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Two-Dimensional Study of Heat 
Transfer and Fluid Flow in a 
Natural Convection Loop 

A study has been made of the heat transfer and fluid flow in a natural convection 
loop. Previous studies of these systems have utilized a one-dimensional approach 
which requires a priori specifications of the friction and the heat-transfer coef
ficients. The present work carries out a two-dimensional analysis for the first time. 
The results yield the friction and the heat-transfer coefficients and give their 
variation along the loop with the Graetz number as a parameter. Comparison is also 
made with experimental data for the heat flux and good agreement is obtained. 

Introduction 

A study has been made of the heat transfer and fluid flow in 
a laminar natural convection loop which is created by heating 
from below and cooling from above. The driving force for a 
natural convection loop results from the density difference 
between the lower and the upper portions of the loop. 
Previous studies of such loops have utilized a one-
dimensional approach by averaging the governing equations 
over the cross section (see Creveling et al. [1, 2], Damerell and 
Schoenhals [3], Greif, Zvirin, and Mertol [4], and Bau and 
Torrance [5]). Studies on a number of natural convection 
loops have been carried out by Keller [6], Welander [7], 
Japikse [8], Zvirin et al. [9-11],, Torrance et al. [12, 13], 
Huang [14], Gillette et al. [15], and Mertol et al. [16, 17]. 
Natural convection loops, in general, have many applications 
including the production of geothermal energy, solar heating, 
and the emergency cooling of nuclear reactors. Although 
most applications involve turbulent flows, many laminar 
natural convection flows do appear, particularly in solar 
systems. 

The present work differs from the previous studies of 
natural convection loops in that a two-dimensional analysis is 
carried out for the first time. It is noted that the previous 
studies which followed a one-dimensional approach required 
a priori specifications of the friction and the heat-transfer 
coefficients, / and h, respectively. One result of the present 
study is that the Graetz number, Gz, now emerges as a 
parameter, and it is shown that the quantity/Re varies as a 
nonmonotonic function of Gz. Another common assumption 
has been the use of a constant heat-transfer coefficient, h. The 
present results show the variation of h with respect to distance 
along the thermosyphon with Gz as a parameter. Results have 
also been obtained for the detailed temperature and velocity 
profiles, as well as for averages of these quantities. Lastly, 
comparison with the experimental data of Creveling et al. [1, 
2] shows good agreement. 

Analysis 

The analysis which follows is for the determination of the 
velocity and temperature profiles in a toroidal thermosyphon. 
The loop is heated continuously by a constant heat flux, q, 
over the bottom half and is cooled continuously over the top 
half by transferring heat to the surface which is maintained at 
the constant temperature, T„. (see Fig 1). Variations in both 
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the radial, r, and axial, d, directions are considered. Axial 
symmetry is assumed and axial conduction, viscous 
dissipation, and the effects of curvature have been neglected. 
Fluid properties are assumed to be constant except for the 
evaluation of the density in the buoyancy term of the 
momentum equation. The flow is assumed to be laminar and 
to be in the axial, 6, direction; i.e., radial and azimuthal 
velocities are neglected. With these assumptions, we obtain 
from the equation of continuity for incompressible flow that 
the velocity in the ^-direction is only a function of the radius: 

v = v(r) 

The momentum equation in the ^-direction is given by 

0 = -
1 dp 

- pg cos 6 + 
H d ( dv kV> 

(i) 

(2) 
R dd "° ' r dr 

Integrating equation (2) along the loop and using the relation 
p = pw[l - P(T — T„)] in the buoyancy term yields 

0 = ^ ( \T-T„) cos Bdd + J 
lit Jo \ 

d2v 1 
dr2 r dr ) (3) 

Note that the pressure term has been eliminated by the in
tegration around the loop. Consequently, the use of the 
momentum equation in the /'-direction is not required. The 
energy equation is given by the following relation: 

v dT fd2T 1 dT\ 

R dd 

Note that axial conduction is neglected. 
Equations (3) and (4) must be solved simultaneously subject 

to the following boundary conditions: 

