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We study online mechanisms for preemptive scheduling with deadlines, with the goal of maximizing the total value of
completed jobs. This problem is fundamental to deadline-aware cloud scheduling, but there are strong lower bounds even for
the algorithmic problem without incentive constraints. However, these lower bounds can be circumvented under the natural
assumption of deadline slackness, i.e., that there is a guaranteed lower bound s > 1 on the ratio between a job’s size and the
time window in which it can be executed.

In this paper, we construct a truthful scheduling mechanism with a constant competitive ratio, given slackness s > 1.
Furthermore, we show that if s is large enough then we can construct a mechanism that also satisfies a commitment property:
it can be determined whether or not a job will finish, and the requisite payment if so, well in advance of each job’s deadline.
This is notable because, in practice, users with strict deadlines may find it unacceptable to discover only very close to their
deadline that their job has been rejected.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms
and Problems—sequencing and scheduling; K.6.2 [Management of Computing and Information Systems]: Installation
Management—pricing and resource allocation
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1. INTRODUCTION
Modern computing applications, such as search engines and big-data processing, run on large clus-
ters operated by either first or third parties (a.k.a., private and public clouds, respectively). Since
end-users do not own the compute infrastructure, the use of cloud computation necessitates crisp
contracts between them and the cloud provider on the service terms (i.e., Service Level Agreements
- SLAs). The problem of designing and implementing such contracts falls within the scope of online
mechanism design, which concerns the design of mechanisms for allocating resources when agents
arrive and depart over time, and the mechanism must make allocation decisions online. A contract
can be as simple as renting out a virtual machine for a certain price per hour. However, with the
increased variety of cloud-offered services come more performance-centric contracts, such as pay-
ing per number of transactions [Azure 2015], or a guarantee to finish executing a job by a certain
deadline [Curino et al. 2014; Ferguson et al. 2012].
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Since the underlying physical resources are often limited, a cloud provider faces resource man-
agement challenges, such as deciding which service requests to accept in view of the required SLAs,
and determining how best to schedule or allocate resources to the different users. For instance, the
provider may opt to delay time-insensitive tasks when usage peaks, or prevent admission of low-
priority jobs if higher-priority jobs are expected to arrive. To make these decisions in a principled
manner, one wishes to design a mechanism for an online scheduling problem with deadlines, aimed
at maximizing the total value of completed jobs. This social welfare objective is most relevant in
the private cloud setting. It is also relevant for markets with competition between cloud providers,
where each provider wishes to extend its market share by increasing user satisfaction. At a high
level, the goal of this paper is to provide algorithmic foundations for scheduling jobs with different
demands, values and deadlines, in a manner that is compatible with user incentives.

The problem can be abstracted as follows. Each job request j is associated with an arrival time aj ,
a size (demand) Dj , a deadline dj and a value vj . There are C identical machines that can process
jobs. Each job uses at most a single machine at a time, and jobs can be preempted and resumed.
The goal is to maximize the total value of jobs completed by their deadlines. In a perfect world, a
solution to this problem would achieve a good competitive ratio, would be incentive compatible, and
would notify jobs whether or not they are completed as swift as possible. Unfortunately, the basic
online scheduling problem, without considering incentives or commitments, is inherently difficult
even when C = 1. From a worst-case perspective, there is a polylogarithmic lower bound on the
competitive ratio of any randomized algorithm [Canetti and Irani 1998]. However, the known lower
bounds only apply when all deadlines are tight (i.e., dj = aj + Dj). Recent work circumvented
the lower bound by assuming deadline slackness, where every job j satisfies dj − aj ≥ s ·Dj for
a slackness parameter s > 1 [Lucier et al. 2013]. Our aim is to continue this line of inquiry and
design incentive compatible scheduling mechanisms in the presence of deadline slackness.

Truthfulness. In our online scheduling context, the incentive compatibility requirement is multi-
parameter: agents must be incentivized to report their tuple of job parameters 〈vj , Dj , aj , dj〉. As is
standard, we assume agents cannot deviate to an arrival time earlier than aj , nor report a deadline
later than dj . These assumptions are natural if one views the arrival time as the first time the cus-
tomer is able to interact with the mechanism, and that job results are not released to a customer until
the reported deadline. Furthermore, we generally assume that a job holds no value to the customer
unless it is fully completed. Hence, a user cannot benefit from underreporting the job demand.

Commitments. In addition to incentive compatibility, another important feature of a practical
scheduling mechanism is commitment: whether, and when, a scheduler guarantees to complete a
given job. Traditionally, a preemptive scheduler is allowed to accept a job, process it partially, but
then abandon it once its deadline has passed. While this behavior may be justified in terms of pure
optimization, in many real-life scenarios it is not acceptable, since users might be left empty-handed
at their deadline. In reality, users with business-critical jobs require an indication, well before their
deadline, of whether their jobs can be processed. Since sustaining deadlines is becoming a key re-
quirement for modern computation clusters (e.g., [Curino et al. 2014] and references therein), it is
essential that schedulers provide some degree of commitment.

The question is: at what point of time should the scheduler commit to jobs? One option is to
require the scheduler to commit to jobs upon arrival. Namely, once a job arrives, the scheduler
immediately decides whether it accepts the job (and then it is required to complete it) or reject
the job. However, [Lucier et al. 2013] proved that for general values no scheduler can commit to
jobs upon arrival while providing any performance guarantees, even assuming deadline slackness.
Therefore, a more plausible alternative from the user perspective is to allow the committed scheduler
to delay the decision, but only up to some predetermined point.

Definition 1.1. A scheduling mechanism is called β-responsive (for β ≥ 0) if, for every job j,
by time dj − β ·Dj it either (a) rejects the job, or (b) guarantees that the job will be completed by
its deadline and specifies the required payment.



Note that β-responsiveness requires deadline slackness s ≥ β for feasibility. Schedulers that do
not provide advance commitment are by default 0-responsive; we often refer to them as being non-
committed. Useful levels of commitments are typically obtained when β ≥ 1, as this provides
rejected users an opportunity to execute their job elsewhere before their deadline.

One might consider different definitions for responsiveness in online scheduling. In a sense, the
definition given here is additive: for each job j, the mechanism must make its decision βDj time
units before the deadline. An alternative definition could be fractional: the decision must be made
before some fraction of job execution window, e.g., dj −ω(dj − aj) for ω ∈ (0, 1). It turns out that
many of our results1 also satisfy responsiveness under this alternative definition, as well as other
useful properties2. We discuss this further in Section 6.

1.1. Our Results
We design the first truthful online mechanisms for preemptive scheduling with deadlines. Moreover,
our mechanism can be made β-responsive as defined above.

Main Theorem (informal): For every β ≥ 0, given sufficiently large slackness s ≥ s(β), there
is a truthful, β-responsive, O(1)-competitive mechanism for online preemptive scheduling on C
identical servers.

The precise competitive ratio achieved by our mechanism depends on the level of input slackness.
We establish the main result in two steps. First, we build a mechanism that is truthful, but not com-
mitted. Second, we develop a reduction from the problem of scheduling with responsive commit-
ment to the problem of scheduling without commitment. Each of these two steps may be of interest
in their own right. In particular, we obtain in the first step a truthful O(1)-competitive mechanism
for online preemptive scheduling with deadlines.

