has been
successfully applied to a wide range of applications such as
structural optimization [10], design optimization of water
distribution networks [11], and vehicle routing [12].

Although HS algorithm is good at identifying the solu-
tion in the search space within a reasonable time, it is not
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efficient in performing local search in numerical optimiza-
tion applications [13]. To overcome this drawback, Mahdavi
et al. [13] proposed an improved HS algorithm denoted as
improved harmony search (IHS) by dynamically updating
pitch adjustment rate (PAR) and bandwidth (bw).Omran and
Mahdavi [14] proposed a global best HS algorithm denoted
as global harmony search (GHS) by borrowing the idea
from swarm intelligence. Khalili et al. [15] proposed global
dynamic harmony search (GDHS) algorithm for solving con-
tinuous optimization problem.

In this paper, we present a novel variant of HS algorithm,
named dynamic harmony search with polynomial mutation
(DHSPM) algorithm inwhich harmonymemory considering
rate (HMCR) and pitch adjusting rate (PAR) are dynamically
updated. Additionally, polynomial mutation is inserted in
the updating step of HS algorithm to favor exploration and
exploitation of the search space.

The paper is organized as follows. Section 2 presents
the formulation of ELD problem with valve-point. Section 3
contains a brief overview of HS and DHSPM algorithms.
Section 4 reports the application of DHSPM to ELD problem
with valve-point effect. Section 5 contains the description of
the simulations and a discussion of the results. Conclusions
are summarized in Section 6.

2. Problem Formulation

2.1. Economic Dispatch. The primary objective of the ELD
problem is to determine the most economic loading of the
generators such that the total demand is met while satisfying
equality and inequality constraints. The objective function of
ELD is defined as

min𝐹
𝑇
= min

𝑁

∑

𝑖=1

𝐹
𝑖
(𝑃
𝑖
) . (1)
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cost. 𝐹
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power 𝑃
𝑖
. 𝑁 is the total number of generators in the power
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are the cost coefficients of unit 𝑖.

2.2. Economic Load Dispatch with Valve-Point Loading Effects.
Multivalve steam turbines based generating units are char-
acterized by complex nonlinear fuel cost function. This is
mostly due to the ripples made by the valve-point loading. To
simulate these complex phenomena, a sinusoidal component
is added on the quadratic heat rate curve. To take into account
this effect, the cost function in (2) is modified as follows:
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where 𝑒
𝑖
and 𝑓

𝑖
denote the cost coefficients of 𝑖th generator

reflecting valve-point loading effect and𝑃
min
𝑖

is theminimum
output power of 𝑖th generator unit.

2.3. Constraints

2.3.1. Real Power Balance Constraint. The total power gener-
ated should be equal to the total load demand plus the total
transmission losses. The real power balance can be expressed
as

𝑁

∑

𝑖=1

𝑃
𝑖
= 𝑃
𝐷
+ 𝑃
𝐿
, (4)

where 𝑃
𝐷
is the total demand and 𝑃

𝐿
denotes the total trans-

mission losses. In this paper, we disregarded the transmission
loss, 𝑃

𝐿
= 0.

2.3.2. Generator Capacity Constraints. Real power output of
each generator should be within its minimum andmaximum
limits. This can defined as follows:

𝑃
𝑖,min ≤ 𝑃

𝑖
≤ 𝑃
𝑖,max, (5)

where 𝑃
𝑖,min and 𝑃

𝑖,max are the minimum and maximum out-
put power of 𝑖th generating unit, respectively.

2.4. Formulation of Fitness Function. In this paper, we use
penalty term to transform a constrained optimization prob-
lem into an unconstrained one. As a result, the fitness
function can be written as

Min𝐹 =

𝑛
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)



, (6)

where 𝛾 is the penalty coefficient. The penalty coefficient
should be given large enough to guarantee the system con-
straints. In this paper, we choose 𝛾 = 1000.