Constant wall 
temperature , T „ 

Cool ing 
water 

0,2TT out 

Fig. 1 The circular, toroidal natural circulation loop 
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dv 

dr 
I dT 

(5a) V 2irc/* / (7) 

v(a)=0 

T(a,6)=Tw for O < 0 < T T 

dT 

(5b) The Graetz number, Gz, and the characteristic Reynolds 
/<5C\ number are defined by 

dr 
= q for 7r<e<2ir (5d) Gz = Rec/lPr 

< 
2a \ 2pwca2V 

2-KR •wkR 
Re,, 

pwV2a 

Equations (3-5) are made dimensionless according to the T h e dimensionless form of equations (3-5) then becomes: 
following definitions: 

T~T„ v 
,—» w = - , 

qa/k V 
0=. * = • and r/ = £Gz' (6) 

where V is the characteristic velocity defined by Creveling et 
al. [1] 

0= I <t>cos6d6+ — ( 
J0 IT \ 

34> _ 2 / 
IT V 

cfiw 1 
+ — 

dw 

m 
dw 

q=Const-

d24> 

= 0 = 
dr) U=o 

w(Gz'/!) = 0 

dr,2 

1 
+ — 

d<t> 
dri 

•q dr. 

dr, ) 

1 

|,=o 

(8) 

(9) 

(10) 

(llfl) 

(11*) 

ii 

"T l l i I i i i r 

-Gz=8.00 

•2.67 

1.60 

J — i i i 

Fig. 2 Nusselt number variation along the loop for different Graetz 
numbers 

0,0 0,5 
e-r/a 

Fig. 3 Velocity distribution 

1.0 

N o m e n c l a t u r e 

a = radius of thetoroid, Fig. 1 
c — specific heat 
/ = friction coefficient, equations 

(12) and (13) 
G = mass flow rate 

Gz = Graetz number, equation (8) 
g = acceleration of gravity 
h = heat-transfer coefficient, 

equation (15) 
k = thermal conductivity 

Nu = Nusselt number, equation (15) 

Pr = Prandtl number, — 
k 

p = pressure 
q = heat flux 
R = radius of the circular loop (see 

Fig. 1) 
Re = Reynolds number, equation 

(14) 
Rec/, = characteristic Reynolds 

number, equation (8) 
r = radial space coordinate, r = 0 

is center of tube 

T = temperature 
V = characteristic velocity, 

equation (7) 
v = velocity 
v = cross-sectional average 

velocity 
w = dimensionless velocity, 

equation (6) 
w = dimensionless cross-sectional 

average velocity 

Greek Symbols 

a = thermal diffusivity, 
pwc 

/3 = thermal expansion coefficient 
?; = dimensionless modified radial 

space coordinate, equation (6) 
6 = axial space coordinate 
Ii. = absolute viscosity 
J = dimensionless radial space 

coordinate, equation (6) 

p = density 
<j> = dimensionless temperature, 

equation (6) 
<j>b = dimensionless bulk tem

perature, equation (16) 
<t>„ = dimensionless wall tem

perature for the lower loop 

Subscripts 

0 = location at d = 0 
1 = location at r = 0 (£ = 0) 
b = bulk 

ch = characteristic 
/' = axial space step in the finite 

difference equations 
j = radial space step in the finite 

difference equations 
M = location at 6 = 2w 
N = location at/- = a (£ = 1) 
w = wall 
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4>(GzVl ,6) = 0 for O < 0 < T T 

^— . ,,, =Gz for ir<d<2Tr 

(He) 

(Hd) 
dr, U=GZI/2 

In terms of presenting results the friction factor and the 
Nusselt number are also calculated. The friction factor, / , is 
defined by 

/ = -

dv 

~dr 
(12) 

:Pwv 

where i; is the average velocity over the cross section given by 

v = I v(r) 2irrdr/m2. 

On a dimensionless basis,/becomes 

4 Gz1/2 e?w 

rule and the derivatives were evaluated by using the backward 
difference formula. The governing equations are 

r 1 M~l 

+ T L 2 <S>0J c o s ( 0 ) + S *<'.; cos(/A0) 

+ ^M,yCOs(MA0)]A0(Ar,) 2] / (2- - 1 ) (17) 

and 

f 2 A0 r 

•—(-7)]]/h4^(-j)]™ 
11 = 0 2 ' ' Re vv C?T) 

where tv is the average dimensionless velocity over the cross 
section, 

(13) The following boundary conditions have been used: 

2 p Gz1'2 

Vv=i}/K= — I Wnd-n, 

Gz J o 

and Re is the Reynolds number defined by 

_ pwv2a _Gzw /2nR\ 

H Pr \ 2a ) 

The Nusselt number is defined by 

(14) 

NU(0) : 
h(6)2a 

k 

2GZ17 

4>6 

2 

2 d</> 
drj 

for TT 

,= Gz"2 

<0<2ir 

for O<0<?r 

(15«) 

(156) 

where the bulk temperature, 4>b, is defined by 

2 (• Gz1/2 

* 6 = ^ ^ ] 0 0(I),0)W(IJ)IJO?IJ (16) 

Method of Solution 

The governing equations, equations (9) and (10), have been 
solved numerically by using a finite difference method to 
calculate the temperature and the velocity distributions. The 
integral in equation (9) was evaluated by using the trapezoidal 
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Fig. 4 Average velocity as a function of the Graetz number 
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Fig. 5 Friction coefficient as a function of the Graetz number 

Fig. 6 Wall temperature variation along the heated region of the loop 
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Fig. 7 Temperature distributions inside the loop 
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(/) Symmetry conditions at the centerline, 17 = 0 (£ = 0 ) , for 
the velocity: 

VV0 = Wj + 
7T f l 

[ 2 *o.o c o s ( ° ) + Z / */.o cos(/A0) 

+ 2 V o cos(MA0)] A ^ A T ? ) 2 

and for the temperature: 

T . 8 A0 "1/r 8 Ad 1 

(19) 

(20) 

(//*) Boundary conditions on the surface, r\ = Gz 1 / 2 (£ = 
1) (except at the locations 8 = 0, 2ir and 8 = ir) for the 
velocity: 

w,v = 0 (no slip condition) (21) 

and for the temperature: 

</>,,„ = 0 for Q<6<% (22a) 

Using an energy balance for the heated region yields 
(neglecting axial convection), 

0;,/v = 0 / , /v - i+A>)Gz- 1 / 2 for -K<6<2% (226) 

Energy balances on the surface (£ = 1) are made at the 
locations 8 = 0, 2ir and 8 = IT. The resulting relations are 
given by (neglecting axial convection because of the vanishing 
velocity): 

A T ) G Z - | / 2 

PM.N — <PM,N- 1 ( 2 - A T / G Z -
at = 0, 2TT 

and 

0M/2./V 

where 8 

•1 + -
Ar/Gz-

at 
( 2 - A ? j G z ~ l / 2 ) 

iAB, n = jAri, 2TT = MA8 and Gz 1 / 2 

(23a) 

(235) 

NAr) 

Equat ions (17-23) were solved by initially assuming parabolic 
velocity and temperature distributions and iterating until 
convergence was obtained. A space increment of Ad equal to 
7r/40 was used for all the calculations. Different values of the 
space increments in the radial direction, A£, were used. For 
the larger values of the Graetz number, A£ ~ 0.025 and for 
the smaller values of the Graetz number, A£ - 0.05. 
Calculations were made to check the sensitivity to the space 
increments and showed variations for the velocity and 
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Fig. 8a Centerline (r = 0) temperature variation along the loop 
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Fig. 8b Temperature variation at r = all along the loop 

temperature distributions of less than 5 percent. With respect 
to the calculations, it is also noted that for the cylindrical 
control volume adjacent to the wall, axial convection was 
neglected. This leads to an energy balance in the heating 
region that is correct to first order, cf. equations (22£>), (23a), 
and (236). It is also noted that the backward difference 
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formulation for the axial convection term generates a 
numerical diffusion. However, a Taylor series expansion 
shows that this false diffusion is of the order of (AS)2 which is 
smaller than the principal terms (see equation (18)). This is in 
accord with the sensitivity statement given above concerning 
the space increments. 

Results and Discussion 
The steady-state behavior of a natural circulation loop 

which is heated uniformly over the lower half and cooled by 
maintaining a constant wall temperature over the upper half 
has been investigated (see Fig. 1). A two-dimensional, axially 
symmetric model was used with the independent variables, £ 
(or i;), for the radial coordinate, and, d, for the axial coor
dinate, and the parameter, Gz (defined in equation (8)) which 
is equal to the Graetz number. The characteristic velocity, V, 
results from buoyancy so that it is also possible to relate the 
Graetz number to a Grashof number, Prandtl number, and a 
diameter to length ratio. However, it is more convenient to 
use the Graetz number in this study. 

Note that axial conduction has been neglected. This is a 
good approximation for large values of the Peclet number, 
Pe, where Pe = Gz (2irR/2a). For slug flow, the effects of 
axial conduction should be considered for 0 < Pe < 100 [18]. 
For the experimental loops of references [1-3], a = 0.015 m 
and R = 0.38 m; this would correspond to the range 0 < Gz 
< 1.25. (This range may be altered for the present velocity 
profiles which result from buoyancy.) It would therefore 
appear that the effects of axial conduction are of importance 
for the lower values of the Graetz number; i.e., Gz = 0.4 and 
0.8. It is noted that the range of values of the Graetz number 
for the experimental data [I, 2] is 44 < Gz < 172 (cf. Fig. 10) 
which should be consistent with the omission of axial con
duction. 

The increase in the heat transfer for increasing values of the 
Graetz number is clearly shown in Fig. 2 in both the heating 
region (ir < 6 < 2ir, qw = const = q) and the cooling region 
(0 < 6 < 7T, Tw = const). For small and moderate Graetz 
numbers, the local Nusselt number approaches the values 4.36 
and 3.66 for the heating and cooling regions, respectively. 
Note that these values are the asymptotic values for fully 
developed laminar flow inside a circular straight tube for 

uniform heating and for constant wall temperature, 
respectively. 

The behavior of the velocity profile, w(£), and the average 
cross-sectional velocity, w, is shown in Figs. 3 and 4 for 
various values of Gz. As can be seen from the figures, the 
average velocity (or the flow rate) increases initially with the 
Graetz number, due to the increase of the buoyancy driving 
force (as explained above by the relation between the Graetz 
and Grashof numbers) and the decrease in friction (cf. Fig. 5). 
As Gz is further increased the resistant friction force in
creases, as can be seen from the increase in the velocity 
gradient at the wall in Fig. 3 (cf. Fig. 5). The increase in 
friction for increasing values of the Graetz number coupled 
with the accompanying effect of smaller temperature dif
ferences, causes the flow rate to increase at a slower rate so 
that the average velocity, w, reaches a maximum and then 
decreases (cf. Fig. 4). For completeness, it is noted that for 
forced laminar flow,/Re = 16. 

At this point we wish to refer to the experiments of 
Damerell and Schoenhals [3] and their visual observations in 
the cooled region (close to the connection between the heated 
and cooled sections, i.e., at 0 « 0 + ). They concluded that at 
this location the axial velocity, v, near the surface of the tube, 
was in a direction opposite to that of the main flow. The 
theoretical velocity profiles shown in Fig. 3 differ from these 
observations and this is felt to be a consequence of neglecting 
the radial and azimuthal components of the velocity as 
specified in obtaining equation (1). It is possible that this 
effect is most pronounced at the location noted and is of less 
significance in the rest of the loop. Accordingly, the inversion 
of the velocity profile has not been treated in this study. 
Further discussion of the velocity is given later in connection 
with the comparison of the theoretical results with the ex
perimental data of Creveling et al. [1, 2]. 

Figure 6 shows the increase of the wall temperature in the 
heated region with increasing 6, i.e., as the fluid moves 
through and is heated in this region. The increase becomes 
smaller as the Graetz number, which characterizes the relative 
buoyancy effect, increases. As noted above, the heat transfer 
increases with Gz which results in smaller temperature dif
ferences (also see Fig. 7). This figure shows the change in the 
temperature distribution around the loop. 

Table 1 Average velocity, bulk temperature, and friction coefficient for different Graetz numbers 

<t>b(8) 