THEOREM 1.2. There is a truthful mechanism for online scheduling on multiple identical
servers that obtains a competitive ratio of 2 + Θ

(
1

3
√
s−1

)
+ Θ

(
1

( 3
√
s−1)3

)
for any s > 1.

Note that, as implied by known lower bounds, this competitive ratio grows without bound as
s → 1. However, as s grows large, the competitive ratio we achieve approaches 2. Our approach
for this result is to begin with a greedy scheduling rule that prioritizes jobs by value density (value
per size), then modify this scheduler so that (a) jobs are not allowed to begin executing too close
to their deadlines, and (b) one job cannot preempt another unless its value density is sufficiently
greater. These modifications generate incentive issues that need to be addressed with some addi-
tional tweaking. We then analyze the competitive ratio of this scheduler using dual fitting techniques,
as described in Section 2.3. This analysis appears in Section 3.

For the second step, we provide a general reduction from committed scheduler design to non-
committed scheduler design. We abstract our reduction here for β = s/2. The idea behind the re-
duction is to employ simulation: each incoming job is slightly modified and submitted to a simulator
for the first half of its execution window. The simulator uses the given non-committed scheduling
to “virtually” process jobs. If the simulation completes a job, then the algorithm commits to execut-
ing the job on the physical server. See Section 4 for more details. This reduction can be applied to
any scheduling algorithm, not just the truthful scheduler described above. Specifically, applying our
reduction to the (non-truthful) algorithm described in [Lucier et al. 2013] generates a (non-truthful)
committed scheduler with a competitive ratio that approaches 5 as s grows large.

THEOREM 1.3. There is a (s/2)-responsive scheduler for online scheduling on multiple iden-

tical servers that obtains a competitive ratio of 5 + Θ
(

1
3
√
s−1

)
+ Θ
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( 3
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)
for any s > 4.

1Specifically, all of the results stated in Section 1.1, except for Theorem 1.4.
2Such as the no-early-processing property: the scheduler cannot begin to process a job without committing first to its com-
pletion. This implies that any job that begins processing is guaranteed to complete.



To obtain both truthfulness and responsiveness, we wish to compose our reduction with the truth-
ful non-committed mechanism described above. One challenge is that our basic reduction preserves
truthfulness with respect to all parameters except arrival time. We can therefore immediately ob-
tain a constant competitive-ratio scheduling mechanism which is (s/2)-responsive, given sufficient
slackness; and truthful, given that jobs do not purposely delay their arrivals. For the single server
case, we obtain the same asymptotic bound as in Theorem 1.3 for s > 4; see Section 5.

To yield our most general result, we explicitly construct a scheduling mechanism that obtains full
truthfulness based on the truthful non-committed scheduler and a general reduction from commit-
ted scheduling to non-committed scheduling. The construction is rather technical and significantly
increases the competitive ratio. We obtain the following result, with constants s0 = 279.744 and
c0 = 187.496; the constants improve for the single server case.

THEOREM 1.4. There is a truthful, (s/12)-responsive mechanism for online scheduling on mul-

tiple identical servers that obtains a competitive ratio of c0 + Θ
(

1
3
√
s/s0−1

)
+ Θ

(
1

( 3
√
s/s0−1)3

)
for

any s > s0.

1.2. Related Work
Online preemptive scheduling models have been widely studied in the scheduling theory for various
objectives, with value maximization results being of most relevance to our work. Canetti and Irani
[Canetti and Irani 1998] consider the case of tight deadlines, obtaining a deterministic lower bound
of κ and a randomized Ω

(√
log κ/ log log κ

)
lower bound, where κ is the max-min ratio between

either job values or job demands. Several upper bounds have been constructed [Koren and Shasha
1992; 1994; Canetti and Irani 1998; Porter 2004], with the best being a randomized O(log κ) al-
gorithm. In [Lucier et al. 2013], we show that by incorporating a deadline slackness constraint, a
non-committed online preemptive scheduler for the general value model exists, and prove a bound3

of 2+Θ
(

1
3
√
s−1
)
+Θ

(
1

( 3
√
s−1)2

)
on its competitive ratio, which is constant for every s > 1. However,

[Lucier et al. 2013] do not provide any algorithmic guarantees for committed scheduling models.
Other constant competitive schedulers have been known only for special cases. When all demands
are identical, a 5-competitive scheduler exists, which can be improved to 2 assuming a discrete
timeline [Hajiaghayi et al. 2005]. Another studied model is where the value of each job equals its
demand; this model is known as the busy time maximization problem [DasGupta and Palis 2000;
Garay et al. 2002; Bar-Noy et al. 1999] . These works can be combined to obtain a 1-responsive al-
gorithm with a competitive ratio of min{5.83, 1 + 1/s}; however, the algorithm cannot be extended
to incorporate general values.

Much less is known about truthful online scheduling mechanisms. Previous works (e.g., [Lavi
and Swamy 2007; Archer and Éva Tardos 2001]) focus mostly on offline settings with makespan as
main objective. [Jain et al. 2011; 2012] design incentive compatible algorithms for jobs with dead-
lines, but restrict attention to the offline setting. Works on online truthful scheduling have largely
focused on achieving the (non-constant) bounds from the algorithmic literature [Porter 2004; Haji-
aghayi et al. 2005] Finally, [Lucier et al. 2013] proposes an incentive compatible heuristic for the
1-responsive case; no formal guarantees are provided for the quality of the heuristic.

2. PRELIMINARIES
In this section we present the scheduling model and necessary definitions (Sections 2.1 and 2.2). We
then provide a brief overview of the dual fitting technique, which is used to analyze the proposed
mechanisms (Section 2.3).

3The bound presented by [Lucier et al. 2013] can be generalized to this form.



2.1. Scheduling Model
We consider a system consisting of C identical servers, which are always available throughout time.
The scheduler receives job requests over time. Denote by J the set of all job requests received by
the scheduler. Each job request j ∈ J is associated with a type τj = 〈vj , Dj , aj , dj〉. The type of
each job j consists of the job value vj , the job resource demand (size) Dj , the arrival time aj and
the deadline dj . Write T as the space of possible types. We denote by ρj = vj/Dj the value-density
of job j. The job requests in J are revealed to the scheduler only upon arrival. The scheduler can
allocate resources to jobs, provided that at any point each job is processed on at most one server and
each server is processing at most one job. Preemption is allowed. Specifically, jobs may be paused
and resumed from the point they were preempted. If a job is allocated to servers for a total time of
Dj during the interval [aj , dj ], then it is completed by the scheduler.

An input instance of the scheduling problem is represented by a type profile τ = {τj : j ∈ J }.
Given a scheduling algorithm A, denote by A(τ) the jobs that are fully completed by A on an
instance τ , and by v(A(τ)) their aggregate value. The goal of the scheduler is to maximize v(A(τ)).
Let OPT denote the optimal offline algorithm. The quality of an online scheduler is measured by
its competitive ratio, which is the worst case ratio between the optimal offline value and the value
gained by the algorithm. In this paper, we define the competitive ratio as a function of the input
slackness, defined s , s(τ) = min

{dj−aj
Dj

| τj = 〈vj , Dj , aj , dj〉 ∈ τ
}

. The competitive ratio of
an online algorithm A is given by:

crA(s) = max
τ :s(τ)=s

{
v(OPT (τ))

v(A(τ))

}
∈ [1,∞). (1)

The following definitions refer to the execution of an online allocation algorithm A over an in-
stance τ . We drop A and τ from notation when they are clear from context. Time is represented by
a continuous variable t. For a scheduling algorithm A, denote by jiA(t) the job running on server i
at time t and by ρiA(t) its value-density. We use yij(t) as a binary4 variable indicating whether job j
is running on server i at time t, i.e., whether j = jiA(t) or not. We often refer to the function yij as
the allocation of job j on server i, and to yj as the allocation of job j.

2.2. Mechanisms and Incentives
Each job in J is owned by a rational agent (i.e., user), who submits it to the scheduling mechanism.
We will be studying direct revelation mechanisms, where each user participates by announcing its
type τj = 〈vj , Dj , aj , dj〉 from the space T of possible types. A mechanism then consists of an
allocation rule A : TJ → {0, 1}J and a payment rule p : TJ → RJ . Writing A(τ) as the profile
of allocations returned by the mechanism given type profile τ , we interpret Aj(τ) as an indicator
for whether the job of customer j is fully completed by its deadline. In general mechanisms can
be randomized, in which case we can interpret Aj(τ) ∈ [0, 1] as the expected allocation of agent
j. However, all of the mechanisms we consider in this paper are deterministic. We will restrict our
attention to online mechanisms, which are constrained to make scheduling decisions at each point
in time without knowledge of jobs that arrive at future times. Agents have quasilinear utilities: given
allocations x and payments p, the utility of user j is given by uj(τ) = vjAj(τ)− pj(τ). Each user
attempts to maximize its personal utility.

We adopt a model in which we only allow late reports of arrivals, early reports of deadlines, and
increased reports of job lengths. As discussed in the introduction, this assumption is justifiable in the
context of allocating cloud resources. We say a mechanism is truthful if, subject to these restrictions
on type reports, each user j maximizes expected utility by reporting his true type to the mechanism,
for any possible declarations of the other agents.

4In Section 2.3 we extend the range of values yij(t) may receive. However, we will always treat it as an allocation indicator.



We will make heavy use of a characterization of truthfulness made by [Hajiaghayi et al. 2005].
We say that a type τj = 〈vj , Dj , aj , dj〉 dominates τ ′j = 〈v′j , D′j , a′j , d′j〉 if vj ≥ v′j , Dj ≤ D′j ,
aj ≥ a′j , and dj ≤ d′j . We then say that an algorithm A is monotone if for any type profile τ ,
any j, and any τ ′j that dominates τj , we have that Aj(τj , τ−j) ≤ Aj(τ ′j , τ−j). For deterministic
algorithms, this means that if job j is allocated under input profile τ , then it will also be allocated if
customer i’s report changes from τj to a type that dominates τj .

THEOREM 2.1 ([HAJIAGHAYI ET AL. 2005]). Given an allocation algorithm A, there exists
a payment rule p such that mechanism (A, p) is truthful if and only if A is monotone.

2.3. LP and Dual Fitting
Our competitive ratio analysis relies on a relaxed formulation of the problem as a linear program
(LP). The relaxed LP formulation was suggested in [Jain et al. 2011] and considered later in [Jain
et al. 2012; Lucier et al. 2013]. In this paper, we do not require the LP formulation itself, but do
rely on its dual. For completeness, we present below both the primal and dual programs. The primal
program holds a variable yij(t) representing the allocation of a job j on server i at time t ∈ [aj , dj ].

Primal Program.

max
∑
j∈J

C∑
i=1

dj∫
aj

ρjy
i
j(t)dt (2)

C∑
i=1

dj∫
aj

yij(t)dt ≤ Dj ∀j (3)

∑
j:t∈[aj ,dj ]

yij(t) ≤ 1 ∀i, t (4)

C∑
i=1

yij(t)−
1

Dj
·
C∑
i=1

dj∫
aj

yij(t)dt ≤ 0 ∀j, t ∈ [aj , dj ] (5)

yij(t) ≥ 0 ∀j, i, t ∈ [aj , dj ]

The first two sets of constraints (3),(4) are standard demand and capacity constraints. The constraints
(5) are gap-reducing constraints; see [Jain et al. 2011] for an interpretation of these constraints. Note
that for the single server case, the constraints (5) are redundant, since they follow from (4). The
primal objective (2) is to maximize the total (fractional) value.

The dual linear program of an instance τ is given as follows.

Dual Program.

min
∑
j∈J

Djαj +

C∑
i=1

∞∫
0

βi(t)dt (6)

s.t. αj + βi(t) + πj(t)−
1

Dj

dj∫
aj

πj(t
′)dt′ ≥ ρj ∀j ∈ J , i, t ∈ [aj , dj ] (7)

αj , βi(t), πj(t) ≥ 0 ∀j ∈ J , i, t ∈ [aj , dj ] (8)



We provide the intuition behind the dual formulation. The dual program holds a constraint (7) for
every tuple (j, i, t), where j is an input job, i is a server index, and t ∈ [aj , dj ] is a specific time.
Note that since time is continuous, there are an infinite number of constraints. However, this does
not impose an issue, since we do not solve the dual program explicitly. There are three types of dual
variables. We typically set πj(t) = 0, since these variables are not required throughout this paper.
The second variable αj is associated with each job j and appears in all of the constraints of job j.
Setting αj = ρj allows us to satisfy all of the constraints associated with job j. As a result, the
dual objective function (6) increases by Djαj = Djρj = vj . The αj variables are typically used
to cover all the constraints of a completed job j, since the cost of covering their constraints is equal
to their value. The last variables βi(t) appear in all constraints associated with a server i and time
t. These variables are typically used to cover the dual constraints associated with incomplete jobs,
since these variables are shared across the constraints of all jobs.

We denote by OPT ∗(τ) the optimal fractional solution of the dual program for an instance τ .
Define IG(s) = maxτ :s(τ)=s {v(OPT ∗(τ))/v(OPT (τ))} as the integrality gap for instances with
slackness s. We are interested in online scheduling algorithms that induce upper bounds on the
integrality gap.

Definition 2.2. An online scheduling algorithmA induces an upper bound on the integrality gap
for a given slackness s if IG(s) ≤ crA(s).

The dual fitting technique bounds both the competitive ratio crA(s) of an online algorithmA and
the integrality gap IG(s) by constructing a feasible solution to the dual program and bounding its
dual cost. Every feasible dual solution induces an upper bound on the optimal fractional solution,
and the well-known weak duality theorem implies that v(OPT (τ)) ≤ v(OPT ∗(τ)). Moreover,
v(A(τ)) ≤ v(OPT (τ)). Therefore, we can obtain bounds on the integrality gap and the competitive
ratio of A. This is summarized in the following theorem.

THEOREM 2.3 (DUAL FITTING [VAZIRANI 2001]). LetA be an online scheduling algorithm.
If for every instance τ with slackness s = s(τ) there exists a feasible dual solution (α, β, π) with a
dual cost of at most r(s) · v(A(τ)), then crA(s) ≤ r(s) and IG(s) ≤ r(s).

3. TRUTHFUL NON-COMMITTED SCHEDULING
Our first goal is to design a truthful online scheduling mechanism under the deadline slackness as-
sumption, without regard for commitments. The algorithmic version of this problem was studied
in [Lucier et al. 2013]. [Lucier et al. 2013] presents a modified greedy scheduling algorithm, and
shows that it obtains a constant competitive ratio for any s > 1. However, the algorithm in [Lucier
et al. 2013] is not monotone. We refer the reader to the extended version of the paper for a coun-
terexample, in which a job that would not be completed can manipulate the algorithm by reporting
a lower value and consequently be completed by its deadline.

In this section, we develop a new truthful mechanismAT , which also obtains a constant competi-
tive ratio for any s > 1. The mechanism will be parameterized by constants γ > 1 and µ > 1, which
will be specified below. A key element in AT is dividing the jobs into buckets (classes), differenti-
ated by their value densities. Precisely, the job classes are C` =

{
j | ρj ∈

[
γ`, γ`+1

)}
. Notice that

job j belongs to class C` for ` = blogγ(ρj)c. We think of a job j′ as dominating another job j if j′
is in a “higher” bucket than j. More formally, we use the following notation throughout the section:

Definition 3.1. Given jobs j and j′, we say that j′ � j if blogγ(ρj′)c > blogγ(ρj)c.

At a high level, algorithmAT proceeds as follows. At each point in time,AT will process the job
with highest priority according to the ordering�. That is, a pending job j′ can preempt a running job
j only if j′ � j. However, there is an important exception: if a job j has not begun its execution by
time dj−µDj , then the scheduler will discard that job and will not schedule it thereafter (i.e., it can
be rejected immediately). The following intuition motivates these principles. The preemption rule
guarantees that the running jobs belong to the highest classes out of all available jobs (proven later,



see Claim 3.2). This prevents users from benefiting from a misreport of their values. The decision
to not execute a job that has not begun by time dj − µDj is used to bound the competitive ratio;
note that this condition implies that there is slackness in the time interval from the first time the job
is executed, to the job’s deadline.

We now formally describe our truthful algorithm for the single server case (see Algorithm 1 for
pseudo-code). The extension to multiple servers can be found in the full version of the paper.

ALGORITHM 1: Truthful Non-Committed Algorithm AT for a Single Server

∀t, JP (t) = { j ∈ J | j partially processed by AT at time t ∧ t ∈ [aj , dj ]}.
JE(t) = { j ∈ J | j unallocated by AT at time t ∧ t ∈ [aj , dj − µDj ]}.

Event: On arrival of job j at time t = aj :
1. call ClassPreemptionRule(t).

Event: On completion of job j at time t:
1. resume execution of job j′ = argmax

{
ρj′ | j′ ∈ JP (t)

}
.

2. call ClassPreemptionRule(t).
3. delay the output response of j until time dj .

ClassPreemptionRule (t):
1. j ← job currently being processed.
2. j∗ ← argmax

{
ρj∗ | j∗ ∈ JE(t)

}
.

3. if (j∗ � j) :
3.1. preempt j and run j∗.

Note that the algorithm maintains two job sets. The first set JP (t) represents jobs j that have
been partially processed by time t and can still be executed. The second set JE(t) represents all
jobs j that have not been allocated by time t, where t ≤ dj − µDj .

The algorithm’s decisions are triggered by one of the following two events: either when a new
job arrives, or when a processed job is completed. The algorithm handles both events similarly.
When a new job j arrives, the algorithm invokes a class preemption rule, which decides which job
to process. In this case, the arriving job j preempts the running job only if it belongs to a higher
class. The second type of event occurs when the running job is completed. As mentioned earlier, the
algorithm delays the output of the job until its respective deadline (line 3). When a job is completed,
the algorithm resumes the best job j′ among the preempted jobs in JP (t) (line 1) and calls the class
preemption rule (line 2). The class preemption rule would override the decision to resume j′ if there
exists an unallocated job j∗ in JE(t) belonging to a higher class. In that case, j∗ is processed and j′
remains preempted. Notice that in both cases, the algorithm favors jobs belonging to higher classes.
Formally,

CLAIM 3.2. Let j = jAT
(t) be the job processed at time t by AT . Let j′ ∈ JP (t) ∪ JE(t).

That is, j has either been allocated by time t and t ∈ [aj′ , dj′ ], or j has not been allocated by time
t and t ∈ [aj′ , dj′ − µDj ]. Then, j′ 6� j.

PROOF. Assume towards contradiction that j′ � j. Let t∗ denote the earliest time job inside the
interval

[
aj′ , t

]
during which j is allocated. Note that t∗ must exist, since the claim assumes that j

has being processed at time t. At time t∗, the algorithm A either started processing j or resumed
the execution of j. For A to start j, the threshold preemption rule must have preferred j over j′,
which is impossible. The second case where A resumed the execution of job j is also impossible,
since either j′ would have been resumed instead of j, or the threshold preemption rule would have
immediately preempted j. We conclude that j′ 6� j.



Claim 3.2 implies that at any point in time, the job allocated by AT belongs to the highest class
among the jobs that can be processed, i.e., either an unallocated job j such that t ∈ [aj , dj − µDj ]
or a partially processed job j such that t ∈ [aj , dj ]. Notice further that equalities in job classes
are broken in favor of partially processed jobs. This feature is crucial for proving the truthfulness
and the performance guarantees of our algorithm. Using Claim 3.2 we prove an additional property,
which is also required for establishing truthfulness.

CLAIM 3.3. At any time t, the set JP (t) contains at most one job from each class.

PROOF. By induction. Assume the claim holds and consider one of the possible events. Upon
arrival of a new job j∗ at time t, the threshold preemption rule allocates j∗ only if j∗ � j. Since j is
the maximal job in JP (t), with respect to�, if j∗ is allocated then it is the single job in JP (t) from
its class. Upon completion of job j, it is removed from JP (t) and the threshold preemption rule is
invoked. As before, if a new job is allocated, it belongs to a unique class.

We now prove that AT is truthful, i.e., AT can be used to design a truthful online scheduling
mechanism.

CLAIM 3.4. The algorithm AT (single server) is monotone.

The proof of Claim 3.4 is deferred to the extended version. The intuition behind the result is
as follows. The algorithm is defined so that the processing of higher-class jobs is independent of
the presence of lower-class jobs in the system. As a result, a job j is completed if precisely two
conditions hold: first, that there is some time in [aj , dj − µDj ] in which no job of equal or higher
class is executing (so that job j can start), and second, there are at least Dj units of time after the
earliest such start time, but before dj , in which higher class jobs are not executing. These conditions
are well-defined because the processing of job j does not impact the times in which jobs of higher
class are processed. One can then note, however, that each of these two conditions are monotone
with respect to the job’s class, length, arrival time, and deadline. One can therefore conclude that
the algorithm is monotone, and hence truthfulness follows from Theorem 2.1.

The competitive-ratio analysis of AT is similar to the analysis of the non-truthful algorithm A
[Lucier et al. 2013], and proceeds via the dual fitting methodology. Therefore, we defer the full
proof to the full paper. Our result is the following.

THEOREM 3.5. The mechanism AT (single-server) is truthful and obtains a competitive ratio

crAT
(s) = 2 + Θ

(
1

3
√
s− 1

)
+ Θ

(
1

( 3
√
s− 1)3

)
, s > 1.

3.1. Extension to Multiple Servers
We next extend our algorithm to handle multiple servers. We provide a high level description of the
algorithm; full details can be found in the extended version. The multiple server algorithm runs a
local copy of the single server algorithm on each of the C servers. The algorithm allows a job to use
different servers throughout time (equivalently, we use say that a job is allowed to migrate between
servers), yet with some restrictions: a preempted job j can migrate to any other server before time
dj − µDj . After that time, the job may only use the subset of servers which were allocated to it
before time dj − µDj . We obtain the following competitive-ratio result.

THEOREM 3.6. The algorithm AT (multiple-servers) obtains a competitive ratio of:

crAT
(s) = 2 + Θ

(
1

3
√
s− 1

)
+ Θ

(
1

( 3
√
s− 1)3

)
, s > 1.

Observe that the competitive ratio for the multiple server case is (asymptotically) identical to the
bound obtained for a single server. However, we note that the constants hidden inside Θ are slightly
larger for the multiple-server case.



4. COMMITTED SCHEDULING
In this section we develop the first committed (i.e., responsive) scheduler for online scheduling
with general job types, assuming deadline slackness. Our solution is based on a novel reduction
of the problem to the “familiar territory” of non-committed scheduling. We introduce a parameter
ω ∈ (0, 1) that affects the time by which the scheduler commits. Specifically, the scheduler we
propose decides whether to admit jobs during the first (1−ω)-fraction of their availability window,
i.e., by time dj − ω(dj − aj) for each job j. The deadline slackness assumption (dj − aj ≥ sDj)
then implies that our scheduler is (ωs)-responsive (cf. Definition 1.1 for β = ωs).

We start with the single server case (Section 4.1), where we highlight the main mechanism design
principles. We then extend our solution to accommodate multiple servers, which requires some
subtle changes in our proof methodology (Section 4.2).

Our competitive-ratio results hold for slackness values greater than some threshold (e.g., s > 4
for the single-server case). In Section 4.3, we provide an indication that high slackness is indeed
required, by obtaining a related impossibility result for inputs with small slackness.

4.1. Reduction for a Single Server
Our reduction consists of two key components: (1) simulator: a virtual server used to simulate an
execution of a non-committed algorithm A; and (2) server: the real server used to process jobs.
The speeds of the simulator and server are the same. We emphasize that the simulator does not
utilize actual job resources. It is only used to determine which jobs to admit. We use the simulator
to simulate an execution of the non-committed algorithm. Upon arrival of a new job, we submit the
job to the simulator with a virtual type, defined below. If a job is completed on the simulator, then
the committed scheduler admits it to the system and processes it on the server (physical machine).
We argue later that the overall value gained by the algorithm is relatively high, compared to the
value guaranteed by A.

We pause briefly to highlight the challenges in such simulation-based approach. The underlying
idea is to admit and process jobs on the server only after they are “virtually” completed by A on
the simulator. If the simulator completes all jobs near their actual deadlines, the scheduler might not
be able to meet its commitments. This motivates us to restrict the latest time in which a job can be
admitted. The challenge is to guarantee that all admitted jobs are completed, while still guaranteeing
relatively high value.

We now provide more details on how the simulator and server are handled by the committed
scheduler throughout execution.

Simulator. The simulator runs an online non-committed scheduling algorithm A. Every arriving
job j is automatically sent to the simulator with a virtual type τ (v)j = 〈vj , D(v)

j , aj , d
(v)
j 〉, where

d
(v)
j = dj−ω(dj−aj) is the virtual deadline of j, andD(v)

j = Dj/ω is the virtual demand of j. IfA
completes the virtual request of job j by its virtual deadline, then j is admitted and sent to the server.

Server. The server receives admitted jobs once they have been completed by the simulator, and
processes them according to the Earliest Deadline First (EDF) allocation rule. That is, at any time
t the server processes the job with the earliest deadline out of all admitted jobs that have not been
completed.

The reduction effectively splits the availability window to two subintervals. The first (1 − ω)

fraction is the first subinterval and the remainder is the second. The virtual deadline d(v)j serves
as the breakpoint between the two intervals. During the first subinterval, the algorithm uses the
simulator to decide whether to admit j or not. Then, at time d(v)j , it communicates the decision
to the job. In practical settings, this may allow a rejected job to seek other processing alternatives



during the remainder of the time. Furthermore, if j is admitted, the scheduler is left with at least
ω(dj − aj) time to process the admitted job on the server.

The virtual demand of each job j is increased to Dj/ω. We use this in our analysis to guarantee
that the server meets the deadlines of admitted jobs. Note that we must requireDj/ω ≤ (1−ω)sDj ,
otherwise j could not be completed on the simulator. By rearranging terms, we get a constraint on
the values of s for which our algorithm is feasible: s ≥ 1

ω(1−ω) .

4.1.1. Correctness. We now prove that when the reduction is applied, each accepted job is guar-
anteed to finish by its deadline. Note that the simulator can complete a job before its virtual deadline,
hence it may be admitted earlier. However, in the analysis below, we assume without loss of gener-
ality that jobs are admitted at their virtual deadline. Accordingly, We define the admitted type of job
j as τ (a)j = 〈vj , Dj , d

(v)
j , dj〉.

Recall thatAC(τ) represents the jobs completed by the committed algorithm. Equivalently, these
are the jobs completed by the non-committed algorithm A on the simulator. To prove that AC can
meet its guarantees, we must show that the EDF rule deployed by the server completes all jobs in
AC(τ), when submitted with their admitted types. It is well known that for every set of jobs S,
if S can be feasibly allocated on a single server (i.e., before their deadline), then EDF produces a
feasible schedule of S. Hence, it suffices to prove that there exists a feasible schedule ofAC(τ). We
prove the following general claim, which implies the correctness of our algorithm.

THEOREM 4.1. Let S be a set of jobs. For each job j ∈ S, define the virtual deadline of j as
d
(v)
j = dj − ω(dj − aj). If there exists a feasible schedule of S on a single server with respect to

the virtual types τ (v)j =
〈
vj , Dj/ω, aj , d

(v)
j

〉
for each j ∈ S, then there exists a feasible schedule of

S on a single server with respect to the admitted types τ (a)j =
〈
vj , Dj , d

(v)
j , dj

〉
for each j ∈ S.

PROOF. We describe an allocation algorithm that generates a feasible schedule of S with respect
to admitted types. That is, the algorithm produces a schedule where a each job j ∈ S is processed
for Dj time units inside the time interval [d

(v)
j , dj ]. The algorithm we describe allocates jobs in

decreasing order of their virtual deadlines. For two jobs j, j′ ∈ S, we write j′ � j when d(v)j′ > d
(v)
j .

In each iteration, the algorithm considers some job j ∈ S by the order induced by �, breaking ties
arbitrarily. We say that time t is used when considering j if the algorithm has allocated some job j′
at time t; otherwise, we say that t is free. We denote by Uj and Fj the set of used and free times
when the algorithm considers j, respectively. The algorithm works as follows. Consider an initially
empty schedule. We iterate over jobs in S in decreasing order of their virtual deadlines, breaking
ties arbitrarily; this order is induced by �. Each job j in this order is allocated during the latest
possible Dj free time units. Formally, define t′ = arg max{t : |[t, dj ] ∩ Fj | = Dj} as the latest
time such that there are exactly Dj free time units during [t′, dj ]. The algorithm allocates j during
those free Dj time units [t′, dj ] ∩ Fj .

We now prove that the algorithm returns a feasible schedule of S, with respect to the admitted job
types. It is enough to show that when a job j ∈ S is considered by the algorithm, there is enough
free time to process it; namely, there should be at leastDj free time units during [d

(v)
j , dj ]. Consider

the point where the algorithm allocates a job j ∈ S. Define `R = max{` | [dj , dj + `] ⊆ Uj} and
denote tR = dj + `R. By definition, the time interval [dj , tR] is the longest continuous block that
starts at dj in which all times t ∈ [dj , tR] are used. Define tL = aj − `R · (1 − ω)/ω. We claim
that any job j′ � j allocated in the interval [d

(v)
j , tR] must satisfy [aj′ , dj′ ] ⊆ [tL, tR]. Assume the

claim holds. We show how the claim leads to the theorem. Denote by JLR all jobs j′ � j that have
been allocated sometime during the interval [d

(v)
j , tR]. Obviously, we also have [aj , dj ] ⊆ [tL, tR].

Now, since we know there exists a feasible schedule of S with respect to the virtual types, we can
conclude that the total virtual demand of jobs in JLR ∪ {j} is at most tR − tL, since the interval



Fig. 1. Illustration of the proof to Theorem 4.1.

[tL, tR] contains the availability windows of all these jobs. Notice that tR − tL = (tR − d(v)j )/ω.
Since the virtual demand is 1/ω times larger than the admitted demand, we can conclude that the
total amount of used time slots during [d

(v)
j , tR] is at most (tR − d(v)j )−Dj . Thus, there have to be

Dj free time units during [d
(v)
j , dj ] since [dj , tR] is completely full. It remains to prove the claim.

Let j′ ∈ JLR. Notice that dj′ ≤ tR; otherwise, the allocation algorithm could have allocated j′

after time tR, and since we assume j′ has been allocated sometime between [d
(v)
j , dj ], this would

contradict the definition of tR. Also, j′ � j means d(v)j′ ≥ d
(v)
j . Therefore:

aj′ =
1

ω
· d(v)j′ −

1− ω
ω
· dj′ ≥

1

ω
· d(v)j −

1− ω
ω
· tR

=
1

ω
· dj − (dj − aj)−

1− ω
ω
· (dj + `R) = aj −

1− ω
ω
· `R = tL

which completes the proof.

4.1.2. Competitive Ratio. We now analyze the competitive ratio obtained via the single server
reduction. The competitive ratio is bounded using dual fitting arguments. Specifically, for every
instance τ with slackness s = s(τ), we construct a feasible dual solution (α, β) with dual cost
proportional to v(AC(τ)), the total value gained by AC on τ . Recall the dual constraints (7) cor-
responding to types τj =

〈
vj , Dj , aj , dj

〉
. For the single server case, we make two simplifications.

First, we denote β(t) = β1(t) to simplify notation. Second, we assume that π = 0 without loss of
generality5. The dual constraints corresponding to τ reduce to:

αj + β(t) ≥ ρj ∀j ∈ J , t ∈
[
aj , dj

]
. (9)

Our goal is to construct a dual solution which satisfies (9) and has a dual cost of at most r ·v(AC(τ))
for some r. Note that v(AC(τ)) = v(A(τ (v))). To do so, we transform a dual solution correspond-
ing to virtual types τ (v) to a dual solution satisfying (9). The dual constraints corresponding to the
virtual types are:

αj + β(t) ≥ ωρj ∀j ∈ J , t ∈
[
aj , d

(v)
j

]
(10)

Assume that the non-committed algorithm A induces an upper bound on IG(s(v)), where s(v) =
s · ω(1 − ω) is the slackness of the virtual types τ (v). This implies that the optimal dual solution
(α∗, β∗) satisfying (10) has a dual cost of at most crA(s(v)) · v(A(τ (v))) = crA(s(v)) · v(AC(τ)).
Yet, (α∗, β∗) satisfies (10), while we require a solution that satisfies (9). To construct a feasible dual
solution corresponding to the original job types τ , we perform two transformations on (α∗, β∗)
called stretching and resizing.

5This assumption is valid due to the redundancy of the primal constraints corresponding to π for a single server.



LEMMA 4.2 (RESIZING LEMMA). Let (α, β) be a feasible solution for the dual program cor-
responding to a type profile τj =

〈
vj , Dj , aj , dj

〉
. There exists a feasible solution (α′, β′) for the

dual program with demands D′j = f ·Dj for some f > 0, with a dual cost of:

∑
j∈J

D′jα
′
j +

∞∫
0

β′(t)dt =
∑
j∈J

Djαj +
1

f
·
∞∫
0

β(t)dt.

PROOF. Notice that the value density corresponding to D′j = f · Dj is ρ′j = ρj/f . Hence, by
setting α′j = αj/f for every job j ∈ J and β(t) = β(t)/f for every time t, we obtain a feasible
dual solution corresponding to resized demands D′j . The dual cost is as stated since D′jα

′
j = Djαj

for every job j.

LEMMA 4.3 (STRETCHING LEMMA, [LUCIER ET AL. 2013]). Let (α, β) be a feasible solu-
tion for the dual program corresponding to a type profile τj =

〈
vj , Dj , aj , dj

〉
. There exists a

feasible solution (α′, β′) for the dual program with deadlines d′j = dj + f · (dj − aj) for some f ,
with a dual cost of:

∑
j∈J

Djα
′
j +

∞∫
0

β′(t)dt =
∑
j∈J

Djαj + (1 + f) ·
∞∫
0

β(t)dt.

These two lemmas allow us to bound the competitive ratio of AC .

THEOREM 4.4. Let A be a single server scheduling algorithm that induces an upper bound
on the integrality gap IG(s(v)) for s(v) = s · ω(1 − ω) and ω ∈ (0, 1). Let AC be the committed
algorithm obtained by the single server reduction. Then AC is ωs-responsive and

crAC
(s) ≤

crA
(
s · ω(1− ω)

)
ω(1− ω)

, s >
1

ω(1− ω)
.

PROOF. We first prove that the scheduler is ωs-responsive. Note that each job j is either com-
mitted or rejected by its virtual deadline d(v)j = dj−ω(dj−aj). The deadline slackness assumption
states that dj−aj ≥ sDj for every job j. Hence, each job is notified by time dj−ωsDj , as required.

We now bound the competitive ratio. Consider an input instance τ and denote its slackness by
s = s(τ). Let τ (v) denote the virtual types corresponding to τ , and let s(v) = s · ω(1 − ω) denote
their slackness. We prove the theorem by constructing a feasible dual solution (α, β) satisfying
(9) and bounding its total cost. By the assumption on A, the optimal fractional solution (α∗, β∗)
corresponding to τ (v) has a dual cost of at most crA(s(v)) · v(A(τ (v))) = crA(s(v)) · v(AC(τ)).
We transform (α∗, β∗) into a feasible solution (α, β) corresponding to τ by applying the resizing
lemma and the stretching lemma, as follows.

— We first apply the resizing lemma for f = 1
ω to cover the increased job demands during simulation.

The dual cost increases by a multiplicative factor of 1
ω .

— We then apply the stretching lemma to cover the remaining constraints; that is, the times in the
jobs’ execution windows not covered by the execution windows of the virtual types. We choose
f such that dj = d

(v)
j + f ·

(
d
(v)
j − aj

)
; hence, f = ω

1−ω . As a result, the competitive ratio is
multiplied by an additional factor of 1 + f = 1

1−ω .