3. Harmony Search Algorithms

3.1. Basic Harmony Search Algorithm. In basic harmony
search (HS) algorithm, each solution is called a “harmony”
and represented by an 𝑛-dimensional real vector. An initial
population of harmony vectors is randomly created to form
a harmony memory (HM). Then, a new harmony vector is
generated by using a memory consideration rule, a pitch
adjustment rule, and a random reinitialization.The generated
new harmony vector is updated in the HM by comparing the
new harmony vector and the worst harmony vector in the
HM.The above process is repeated until a certain criterion is
met. The steps of HS algorithm are described below in detail.

Step 1 (initialization of problem and algorithm parameters).
Consider an optimization problem that is described by

Minimize𝐹 (𝑥) 𝑥
𝑖
∈ 𝑋
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, (7)

where 𝐹(𝑥) is the objective function, 𝑥 is the set of design
variables, and 𝑋

𝑖
is the range set of the possible values for

each design variable. The parameters of the HS algorithm are
the harmony memory size (HMS), harmony memory con-
sidering rate (HMCR), pitch adjusting rate (PAR), number of
decision variables (𝑁), and number of improvisations (NI).
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Step 2 (harmonymemory initialization). Theharmonymem-
ory (HM) matrix is filled with randomly generated solution
vectors for HMS and sorted by the values of objective func-
tion 𝑓(𝑥) as shown below:
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(8)

Step 3 (new harmony improvisations). A new harmony
vector 𝑋new is created by applying three rules: a memory
consideration, a pitch adjustment, and a random selection.
A random number 𝑟

1
between 0 and 1 is generated. If 𝑟

1

is less than HMCR, then 𝑋new is generated by the memory
consideration; otherwise, 𝑋new is obtained by randomly
generating a vector between the upper and lower bounds.
In the memory consideration, 𝑋new is selected from any
harmony vector in HM. After memory consideration, 𝑋new
will undergo a pitch adjustment with a probability of PAR.
The pitch adjustment rule is given as follows:

𝑋new = 𝑋new ± 𝑟 × bw, (9)
where 𝑟 is a random number generated between 0 and 1.

Step 4 (updating harmony memory). If the new harmony
vector 𝑋new has better fitness function than the worst har-
mony in the HM, the new harmony is included in the HM
and the existing worst harmony is excluded from the HM.

Step 5 (checking the stopping criterion). If the stopping
criterion, which is based on the maximum number of
improvisations, is satisfied, the computation is terminated.
Otherwise, Steps 3 and 4 are repeated.

3.2. Variants of HS Algorithm. Mahdavi et al. proposed
improved harmony search (IHS) algorithm to address
the limitations of the basic HS algorithm. IHS algorithm
applies the same memory consideration, pitch adjustment,
and random selection as the basic HS algorithm, but the
author suggests a new formula for PAR and bwwhich dynam-
ically changes at every iteration [13].

Omran and Mahdavi proposed a global best harmony
search (GHS) algorithm which is based on the inspiration
by the particle swarm optimization. Unlike the basic HS
algorithm, the GHS algorithm generates a new harmony
vector by making use of the best harmony vector [14].

Khalili et al. proposed a global dynamic harmony search
(GDHS) algorithm by modifying the basic HS algorithm to
solve continuous optimization problems [15].

Pan et al. proposed a self-adaptive global best harmony
(SGHS) algorithm for solving continuous optimization prob-
lem. In SGHS, new improvisation scheme was suggested so
that good information obtained in the current global best
solution is utilized to generate new harmonies [16].

3.3. Dynamic Harmony Search with Polynomial Mutation
(DHSPM) Algorithm. In this paper, a novel HS algorithm,
called DHSPM, for solving ORPD problem of power system,
is presented. The proposed algorithm is different from the
classical HS algorithm in the following two aspects. First, a
dynamic parameter adjustment scheme is suggested, which
can dynamically update the parameters HMCR and PAR
in every improvisation. Second, a polynomial mutation is
inserted in the updating step of HS algorithm to favor
exploration and exploitation of the search space. The details
of the algorithm are given below.

3.3.1. Dynamic Control Parameters. The conventional HS
algorithm uses fixed value for both HMCR and PAR. In the
HS algorithm, HMCR and PAR are fixed in the initialization
step and cannot be changed during the improvisation. The
main drawback of thismethod is that the number of iterations
needed to find optimal solution is more [13]. Here, we
suggest dynamic formula for HMCR and PAR which change
during the improvisation of the optimization. The suggested
formulas for HMCR and PAR for the current improvisation 𝑡

are

HMCR =

{{

{{

{

𝐶
1
∗ 𝑡 + 0.9 0 ≤ 𝑡 ≤

NI
2

−𝐶
1
∗ 𝑡 + 1.1

NI
2

≤ 𝑡 ≤ NI,

PAR =

{{

{{

{

𝐶
2
∗ 𝑡 + 0.3 0 ≤ 𝑡 ≤

NI
2

−𝐶
2
∗ 𝑡 + 1.1

NI
2

≤ 𝑡 ≤ NI,

(10)

where

𝐶
1
=

(1 − 0.9)

NI/2
,

𝐶
2
=

(0.7 − 0.3)

NI/2
.

(11)

Figures 1 and 2 show the schematic of HMCR and PAR in
dynamic mode for the number of improvisations equal to
1000. At initial improvisations, a linear increase of HMCR
makes the algorithm generate more new harmony vectors
rather than choosing from the harmony memory. At the
middle of the improvisations, the HMCR is equal to 1, which
consider the harmony vector from the HM itself. At final
improvisations, HMCR is linearly decreased, which helps
to escape the optimization process from settling in local
optima. Similarly, the large value of PAR at the middle of the
improvisation enforces the selected harmony vector to have
adjustments.

3.3.2. Polynomial Mutation. Mutation is an important opera-
tor in genetic algorithms (GAs), as it ensures themaintenance
of diversity in the evolving populations of GAs [17]. There
are several mutation techniques that can be used in genetic
algorithms like random mutation [18], boundary mutation
[18], nonuniform random mutation [19], power mutation
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Table 1: Mean and standard deviation of the benchmark functions.

Function HS IHS DHSPM
𝑓
1

7.711433 (3.307032) 0.000000 (0.000000) 0.000000 (0.000000)
𝑓
2

0.112437 (0.059248) 0.000009 (0.000001) 0.000003 (0.000001)
𝑓
3

304.359111 (513.738959) 93.636178 (80.553169) 91.3741 (73.55367)
𝑓
4

12.500000 (4.960186) 0.033333 (0.182574) 0.028978 (0.168912)
𝑓
5

4570.725435 (1625.045376) 1841.741864 (711.620590) 1792.6421 (691.28015)
𝑓
6

0 26.074848 (8.945656) 0.000382 (0.000000) 0.000287 (0.000000)
𝑓
7

0.699759 (0.701654) 0.230684 (0.442564) 0.197635 (0.38745)
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Figure 1: Variations of HMCR with respect to improvisations.
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Figure 2: Variations of PAR with respect to improvisations.

[17], polynomial mutation [18], and so forth.The experimen-
tal evaluation of the HS algorithm using different mutation
methods using a well-known set of test functions shows that
using the polynomial mutation improves the performance
of the algorithm significantly for a considerable number of

Table 2: Parameter settings of DHSPM for test systems.

HMS bw 𝜂
𝑚

NI
5 0.01 10 50000

functions [20]. Deb and Agrawal [18] suggested a polynomial
mutation operator with a user-defined index parameter (𝜂

𝑚
).