Gz 

0.4 

0.8 

1.6 

2.0 

2.7 

3.2 

4.0 

8.0 

10.0 

15.0 

20.0 

50.0 

100.0 

150.0 

200.0 

500.0 

1000.0 

w 

0.775 

0.831 

0.893 

0.908 

0.922 

0.928 

0.933 

0.923 

0.915 

0.890 

0.867 

0.772 

0.714 

0.672 

0.642 

0.557 

0.503 

0 = O,2TT 

12.186 

5.725 

2.688 

2.145 

1.638 

1.399 

1.169 

0.702 

0.607 

0.473 

0.400 

0.246 

0.174 

0.144 

0.126 

0.087 

0.069 

0=7i72 

0.001 

0.047 

0.224 

0.280 

0.331 

0.349 

0.358 

0.332 

0.311 

0.273 

0.247 

0.175 

0.135 

0.117 

0.105 

0.077 

0.064 

6=ir 

0.157 

0.074 

0.060 

0.078 

0.111 

0.136 

0.163 

0.226 

0.223 

0.210 

0.197 

0.152 

0.122 

0.107 

0.097 

0.074 

0.062 

0 = 3x/2 

6.215 

2.932 

1.390 

1.124 

0.884 

0.775 

0.672 

0.470 

0.420 

0.345 

0.301 

0.200 

0.148 

0.126 

0.112 

• 0.081 

0.066 

< M 0 ) - < M T ) 

12.029 

5.651 

2.628 

1.021 

1.527 

1.263 

1.006 

0.476 

0.384 

0.263 

0.099 

0.094 

0.052 

0.037 

0.029 

0.013 

0.007 

/Re 

15.00 

14.64 

14.39 

14.41 

14.54 

14.71 

15.02 

16.75 

17.56 

19.35 

20.85 

26.74 

35.01 

39.79 

43.54 

57.28 

68.11 
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Fig. 9d Temperature variation in the radial direction at 6 = 3u72 

The temperature variation with respect to 6 on the axis (r = 
0), at the mid-distance to the wall (r = a/2) and the bulk 
temperature, are shown in Figs. 8(a), 8(Z?) and Table 1. As can 
be seen for short axial distances, the centerline temperature 
continues to increase in the cooling section, due to radial 
conduction from the hotter fluid. This effect is reversed as the 
cooling from the wall penetrates into the fluid and the cen
terline temperature then decreases. The maximum tem
perature becomes higher and is reached sooner (for smaller 
values of 6) as the Graetz number decreases. This is due to the 
effect of increasing velocities with greater buoyancy effects, 
as noted above. For completeness, detailed radial temperature 
variations are presented in Figs. (9a-9d) for various locations 
around the loop. 

The numerical results of the present work are compared to 
the experimental results of Creveling et al. [1, 2] in Fig. 10, 
where the mass flux G = p Vw is plotted versus the heat flux 
input, q. The comparison is made in the laminar regime only. 
Average properties of the fluid (water) were taken at the 
average loop temperature as reported in [2]. The agreement 
between the numerical results and the data is very good. It is 
noted that at the higher values of q in Fig. 10, the flows are 

60 
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unstable, with growing oscillations and reversed flow. It was, 
therefore, difficult to accurately determine the flow rates and 
fluid temperatures in this range. For completeness, results 
based on one dimensional theory are also presented in Fig. 10. 
The fully developed flow relations,/ = 16/Re and h = 1.83 
k/a, were used in obtaining this result [4]. Creveling et al. [1, 
2] used different relations, but the disagreement between the-
one-dimensional theory and the data was still large. 

In Fig. 10 it is seen that the mass flux G = pVw increases 
with respect to the heat input, q. The experimental range of 
values of the Graetz number [1, 2] is 44 < Gz < 172, and it is 
noted that over this range the calculated values of w decrease 
for increasing Gz (cf. Fig. 4). The calculated increase of the 
mass flux, G = pVw, with respect to the heat input, q, results 
from the stronger increase in V with respect to q, i.e., V ~ 
q'A-

Conclusions 
The steady-state velocity and temperature distributions in a 

natural circulation toroidal loop have been obtained by a 
numerical solution of the coupled two-dimensional con
tinuity, momentum, and energy equations. A single 
parameter, the Graetz number, Gz, (related to the Grashof 
number) governs the motion in the loop. The solutions were 
used to obtain the friction and the heat transfer. It was found 
that the friction parameter, /Re, varies significantly as a 
function of the Graetz number. The local Nusselt numbers in 
the heated and cooled sections decrease with axial distance, 6. 
For small and moderate Graetz numbers, Nu approaches the 
forced convection values 4,36 and 3.66 for constant heat flux 
and constant wall temperatures, respectively. The heat 
transfer increases for increasing values of the Graetz number 
and this is accompanied by smaller temperature differences. 
The present numerical predictions have been compared with 
the existing data for the steady state flux and good agreement 
has been obtained. 
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