After applying both lemmas, we obtain a feasible dual solution that satisfies the dual constraints (9).
The dual cost of the solution is at most 1

ω(1−ω) · crA
(
s ·ω(1−ω)

)
· v(AC(τ)). The theorem follows

through the correctness of the dual fitting technique, Theorem 2.3.



4.2. Reductions for Multiple Servers
We extend our single server reduction to incorporate multiple servers. We distinguish between two
cases based on the following definition.

Definition 4.5. A scheduler is called non-migratory if it does not allow preempted jobs to re-
sume their execution on different servers. Specifically, a job is allocated at most one server through-
out its execution.

Constant-competitive non-migratory schedulers are known to exist in the presence of deadline
slackness [Lucier et al. 2013]. Given such a scheduler, we can easily construct a committed algo-
rithm for multiple servers by extending the single server reduction; see full paper for details. How-
ever, we do not know how to use this reduction to obtain a committed scheduler which is truthful,
since it requires that the non-committed scheduler is both truthful and non-migratory; unfortunately,
we are not aware of such schedulers.

Therefore, we construct below a second reduction, which does not require a non-migratory non-
committed scheduler. This is essential for Section 5, where we design a truthful committed sched-
uler. We note that the first reduction leads to better competitive-ratio guarantees, hence should be
preferred in domains where users are not strategic.

4.2.1. Non-Migratory Case. In the following, let A be a non-committed scheduler for multiple
servers which is non-migratory. We extend our single server reduction to obtain a committed sched-
uler AC for multiple servers. The reduction remains essentially the same: the simulator runs the
non-committed scheduler on a system with C virtual servers. When a job is completed on virtual
server i, it is admitted and processed on server i. Each server runs the EDF rule on the jobs admitted
to it. To prove correctness (i.e., the scheduler meets all commitments), we simply apply Theorem
4.1 on each server independently. The bound on the competitive ratio obtained in Theorem 4.4 can
be extended directly to the non-migratory model.

COROLLARY 4.6. LetA be a multiple server, non-migratory scheduling algorithm that induces
an upper bound on the integrality gap IG(s(v)) for s(v) = s · ω(1 − ω) and ω ∈ (0, 1). Let AC be
the committed algorithm obtained by the multiple server reduction for non-migratory schedulers.
Then AC is ωs-responsive and

crAC
(s) ≤

crA
(
s · ω(1− ω)

)
ω(1− ω)

, s >
1

ω(1− ω)
.

We note that an improved bound can be obtained by applying the reduction on the specific non-
migratory multiple-server algorithm of [Lucier et al. 2013].

4.2.2. Migratory Case. We now assume that A allows migrations. Unfortunately, the reduction
proposed for the non-migratory case does not work here. We explain why: consider some job j that
is admitted after being completed on the simulator; note that j may have been processed on more
than one virtual server. Our goal is to process j by time dj . Assume each server runs the EDF rule
on the jobs assigned to it, as suggested in Section 4.2.1. Since j has been processed on more than
one virtual server, it is unclear how to assign j to a server in a way that guarantees the completion
of all admitted jobs. One might suggest to assign each server i the portion of j that was processed
on virtual server i. However, this does not necessarily generate a legal schedule. If each server runs
EDF independently, a job might be allocated simultaneously on more than one server.

We propose the following modification. Instead of running the EDF rule on each server inde-
pendently, we run a global EDF rule. That is, at each time t the system processes the (at most)
C admitted jobs with earliest deadlines. This is known as the EDF rule for multiple servers (also
known as f-EDF [Funk 2004]). It is well known that the EDF rule is not optimal on multiple servers;
formally, for a set S of jobs that can be feasibly scheduled on C servers with migration, EDF does
not necessarily produce a feasible schedule on input S [Hong and Leung 1989]. Nevertheless, it is



known that EDF produces a feasible schedule of S when the servers are twice as fast [Phillips et al.
1997]. Server speedup is directly linked with demand inflation. Formally, when processing S on
C servers, processing demands Dj on servers with α-speedup is equivalent to processing demands
αDj on servers with 1-speedup. Thus, we suggest a second adjustment. We modify the virtual de-
mand of each job submitted to the simulator. That is, the virtual demand of each job j is increased
to 2(3+2

√
2) ·Dj/ω. The additional factor of 3+2

√
2 ≈ 5.828 is necessary for correctness, which

is established in the following theorem.

THEOREM 4.7. Let A be a multiple server scheduling algorithm that induces an upper bound
on the integrality gap IG(s(v)) for s(v) = s · ω(1 − ω) and ω ∈ (0, 1). Let AC be the committed
algorithm AC obtained by the multiple server reduction. Then AC is ωs-responsive and

crAC
(s) ≤ 11.656

ω(1− ω)
· crA

(
s · ω(1− ω)

11.656

)
, s >

11.656

ω(1− ω)
.

PROOF. Let S denote the set of jobs admitted by the committed algorithm AC on an instance τ .
To prove correctness, we must show that there exists a feasible schedule in which each job j ∈ S is
allocated 2Dj demand during [d

(v)
j , dj ]. If so, then [Phillips et al. 1997] implies that EDF completes

all admitted jobs by their deadline. This follows since:

(1) There exists a feasible schedule of S with types 〈vj , 11.656ω · Dj , aj , d
(v)
j 〉 on C servers with

migration. This is the schedule produced by the non-committed algorithm A.
(2) [Chan et al. 2005] proved that any set S of jobs that can be scheduled with migration on C

servers can also be scheduled without migration on C servers with 5.828-speedup. As a result,
there exists a feasible non-migratory schedule of S with types 〈vj , 2

ω ·Dj , aj , d
(v)
j 〉 onC servers.

(3) By applying Theorem 4.1 on each server separately, we obtain a feasible non-migratory sched-
ule of S with types 〈vj , 2Dj , d

(v)
j , dj〉 on C servers, as desired.

(4) Therefore, EDF produces a feasible schedule of the admitted jobs S with types
〈vj , Dj , d

(v)
j , dj〉.

We note that step 4 (i.e., using EDF) is necessary. Even though Step 3 establishes that a feasible
schedule of S exists, it cannot necessarily be generated online, unlike EDF. The competitive ratio
can be bounded by following the same steps as in the single server case (Theorem 4.4), however the
resizing lemma must be applied with f = 11.656ω. Finally, note that the slackness s must satisfy
s(1− ω) ≥ 11.656/ω, otherwise jobs could not be completed on the simulator.

We use this reduction in Section 5 to design a truthful committed scheduler for multiple servers.

4.3. Impossibility Result
The committed schedulers we construct guarantee a constant competitive ratio, provided that the
deadline slackness s is sufficiently large. For example, s has to be at least (ω(1−ω))−1 for the single
server case, implying that s > 4 (since ω = 1/2 minimizes the expression). A valid question is
whether these conditions on s are merely a consequence of our choice of construction, or an inherent
property of any possible committed scheduler. In this subsection, we provide some indication that
the latter is more likely, by provider an impossibility result. In particular, we prove a lower bound for
committed schedulers that satisfy an additional requirement, termed no early processing. A no early
processing scheduler is a scheduler that may not process jobs before committing to their execution.
We note that the schedulers we have designed in this section satisfy this requirement. It is also
worth mentioning that although we did not include no-early processing as part of our β-responsive
commitment definition, this is a natural property to require in many practical settings; e.g., when
there is a cost (of data transmission, etc.) associated with beginning the execution of a job. Our
result is the following.



THEOREM 4.8. Consider a cluster with C < 4 machines. Then any committed scheduler that
satisfies the no-early processing requirement has an unbounded competitive ratio for s < 4/C.

In view of Theorem 4.4, note that this bound is tight for the single server case (under the no early
processing requirement). It remains an open question whether removing the no-early processing re-
quirement could lead to bounded competitive ratio for a larger range of s. More generally, obtaining
tighter lower bounds for multiple servers is a direction that is still unresolved.

5. TRUTHFUL COMMITTED SCHEDULING
Our main goal is to construct a scheduling mechanism which is both truthful and committed. As
it turns out, the reductions presented in the previous section preserve monotonicity with respect
to values, deadlines, and demands, but not necessarily with respect to arrival times. Therefore, by
plugging in an existing truthful non-committed scheduler (Section 3), we can obtain a committed
mechanism that is truthful assuming all arrival times are publicly known. We first prove that the
reductions preserve monotonicity for all parameters, except arrival times. Then, we describe a gen-
eralized reduction which is fully truthful, yet with a slight loss in competitive ratio.

5.1. Public Arrival Times
In this subsection, we consider the case where job arrival times are common knowledge, i.e., users
cannot misreport the arrival times of their jobs. To construct the partially truthful mechanism, we
apply one of the reductions from committed scheduling to non-committed scheduling (Section 4)
on a truthful non-committed mechanism, which we denote byAT . We denote byAT̃C the resulting
mechanism. In the following, we prove that AT̃C is almost truthful: it is monotone with respect to
values, deadlines, and demands, but not with respect to arrival times.

CLAIM 5.1. LetAT be a truthful scheduling algorithm, and letAT̃C be a committed mechanism
obtained by applying one of the reductions from committed scheduling to non-committed scheduling
(assume all required preconditions apply). Then,AT̃C is monotone with respect to values, demands
and deadlines.

PROOF. Recall that upon an arrival of a new job j, the job is submitted toAT with a virtual type
of τ (v)j = 〈vj , αDj , aj , d

(v)
j 〉 for some constant α ≥ 1 (the constant differs between the reductions

for a single server and for multiple servers). Also recall that d(v)j = dj − ω(dj − aj) is the virtual
deadline of job j, which is a monotone function of dj . Moreover, AT̃C then completes job j on
input τ precisely if AT completes job j on input τ (v). But since AT is monotone, and since vj ,
αDj , and d(v)j are appropriately monotone functions of vj , Dj , and dj (respectively), it follows that
AT̃C is monotone with respect to vj , Dj , and dj .

Hence, the reductions from committed to non-committed scheduling (Theorems 4.4 and 4.7) can be
extended to guarantee truthfulness (public arrival times) given that the reductions are applied to a
monotone non-committed scheduler.

Recall that the definition of β-responsiveness for mechanisms requires not only that allocation
decisions be made sufficiently early, but also that requisite payments be calculated in a timely fash-
ion as well. To obtain a β-responsive mechanism we must therefore establish that it is possible
to compute payments at the time of commitment, for each job j. Fortunately, because the time of
commitment is independent of a job’s reported value, this is straightforward. At the time of commit-
ment, it is possible to determine the lowest value at which the job would have been accepted (i.e.,
scheduled by the simulator). This critical value is the appropriate payment to guarantee truthfulness
(see, e.g., [Hajiaghayi et al. 2005]), so it can be offered promptly.

It is important to understand why AT̃C may give incentive to misreport arrival times. Consider
the single server case, and suppose there are two jobs τ1 = 〈v1, D1, a1, d1〉 = 〈1, 1, 0, 8〉 and
τ2 = 〈v2, D2, a2, d2〉 = 〈10, 2, 0, 100〉. In this instance, job 1 would not be accepted: the simulator



will process job 2 throughout the interval [0, 4] (recall that demands are doubled in the simulation),
blocking the execution of job 1. Since time 4 is the virtual deadline of job 1 (half of its execution
window), the job will be rejected at that time. However, if job 1 instead declared an arrival time of
4, then the simulator would successfully complete the job by its virtual deadline of 6, and the job
would be accepted.

5.2. Full Truthfulness
In this subsection, we explicitly construct a truthful, committed scheduling mechanism. The issue in
the last example is that misreporting a later arrival time can lead to a later virtual deadline being used
by the simulator. This ability to delay the virtual deadline can incentivize non-truthful reporting. We
address this issue by imposing additional structure on the time intervals used for simulation. Given
a reported job demand Dj , we determine an appropriate time duration wj to be used in simulation,
independent of the reported interval [aj , dj ]. We then run multiple simulations over all intervals of
the form [i · wj , (i + 1) · wj ] contained in [aj , dj ]. If the simulator accepts the job in any of these
intervals, we accept the job and process it in the subsequent interval; otherwise the job is rejected.

Truthfulness follows from the fact that the simulation parameters cannot be influenced by the
reported arrival time. The main technical challenge is to establish a competitive ratio bound for this
modified solution; it turns out that the dual-fitting argument used to bound the competitive ratio of
AT in Section 3 can be modified to provide the necessary bounds. We end up with the following
result. A full proof, and a more formal description of the reduction, appears in the extended version
of the paper.

THEOREM 5.2. There exists a truthful, β-responsive scheduling algorithm ATC such that:

crATC
(s) = c0 + Θ

(
1

3
√
s/s0 − 1

)
+ Θ

(
1

( 3
√
s/s0 − 1)3

)
, s > max{s0, 12β},

where c0 = 187.496 and s0 = 279.744. For the single server case, c0 = 17 and s0 = 24.

6. CONCLUSION
This paper designs and analyzes truthful online scheduling mechanisms. Although the model studied
herein is clearly a theoretical abstraction of the full complexity faced by scheduling of tasks in the
cloud, we believe that the principles developed here can carry over to more complex settings.

The β-responsive mechanisms described in Section 4 and Section 5.1 actually satisfy two stronger
properties. First, they satisfy an alternate responsiveness property: there exists a constant ω ∈ (0, 1)
such that the scheduler makes a commitment for each job after a (1−ω) fraction of the job execution
window has passed, i.e., by time dj − ω(dj − aj). Second, they satisfy no early processing, i.e.,
the mechanisms may process jobs only once they have committed to their completion. In contrast,
the truthful scheduling mechanism from Section 5.2 does not necessarily satisfy the two properties.
An interesting open question is whether there exists a (fully) truthful scheduling mechanism with
constant competitive ratio that commits to scheduling each job before a constant fraction of its
execution window has elapsed.

The most obvious problem left open by our work is to improve the constants in our results. The
mechanisms constructed for our most general results involve large constants that can potentially
be improved. One particularly interesting question along these lines is whether one can obtain an
approximation factor that approaches 1 as the number of servers C grows large. An additional
avenue of future work is to extend our results to more sophisticated scheduling problems. One
might investigate jobs with parallelism, or jobs made up of many interdependent tasks (see, e.g.,
[Bodı́k et al. 2014]), or the impact of non-uniform machines or time-varying capacity, and so on.
The primary question is then to determine to what extent deadline slackness helps to construct
constant-competitive mechanisms for variations of the online scheduling problem.
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