They concluded that 𝜂
𝑚
induces an effect of a perturbation

of 𝑂((𝑏 − 𝑎)/𝜂
𝑚
) in a variable, where 𝑎 and 𝑏 are lower and

upper bounds. They also found that a value 𝜂
𝑚

∈ [20, 100] is
adequate in most problems that they tried of the variable. In
this paper, we suggest inserting polynomial mutation in the
updating step of HS algorithm as follows:

𝑥


new (𝑗)

=

{

{

{

𝑥new (𝑗) + 𝛿
1
(𝑥new (𝑗) − 𝑥lower,𝑗) for 𝑟 ≤ 0.5

𝑥new (𝑗) + 𝛿
2
(𝑥upper,𝑗 − 𝑥new (𝑗)) for 𝑟 > 0.5.

(12)

Then, either of the two parameters (𝛿
1
or 𝛿
2
) is calculated as

follows:

𝛿
1
= (2𝑟)

1/(1+𝜂
𝑚
)
− 1 for 𝑟 ≤ 0.5,

𝛿
2
= 1 − (2 (1 − 𝑟))

1/(1+𝜂
𝑚
) for 𝑟 > 0.5,

(13)

where 𝑥new(𝑗) is the new harmony vector selected at the
updating step of HS algorithm, 𝑥new(𝑗) is the mutated new
harmony vector, and 𝑟 is a random number created within
[0, 1].

The optimization procedure of DHSPM is as follows.

Step 1. Set the parameters HMS, bw, and NI.

Step 2. Initialize the HM and calculate the objective function
of each harmony vector.
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Table 3: Units data for 3 thermal units’ system.

Generator 𝑃min (MW) 𝑃max (MW) 𝑎 𝑏 𝑐 𝑒 𝑓

1 100 600 0.001562 7.92 561 300 0.0315
2 50 200 0.00482 7.97 78 150 0.063
3 100 400 0.00194 7.85 310 200 0.042

Table 4: 3 thermal units’ test results.

Generator Power (MW)
1 300.12
2 149.88
3 400

Table 5: Best result comparison with different algorithms for 3
thermal units’ system.

Algorithms 3 thermal units ($)
Best result

3 thermal units ($)
Average result

CEP [21] 8234.07 8235.97
FEP [21] 8234.07 8234.24
MFEP [21] 8234.08 8234.71
IFEP [21] 8234.07 8234.16
EGA [21] 8234.07 8234.41
FIA [21] 8234.07 8234.26
SPSO [21] 8234.07 8234.18
QPSO [21] 8234.07 8234.10
HS 8234.07 8234.15
IHS 8234.07 8234.13
DHSPM 8234.07 8234.09

Step 3. Determine new harmony vector 𝑥new(𝑗) as follows:

for (𝑗 = 1 : 𝑁), do

HMCR =

{{

{{

{

𝐶
1
∗ 𝑡 + 0.9 0 ≤ 𝑡 ≤

NI
2

−𝐶
1
∗ 𝑡 + 1.1

NI
2

≤ 𝑡 ≤ NI,

PAR =

{{

{{

{

𝐶
2
∗ 𝑡 + 0.3 0 ≤ 𝑡 ≤

NI
2

−𝐶
2
∗ 𝑡 + 1.1

NI
2

≤ 𝑡 ≤ NI,

𝐶
1
=

(1 − 0.9)

NI/2
,

𝐶
2
=

(0.7 − 0.3)

NI/2

(14)

if (𝑟
1
< HMCR) then

𝑥new (𝑗) = 𝑥
𝑎
(𝑗) 𝑎 ∈ (1, 2, . . . ,HMS) (15)

if (𝑟
2
< PAR) then

𝑥new (𝑗) = 𝑥new (𝑗) ± bw 𝑟
1
, 𝑟
2
∈ (0, 1) (16)

endif

else

𝑥new (𝑗) = 𝑥lower,𝑗 + 𝑟
3
× (𝑥upper,𝑗 − 𝑥lower,𝑗)

𝑟
3
∈ (0, 1)

(17)

endif

endfor

Step 4 (updating of HM). If the new harmony vector 𝑥new(𝑗)
is better than the worst harmony in HM, the mutated new
harmony vector 𝑥new(𝑗) is created as follows:

𝑥


new (𝑗)

=

{

{

{

𝑥new (𝑗) + 𝛿
1
(𝑥new (𝑗) − 𝑥lower,𝑗) for 𝑟 ≤ 0.5

𝑥new (𝑗) + 𝛿
2
(𝑥upper,𝑗 − 𝑥new (𝑗)) for 𝑟 > 0.5,

𝛿
1
= (2𝑟)

1/(1+𝜂
𝑚
)
− 1 for 𝑟 ≤ 0.5,

𝛿
2
= 1 − (2 (1 − 𝑟))

1/(1+𝜂
𝑚
) for 𝑟 > 0.5.

(18)

The mutated new harmony vector 𝑥new(𝑗) is inserted into the
HM, and the worst harmony is removed from the HM.

Step 5. If maximum number of improvisations (NI) is
reached, the computation is terminated. Otherwise, Steps 3
and 4 are repeated.

3.3.3. Study on Benchmark Functions. To test the perfor-
mance of the proposed DHSPM algorithm, an extensive
experimental evaluation is provided based on a set of 7 global
optimization problems as follows.

Sphere Function (𝑓
1
). Sphere function is defined as

min𝑓 (𝑥) =

𝑛

∑

𝑖=1

𝑥
2
(𝑖) , (19)

where global optimum 𝑥
∗

= 0 and 𝑓(𝑥
∗
) = 0 for −100 ≤

𝑥(𝑖) ≤ 100.

Schwefel’s Problem 2.22 (𝑓
2
). Schwefel’s problem 2.22 is

defined as

min𝑓 (𝑥) =

𝑛

∑

𝑖=1

|𝑥 (𝑖)| +

𝑛

∏

𝑖=1

|𝑥 (𝑖)| , (20)
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Table 6: Units data for 13 thermal units’ system.

Generator 𝑃min (MW) 𝑃max (MW) 𝑎 𝑏 𝑐 𝑒 𝑓

1 0 680 0.00028 8.1 550 300 0.035
2 0 360 0.00056 8.1 309 200 0.042
3 0 360 0.00056 8.1 307 150 0.042
4 60 180 0.00324 7.74 240 150 0.063
5 60 180 0.00324 7.74 240 150 0.063
6 60 180 0.00324 7.74 240 150 0.063
7 60 180 0.00324 7.74 240 150 0.063
8 60 180 0.00324 7.74 240 150 0.063
9 60 180 0.00324 7.74 240 150 0.063
10 40 120 0.00284 8.6 126 100 0.084
11 40 120 0.00284 8.6 126 100 0.084
12 55 120 0.00284 8.6 126 100 0.084
13 55 120 0.00284 8.6 126 100 0.084

Table 7: 13 thermal units’ test results.

Generator Power (MW)
1 628.3205
2 149.6024
3 222.7751
4 109.8655
5 109.8620
6 109.8582
7 60.0008
8 109.8614
9 109.8663
10 39.9997
11 39.9877
12 55.0001
13 55.0003

where global optimum𝑥
∗
= 0 and𝑓(𝑥

∗
) = 0 for−10 ≤ 𝑥(𝑖) ≤

10.

Rosenbrock Function (𝑓
3
). Rosenbrock function is defined as

min𝑓 (𝑥)

=

𝑛−1

∑

𝑖=1

(100 (𝑥 (𝑖 + 1) − 𝑥
2
(𝑖))
2

+ (𝑥 (𝑖) − 1)
2
) ,

(21)

where global optimum 𝑥
∗

= (1, 1, . . . , 1) and 𝑓(𝑥
∗
) = 0 for

−30 ≤ 𝑥(𝑖) ≤ 30.

Step Function (𝑓
4
). Step function is defined as

min𝑓 (𝑥) =

𝑛

∑

𝑖=1

(|𝑥 (𝑖) + 0.5|)
2
, (22)

Table 8: Best result comparison with different algorithms for 13
thermal units’ system.

Algorithms 13 thermal units ($)
Best result

13 thermal units ($)
Average result

CEP [21] 18048.21 18190.32
FEP [21] 18018.00 18200.79
MFEP [21] 18028.09 18192.00
IFEP [21] 17994.07 18127.06
EGA [21] 18019.15 18144.95
FIA [21] 18014.61 18136.97
SPSO [21] 17988.15 18102.48
QPSO [21] 17969.01 18075.11
DEC-SQP [7] 17963.94 NR
STHDE [22] 17963.89 NR
IGA MU [23] 17963.98 NR
SDE [24] 17960.71 NR
HS 17963.91 18065.12
IHS 17962.87 18042.14
DHSPM 17960.54 17994.16
NR: not reported.

where global optimum 𝑥
∗

= 0 and 𝑓(𝑥
∗
) = 0 for −100 ≤

𝑥(𝑖) ≤ 100.

Rotated Hyperellipsoid Function (𝑓
5
). Rotated hyperellipsoid

function is defined as

min𝑓 (𝑥) =

𝑛

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥 (𝑗))

2

, (23)

where global optimum 𝑥
∗

= 0 and 𝑓(𝑥
∗
) = 0 for −100 ≤

𝑥(𝑖) ≤ 100.
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Table 9: Units data for 40 thermal units’ system.

Generator 𝑃min (MW) 𝑃max (MW) 𝑎 𝑏 𝑐 𝑒 𝑓

1 36 114 0.0069 6.73 94.705 100 0.084
2 36 114 0.0069 6.73 94.705 100 0.084
3 60 120 0.02028 7.07 309.54 100 0.084
4 80 190 0.00942 8.18 369.03 150 0.063
5 47 97 0.0114 5.35 148.89 120 0.077
6 68 140 0.01142 8.05 222.33 100 0.084
7 110 300 0.00357 8.03 287.71 200 0.042
8 135 300 0.00492 6.99 391.98 200 0.042
9 135 300 0.00573 6.6 455.76 200 0.042
10 130 300 0.00605 12.9 722.82 200 0.042
11 94 375 0.00515 12.9 635.2 200 0.042
12 94 375 0.00569 12.8 654.69 200 0.042
13 125 500 0.00421 12.5 913.4 300 0.035
14 125 500 0.00752 8.84 1760.4 300 0.035
15 125 500 0.00708 9.15 1728.3 300 0.035
16 125 500 0.00708 9.15 1728.3 300 0.035
17 220 500 0.00313 7.97 647.85 300 0.035
18 220 500 0.00313 7.95 649.69 300 0.035
19 242 550 0.00313 7.97 647.83 300 0.035
20 242 550 0.00313 7.97 647.81 300 0.035
21 254 550 0.00298 6.63 785.96 300 0.035
22 254 550 0.00298 6.63 785.96 300 0.035
23 254 550 0.00284 6.66 794.53 300 0.035
24 254 550 0.00284 6.66 794.53 300 0.035
25 254 550 0.00277 7.1 801.32 300 0.035
26 254 550 0.00277 7.1 801.32 300 0.035
27 10 150 0.52124 3.33 1055.1 120 0.077
28 10 150 0.52124 3.33 1055.1 120 0.077
29 10 150 0.52124 3.33 1055.1 120 0.077
30 47 97 0.0114 5.35 148.89 120 0.077
31 60 190 0.0016 6.43 222.92 150 0.063
32 60 190 0.0016 6.43 222.92 150 0.063
33 60 190 0.0016 6.43 222.92 150 0.063
34 90 200 0.0001 8.95 107.87 200 0.042
35 90 200 0.0001 8.62 116.58 200 0.042
36 90 200 0.0001 8.62 116.58 200 0.042
37 25 110 0.0161 5.88 307.45 80 0.098
38 25 110 0.0161 5.88 307.45 80 0.098
39 25 110 0.0161 5.88 307.45 80 0.098
40 242 550 0.00313 7.97 647.83 300 0.035

Schwefel’s Problem 2.26 (𝑓
6
). Schwefel’s problem 2.26 is

defined as

min𝑓 (𝑥) = 418.9829𝑛 −

𝑛

∑

𝑖=1

(𝑥 (𝑖) sin (√|𝑥 (𝑖)|)) , (24)

where global optimum 𝑥
∗

= (420.9687, 420.9687, . . . ,

420.9687) and 𝑓(𝑥
∗
) = 0 for −500 ≤ 𝑥(𝑖) ≤ 500.

Rastrigin Function (𝑓
7
). Rastrigin function is defined as

min𝑓 (𝑥) =

𝑛

∑

𝑖=1

(𝑥
2
(𝑖) − 10 cos (2𝜋𝑥 (𝑖)) + 10) , (25)

where global optimum 𝑥
∗

= 0 and 𝑓(𝑥
∗
) = 0 for −5.12 ≤

𝑥(𝑖) ≤ 5.12.
The parameters of DHSPM are HM = 5, bw = 0.01, and

𝜂
𝑚

= 10. Thirty independent replications are carried out for
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each function and the number of improvisations (NI) for each
run is set to 10000.The average and standard deviations (SD)
generated by the three algorithms (HS, IHS, and DHSPM)
with dimension 30 are reported in Table 1. It can be seen from
Table 1 that DHSPM generates best results for 7 functions
compared to HS and IHS algorithms.

4. Application of DHSPM for ELD Problem

In this section, theDHSPMalgorithm is applied for economic
load dispatch problemwith valve-point effect.Themain steps
symbolizing the search procedure are given below.

Step 1. Specify the generator cost coefficients and valve-
point coefficients, choose the number of generator units (𝑁),
and specify maximum and minimum real power generation
capacity of all generators and load demand 𝑃

𝐷
. Initialize the

parameters of DHSPM.

Step 2. Initialize HM matrix with size HMS × 𝑁, where 𝑁

represents the total number of generators in the system.

Step 3. Calculate the fitness value for each harmony vector in
theHMusing (6).Thepenalty factors are chosen high enough
tomake constraint violations prohibitive in the final solution.
Use penalty coefficient 𝛾 = 1000.

Step 4. Calculate HMCR and PAR using (10).

Step 5. Generate new harmony vector using random selec-
tion, memory consideration, and pitch adjustment.

Step 6. If the newharmony vector is better than theworst har-
mony in the HM, then calculate the mutated new harmony
using (12) and include it in HM.

Step 7. If themaximum number of improvisations is reached,
go to Step 8; otherwise, repeat Steps 4–6.

Step 8. Print the optimal value of real power generation of
generators and total cost of generation.

5. Simulation and Results

In this section, the DHSPM algorithm was tested with three
standard load dispatch problems (3, 13, and 40 thermal units).
The software was written in MATLAB 2009b and applied on
a 2.40GHz Intel Core i5 CPU personal computer with 4GB
RAM. The parameters of DHSPM for all the test systems are
given in Table 2

5.1. 3 Thermal Units. A system of three thermal units with
the valve-point loading was considered in this test. In this
case, the load demand is taken as 𝑃

𝐷
= 850MW. The test

system comprises three generating units with quadratic cost
functions together with the effects of valve-point loadings as
given in Table 3. Based on data attained through 100 trials,
the comparisons of the three thermal units test by different
algorithm are represented in Tables 4 and 5, which show that

Table 10: 40 thermal units’ test results.

Generator Power (MW)
1 110.802
2 110.800
3 97.400
4 179.733
5 87.800
6 140.000
7 259.600
8 284.601
9 284.599
10 130.000
11 94.000
12 94.001
13 214.760
14 394.279
15 394.279
16 394.278
17 489.280
18 489.279
19 511.279
20 511.279
21 523.280
22 523.279
23 523.278
24 523.279
25 523.279
26 523.280
27 10.000
28 10.000
29 10.000
30 87.800
31 189.999
32 190.000
33 190.000
34 164.800
35 199.996
36 194.401
37 110.000
38 110.000
39 110.000
40 511.279

the DHSPM also succeeded in finding the satisfactory solu-
tion.The fuel cost convergence of harmony search algorithms
for 3 thermal units is shown in Figure 3.

5.2. 13 Thermal Units. A system of 13 generating units
with the valve-point loadings is given in Table 6. In this
case, the load demand is considered as 𝑃

𝐷
= 1800MW.
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Figure 3: Fuel cost convergence nature of DHSPM, IHS, and HS for
3 thermal units’ system.

The optimal real power generation outputs of 13 generators
using DHSPM after conducting 100 trails is given in Table 7.
The comparisons of the 13 thermal units test by different
methods with DHSPM obtained through 100 trials are given
in Table 8. From Table 8, it can be observed that the DHSPM
algorithm succeeds in finding a satisfactory solution. Table 8
also summarizes the minimum and average cost obtained by
all algorithms. From Table 8, the minimum cost obtained by
DHSPM is 17960.54 $/h which is the best cost found so far.
The fuel cost convergence of harmony search algorithms for
13 thermal units is shown in Figure 4.

5.3. 40 Thermal Units. In order to test DHSPM algorithm
deeper, a system of 40 thermal units with the effects of valve-
point loading was considered in this test. The data of 40 ther-
mal units with valve-point loading effect is given in Table 9.
In this case, the load demand is equal to𝑃

𝐷
= 10500MW.The

optimal value of real power generation by DHSPM after con-
ducting 100 trails is depicted in Table 10.The results obtained
by applying the DHSPM algorithm and other algorithms are
summarized in Table 11. From Table 11, it can be concluded
that the DHSPM method succeeds in finding a satisfactory
solution. Table 11 also summarizes the minimum and average
cost obtained by other settled algorithms. From Table 11, the
minimum cost obtained by DHSPM is 121412.66 $/h which is
the best cost when compared with other existing algorithms.
The fuel cost convergence of harmony search algorithms for
40 thermal units is shown in Figure 5.

6. Conclusion

In this paper, dynamic harmony search with polynomial
mutation algorithm is applied to solve economic load
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Figure 4: Fuel cost convergence nature of DHSPM, IHS, andHS for
13 thermal units’ system.
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Figure 5: Fuel cost convergence nature of DHSPM, IHS, and HS for
40 thermal units’ system.

dispatch problem with valve-point loading effect. The feasi-
bility and the effectiveness of DHSPM algorithm have been
investigated on three test systems having 3, 13, and 40 units.
The DHSPM algorithm achieves the minimum fuel cost for
the above unit cases when compared with other optimization
methods reported in the literature.The successful optimizing
performance on the validation data sets proves the efficiency
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Table 11: Best result comparison with different algorithms for 40
thermal units’ system.

Algorithms 40 thermal units ($)
Best result

40 thermal units ($)
Average result

CEP [21] 123488.29 124793.48
FEP [21] 122679.71 124119.37
MFEP [21] 122647.57 123489.74
IFEP [21] 122624.35 123382.00
EGA [21] 122022.96 122942.66
FIA [21] 121823.80 122662.48
SPSO [21] 121787.39 122474.40
QPSO [21] 121448.21 122225.07
DEC-SQP [7] 121741.97 122295.12
STHDE [22] 121698.51 122304.30
SDE [23] 121412.78 121412.54
HS 121438.24 122221.14
IHS 121435.16 122219.28
DHSPM 121412.66 121423.57

of the DHSPM algorithm and shows that it can be used as a
reliable tool for economic load dispatch problem.
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