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Abstract. The usefulness of the Web Ontology Language to describe
domains of discourse and to facilitate automatic reasoning services has
been widely acknowledged. However, the programmability of ontological
knowledge bases is severely impaired by the di�erent conceptual bases
of statically typed object-oriented programming languages such as Java
and C# and ontology languages such as the Web Ontology Language
(OWL). In this work, a novel programming language is presented that
integrates OWL and XSD data types with C#. The Zhi# programming
language is the �rst solution of its kind to make XSD data types and
OWL class descriptions �rst-class citizens of a widely-used programming
language. The Zhi# programming language eases the development of
Semantic Web applications and facilitates the use and reuse of knowledge
in form of ontologies. The presented approach was successfully validated
to reduce the number of possible runtime errors compared to the use of
XML and OWL APIs.
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1 Introduction

A typical OWL DL [12] knowledge base comprises two components: a TBox
de�ning the formal relations between the classes and properties of the ontology;
and an ABox containing assertional knowledge about the individuals of the on-
tology. The TBox is often regarded to be the more stable part of the ontology,
whereas the ABox may be subject to occasional or even constant change. In
particular, modi�cations may lead to an ABox that violates constraints given
by the TBox, such as cardinality constraints or value space restrictions of OWL
datatype properties. Up to now, ontological knowledge bases are modi�ed us-
ing APIs, which are provided by a variety of di�erent ontology management
systems [7,21]. From a software developer's perspective, there is no support for
statically detecting illegal operations based on given terminologies (e.g., unde-
�ned classes, invalid datatype property values) and conveniently integrating on-
tological classes, properties, and individuals with the program text of a general
purpose programming language.
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A common di�culty of widely used OWL APIs and the usage of wrapper
classes to represent entities of an ontology are the di�erent conceptual bases
of types and instances in a programming language and classes, properties, in-
dividuals, and XML Schema De�nition [4] data type values in OWL DL. In
particular, the Web Ontology Language reveals the following major di�erences
to object-oriented programming languages and database management systems:

� In contrast to object-oriented programming languages, OWL provides a rich
set of class constructors. For example, classes can be described via cardinality
and value restrictions on properties (e.g., a small meeting is a meeting with
at most three participants).

� OWL class descriptions can be automatically classi�ed in a subsumption
hierarchy. Imitating this inherent behavior of ontological knowledge bases
using a hierarchy of programming language wrapper classes would result in
reimplementing a complete OWL DL reasoner.

� Unlike object-oriented programming languages or database management sys-
tems, OWL makes the open world assumption (OWA), which codi�es the
informal notion that in general no single observer has complete knowledge.
The open world assumption limits the deductions a reasoner can make. In
particular, it is not possible to infer that a statement is false just because it is
not stated explicitly. The OWA is closely related to the monotonic nature of
�rst-order logic (i.e. adding information never falsi�es previous conclusions).

� The Web Ontology Language does not make the unique name assumption
(UNA). In contrast to logics with the unique name assumption, di�erent
ontological individuals do not necessarily refer to di�erent entities in the de-
scribed world. In fact, two individuals can be inferred to be identical (e.g.,
values of functional object properties). In OWL, it is also possible to explic-
itly declare that two given named individuals refer to the same entity or to
di�erent entities.

� Unlike object-oriented programming languages, ontological properties in OWL
DL are not de�ned as part of class de�nitions but form a hierarchy of their
own (i.e. property centric modeling).

� In OWL, property domain and range declarations are not constraining. In-
stead, the declared domain and range of an OWL property is used to infer
the types of the subjects and objects of assertions, respectively. Thus, OWL
properties facilitate ad hoc relationships [13] between entities that may not
have been foreseen when a class was de�ned.

The Zhi#3 programming language is a superset of conventional C# version
1.0 boasting programming language inherent support for XML Schema De�nition
and the Web Ontology Language. Zhi#'s OWL aware compilation includes static
typing and type inference for XSD data types and a combination of static typing
and dynamic checking for OWL DL ontologies. XSD constraining facets and
ontological reasoning were integrated with host language features such as method
overriding, user-de�ned operators, and runtime type checks. For the lack of space,

3 Zhi (Chinese): Knowledge, information, wisdom.



only elementary examples of an integrated use of XSD data types and ontological
class descriptions in Zhi# are presented. The Zhi# programming language is
implemented by a compiler framework [16] that is � by means of plug-ins �
extensible with external type systems4. Detailed descriptions of the compiler
framework and the XSD and OWL plug-ins can be found in [17]. Zhi# programs
are compiled into conventional C# and are interoperable with .NET assemblies.
The Zhi# approach is distinguished by a combination of features that is targeted
to make ontologies available in an object-oriented programming language using
conventional object-oriented notation.

In contrast to naïve approaches that are based on the generation of wrapper
classes for XSD and OWL types, no code generation in form of an additional
class hierarchy is required in Zhi#. Instead, ontologies are integrated into the
programming language, which facilitates OWL aware compilation including type
checking on the ontology level. At runtime, the results of ontological reasoning
in�uence the execution of Zhi# programs: Zhi# programs don't just execute,
they reason. The underlying ontology management system can be substituted
without recompilation of Zhi# programs. The Zhi# programming language pro-
vides full support for XSD data types. Thus, Zhi# can compensate for datatype
agnostic OWL APIs. Zhi# programs can be used concurrently with API-based
knowledge base clients to allow for a smooth migration of an existing code-base.

2 The Zhi# Programming Language

The type system of the C# programming language implements nominal sub-
typing. In nominative type systems type compatibility is determined by explicit
declarations. A type is a subtype of another if and only if it is explicitly declared
to be so in its de�nition. The XML Schema De�nition type system extends
nominal subtyping with value space-based subtyping. An atomic data type is a
subtype of another if it is explicitly declared to be so in its de�nition or if its
value space (i.e. the set of values for a given data type) is a subset of the value
space of the other type. The subset relation of the types' value spaces is su�cient.
The two types do not need to be in an explicitly declared derivation path. In the
Web Ontology Language, nominal subtyping is augmented by ontological rea-
soning. An inferred class hierarchy can include additional subsumption relations
between class descriptions. Ontological individuals can be explicitly declared to
be of a given type and they can be inferred to be in the extension of further
class descriptions. Some object-oriented programming languages provide a lim-
ited set of isomorphic mappings from XSD data types to programmatic types.
In general, however, compilers for programming languages such as Java or C#
are unaware of the subtyping mechanisms that are used for XSD and OWL.

The Zhi# programming language is a proper superset of ECMA 334 standard
C# version 1.0 [6]. The only syntactical extensions, which are entailed by Zhi#'s

4 Given the general extensibility of the Zhi# programming language with external
type systems and for the sake of brevity, in this work, XSD data types and OWL
class descriptions are subsumed under the term external types.



extensibility with respect to external type systems, are the following: External
types (i.e. XSD data types and OWL class descriptions) can be included using
the keyword import, which works analogously for external types like the C#
using keyword for .NET programming language type de�nitions. It permits the
use of external types in a Zhi# namespace such that, one does not have to qualify
the use of a type in that namespace. An import directive can be used in all places
where a using directive is permissible. As shown below, the import keyword is
followed by a type system evidence, which speci�es the external type system (i.e.
XSD or OWL). Like using directives, import directives do not provide access to
any nested namespaces.

import type_system_evidence alias = external_namespace;

In Zhi# program text that follows an arbitrary number of import directives,
external type and property references must be fully quali�ed using an alias that is
bound to the namespace in which the external type is de�ned. Type and property
references have the syntactic form #alias#local_name (both the namespace
alias and the local name must be preceded by a '#'-symbol).

External types can be used in Zhi# programs in all places where .NET
types are admissible except for type declarations (i.e. external types can only
be imported but not declared in Zhi# programs). For example, methods can be
overridden using external types, user de�ned operators can have external input
and output parameters, and arithmetic and logical expressions can be built up
using external objects. Because Zhi#'s support for external types is a language
feature and not (yet) a feature of the runtime, similar restrictions to the usage
of external types apply as for generic type de�nitions in the Java programming
language (e.g., methods cannot be overloaded based on external types from the
same type system at the same position in the method signature).

In Zhi# programs, types of di�erent type systems can cooperatively be used
in one single statement. As shown in line 5 in the following code snippet, the
.NET System.Int32 variable age can be assigned the XSD data type value of the
OWL datatype property hasAge of the ontological individual Alice.

1 import OWL ch i l = http :// c h i l . s e r v e r . de ;
2 c l a s s C {
3 pub l i c s t a t i c void Main ( ) {
4 #c h i l#Person a l i c e = new #ch i l#Person("# c h i l#Alice " ) ;
5 i n t age = a l i c e .# c h i l#hasAge ;
6 }
7 }

2.1 Static Typing

C# is a statically typed programming language. Type checking is performed
during compile time as opposed to runtime. As a consequence, many errors can
be caught early at compile time (i.e. fail-fast), which allows for e�cient execution
at runtime. This section describes the static type checks that can be performed
on ontological expressions in Zhi# programs.



Syntax checks. The most fundamental compile-time feature that Zhi# provides
for OWL is checking the existence of referenced ontology elements in the im-
ported terminology. The C# statements below declare the ontological individu-
als a and b. Individual b is added as a property value for property R of individual
a. For the sake of brevity, in this work, the URI fragment identi�er �#� may
be used to indicate ontology elements in Zhi# programs instead of using fully-
quali�ed names. The object o shall be an instance of an arbitrary OWL API.
The given code is a well-typed C# program. It may, however, fail at runtime if
in the TBox of the referenced ontology classes A and B and property R do not
exist.

1 IOWLAPI o = [ . . . ] ;
2 o . addInd iv idua l ("#a" , "#A" ) ;
3 o . addInd iv idua l ("#b" , "#B" ) ;
4 o . addObjectPropertyValue("#a" , "#R" , "#b " ) ;

In Zhi#, the same declarations can be rewritten as shown below, turning
the ontological properties into �rst-class citizens of the programming language.
As a result, the Zhi# compiler statically checks if class descriptions A and B
and property R exist in the imported ontology and raises an error if they are
unde�ned. Note how in line 4 the RDF triple [a R b] is created in the shared
ontological knowledge base using object-oriented member access.

1 import OWL alias = ontology namespace ;
2 #A a = new #A("#a " ) ; // variable a refers to individual a
3 #B b = new #B("#b " ) ; // variable b refers to individual b
4 a.#R = b ;

Creation of individuals. In C#, the new -operator can be used to create objects
on the heap and to invoke constructors. In Zhi#, the new -operator can also be
used to return ontological individuals in a knowledge base as follows.

1 #Event e = new #Meeting("#Briefing " ) ; // Because Meeting v Event . . .
2 #Meeting m = new #Event("#Briefing " ) ; // . . . this assignment is rejected

Zhi# provides a constructor for OWL class instances that takes the URI of
the individual. As in conventional C#, the new -operator cannot be overloaded.
In contrast to .NET objects, ontological individuals are not created on the heap
but in the shared ontological knowledge base, and as such they are subject
to ontological reasoning. This is also in contrast to naïve approaches where
wrapper classes for ontological classes are instantiated as plain .NET objects.
Zhi# programs use handles to the actual individuals in the shared ontological
knowledge base. Also note that an existing individual in the ontology with the
same URI is reused, following Semantic Web standards. As for assignments of
.NET object creation expressions to variables or �elds, the type of the individual
creation expression must be subsumed by the type of the lvalue based on the
class hierarchy (see line 2 in the code snippet above). Zhi# supports covariant
coercions for ontological individuals and arrays of ontological individuals.



Disjoint classes. In OWL DL, classes can be stated to be disjoint from each
other using the owl:disjointWith constructor. It guarantees that an individual
that is a member of one class cannot simultaneously be a member of the other
class. In the following code snippet, the Zhi# compiler reports an error in line
2 for the disjoint classes MeetingRoom and LargeRoom.

1 #LargeRoom l = [ . . . ] ; // LargeRoom v ¬MeetingRoom
2 #MeetingRoom m = (#MeetingRoom) l ; //  InvalidCastException

If a property relates an individual to another individual, and the property
has a class as its range, then the other individual must belong to the range class.
Assuming the OWL object property takesPlaceInAuditorium relates Lectures
with LargeRooms, line 2 in the following code snippet results in a compile-time
error due to the disjointness of MeetingRoom and LargeRoom. Property domain
declarations are treated analogously.

1 #Lecture l = [ . . . ] ;
2 l .#takesPlaceInAuditor ium = new #MeetingRoom ( [ . . . ] ) ;

Disjoint XSD data types. In Zhi#, a �frame-like� view on OWL object proper-
ties is provided by the checked -operator used in conjunction with assignments
to OWL object properties (see Section 2.2). For assignments to OWL datatype
properties in Zhi# programs, the �frame-like� composite view is the default be-
havior. The data type of the property value must be a subtype of the datatype
property range restriction. The following assignment in line 2 fails to type-check
for an OWL datatype property hasCapacity with domain MeetingRoom and
range xsd#byte because in Zhi# programs the literal 23.5 is interpreted as a
.NET �oating point value (i.e. xsd#double), which is disjoint with the primitive
base type of xsd#byte (i.e. xsd#decimal).

1 #MeetingRoom r = [ . . . ] ;
2 r .#hasCapacity = 23 . 5 ;

The XSD compiler plug-in allows for downcasting objects to compatible XSD
data types (i.e. XSD types that are derived from the same primitive base type).
The assignment in line 3 in the following Zhi# program is validated by a down-
cast. In general, this may lead to an InvalidCastException at runtime, which
prevents OWL datatype properties from being assigned invalid property values.

1 i n t i = [ . . . ] ;
2 #MeetingRoom r = [ . . . ] ;
3 r .#hasCapacity = ( xsd#byte ) i ;

Properties. Erik Meijer and Peter Drayton note that �at the moment that you
de�ne a [programming language] class Person you have to have the divine insight
to de�ne all possible relationships that a person can have with any other possible
object or keep type open� [13]. