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I. INTRODUCTION

The sensitivity of radar backscatter signals to vegetation and surface properties is expected to vary significantly

as a function of radar incidence angle (θ). Consequently, the impact of θ on surface soil moisture (Θs) retrieval

skill is an key design consideration for satellite-based radars tasked with the remote estimation of Θs. Work by

Ulaby and colleagues demonstrated that low incidence angles (10-20◦) are generally preferred [8], [17], yet larger

θ values are typically required in order to achieve good spatio-temporal ground coverage. Side-looking radars such
as the scatterometer on board European Remote Sensing (ERS) satellites cover the θ range between 20 to 60◦

(approximately), while the conical scanning Soil Moisture Active Passive (SMAP) mission will acquire backscatter

measurements at a fixed mid-range incidence angle of 40◦ [13]. Unfortunately, the impact of θ on retrieval skill is
difficult to quantify because of significant uncertainties in existing backscatter (σ◦) models [2]. Even over bare soil

surfaces, σ◦ models exhibit markedly different sensitivities to θ because of difficulties describing the roughness of
natural surfaces [20]. This uncertainty is compounded over vegetated surfaces where variations in Θs uncertainty

with θ depend on the assumed strength of so-called “canopy interaction” and/or “double-bounce” backscatter terms
[21].

Theoretical models exist for capturing such terms [19], however they cannot be properly inverted due to their

complexity. Therefore, simpler model functions trained by either theoretical models and/or derived from empirical

observations are required for operational Θs retrieval. One possibility are so-called “vegetation water cloud” models

which explicitly ignore canopy interaction terms [1]. In general, backscatter models lacking such terms attribute

changes in far-range backscatter almost exclusively to vegetation [14] and predict little or no sensitivity to Θs at large

θ. Conversely, the Water Retrieval Package 5 (WARP5) backscatter model developed by TU-Wien for retrieving
Θs from ERS scatterometer and METOP Advanced Scatterometer (ASCAT) observations implicitly assumes the

presence of a large interaction term [15] and predicts the sensitivity term δσ◦[dB]/δΘs is constant across all θ.
Since the noise of radar measurements is given in dB [18], this assumption implies that the signal to noise ratio

of the Θs retrievals, and therefore their skill, does not decrease with increasing θ, even at far-range (>50◦) and in
the presence of dense vegetation.

Attempts to resolve this discrepancy over realistic landscapes are typically hampered by a lack of sites where

ground-based Θs observations are sufficiently dense for direct comparisons with coarse-scale (>10 km) satellite
retrievals. For example, a validation study of several remotely-sensed Θs products over Western Africa using sparse

ground-based Θs measurements yielded very similar results for scatterometer soil moisture products retrieved with

WARP5 and a second backscatter model developed by [24], even though the two models treat the vegetation com-

ponent quite differently [11]. However, a recently-developed evaluation technique provides a method of evaluating

large-scale soil moisture products in the absence of ground-based Θs observations [5]–[7]. Here, we apply this

technique in an attempt to clarify the impact of θ on radar-based Θs retrieval skill.

II. BACKSCATTER MODELING

The ERS WARP5 backscatter model is similar in functionality to the cloud model, with the important exception

that it exhibits an increased sensitivity to Θs at far-range by assuming a linear relationship between Θs and σ◦

(now in dB units) across the entire θ range. At a reference angle of 40◦, backscatter is given by

σ◦(40◦) = Θs(wetref − dryref) + dryref (1)
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and can be related to backscatter at any θ through

σ◦(θ) = σ◦(40◦) + σ
′

(θ)(θ − 40◦) +
1

2
σ

′′

(θ)(θ − 40◦)2 (2)

Backscatter bounding parameters wetref and dryref in (4) are calculated from extremely high and low backscatter

values within a sufficiently long time series of σ◦ observations at a single point. In addition, wetref , dryref , σ
′

, and σ
′′

all vary seasonally due to patterns of vegetation growth and decay. Full WARP5 details and exact parameterizations

are given in [15]. Note that, starting with (4), all references to σ◦ assume dB units and a vertically transmitting

and receiving (VV) backscatter polarization.

III. THE Rvalue METRIC

Directly inferring the impact of θ on Θs retrieval skill requires the availability of large-scale Θs measurements

derived from ground-based sampling. Since such observations are rarely available, we will explore the application

of an alternative strategy based solely on ground-based precipitation measurements. The Rvalue metric for remotely-

sensed Θs retrieval is based on sampling the Pearson’s correlation coefficient between data assimilation analysis

increments, realized upon the assimilation of a remotely-sensed Θs product into a water balance model, and known

rainfall errors [5]–[7]. The typical model implementation is using daily, satellite-based precipitation accumulation

estimates (P sat) to derive the Antecedent Precipitation Index (API)

APIi = γiAPIi−1 + P sat
i

(3)

where γ is the unit-less API coefficient, i is a daily time index and P sat has units of mm. In the interest of

simplicity, γ is assumed equal to a constant value of 0.85.
Using a Rauch-Tung-Strebel smoother (RTS), ΘRS retrievals are assimilated into (6). At each retrieval time, the

RTS smoother either removes or adds water to (6) in response to information contained in ΘRS. The time-series

of these changes are referred to as analysis increments. Given a sufficiently long time series of data, the Pearson’s

correlation coefficient (R) between 5-day sums of analysis increments and precipitation errors can be sampled for
a particular geographic location. Following [5], the negative of this sampled coefficient is referred to as the Rvalue

coefficient for a particular soil moisture product. The magnitude of Rvalue reflects the efficiency with which the

assimilation of ΘRS can compensate (6) for stochastic error in P sat. Higher Rvalue corresponds greater amount

of added value in ΘRS estimates. In fact, comparisons with extensive ground-based Θs observations at isolated

test-bed sites reveal a linear relationship between Rvalue and the R between anomalies in ΘRS and ground-based

Θs observations [7]. Therefore, the Rvalue metric is a robust proxy for relative variations in soil moisture retrieval

skill. While alternative Rvalue approaches could be designed with more complex water balance models, a statistical

analysis of verification results in [7] implies that more complex models are unlikely to improve its reliability as a

skill metric. In practical terms, the current Rvalue approach also has the added benefit of not requiring the availability

of ground-based Θs observations or any other ancillary information and is thus broadly applicable at continental

and global scales. Our specific purpose here is to use the Rvalue approach to provide supporting evidence regarding

the appropriate relationship between soil moisture retrieval skill and θ.

IV. METHODOLOGY

A. Soil Moisture and Precipitation Data

The ERS scatterometer ΘRS dataset is derived using the WARP5 model presented by [15] and 5.3 GHz VV-

polarization σ◦ measurements obtained from the ERS-1 and -2 satellites between August 1991 and May 2007.

P gauge is obtained from the gauge-based National Center for Environmental Prediction (NCEP) Climate Prediction

Center (CPC) retrospective CONUS rainfall product [12]. Following the convention used in CPC processing, daily

rainfall accumulations are defined as total observed precipitation between 12 and 12 UTC. Because daily satellite-

based rainfall products do not extend back for the entire length of the ERS dataset, P sat is generated through the

artificial degradation of P gauge.

Our analysis is based on 1◦ simulations run within two separate regions of the United States: a Southern Great

Plains (SGP) regional domain between 32.5-40.5◦N and 94.5-103.5◦W and a Southeastern (SE) regional domain
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Fig. 1. The observed variation of domain-averaged Rvalue with θ for the real ERS data case over the lightly-vegetated Southern Great
Plains (SGP) and moderately-vegetated Southeastern (SE) United States domains. Error bars represent the 2σ sampling uncertainty range of

domain-averaged Rvalue.

covering 30.5-38.5◦N and 79.5-88.5◦W. Landcover in the SGP domain is generally short grassland and rangeland

with low levels of vegetation biomass. In contrast, the SE domain is more heavily vegetated with a combination

of upload forested areas and valley-based cropland. Prior to the analysis, all data is processed onto a daily, 1◦

latitude/longitude grid, and the subsequent Rvalue analysis is applied separately to each 1
◦ box.

B. Rvalue Approach

In order to examine the relative variation of Rvalue with θ, all ERS soil moisture retrievals are divided into five
separate θ bins: <26◦, 26-35◦, 35-43◦, 43-50◦ and >50◦. These particular bins are selected so each contains an
approximately equal fraction of all ERS WARP5 retrievals. Here, θ is assumed to be the average of the fore-, aft-
and mid-beam incidence angles for ERS measurements within a single 1◦ grid-box on a given day. Rvalue is then

individually estimated for ERS WARP5 Θs retrievals falling within each θ range. Relative variations in Rvalue for

this case reveal the manner in which θ changes impact Θs retrieval skill. Error bars for sampled Rvalue estimates

are based on the application of Fisher’s z-transformation to ensure normality (see [16] p. 148).

V. RESULTS

Figure 1 shows the variation of Rvalue with θ for the real ERS data case. Rvalue results are presented as spatial

averages of all 1◦ Rvalue results calculated within each domain. For the SGP domain, calculated Rvalue declines

slightly with θ. Since the Rvalue metric has a strong linear relationship with the Pearson correlation coefficient

between retrieved and ground-observed Θs anomalies [7], the ratio R̂value = Rvalue (> 50◦)
/

Rvalue (< 26◦)

approximates the corresponding ratio in correlation-based skill. Based on this reasoning, the highest θ range in
Figure 1 (for the SGP domain) retains 77% of the correlation-based anomaly skill found in the lowest θ range
(i.e. R̂value = 0.77). Reflecting the impact of increased vegetation biomass and thus lower retrieval skill, relatively
lower Rvalue results are noted over the SE domain. In addition, slightly more sensitivity to θ is found as the R̂value

ratio falls to 0.70.



VI. CONCLUSIONS

The impact of θ on Θs retrieval skill represents an areas of significant uncertainty for efforts to apply spaceborne

radars to operationally estimate Θs over continental-scale regions. Here, we attempt to clarify this issue by applying

a new data assimilation-based evaluation method for remotely-sensed Θs products. Despite a slight reduction in

skill with increasing θ, statistically significant skill is detectable at all θ ranges within the TU-Wien WARP5 surface
Θs data product. Specifically, θ retrievals based on far-field (θ > 50◦) ERS observations in the SGP (SE) domain
retain 77% (70%) of the correlation-based skill present in retrievals at the lowest available ERS θ range. Additional
results presented in our presentation will examine the degree to which observed variations with θ are consistent
will assumptions underlying the WARP5 and cloud vegetation backscattering models.
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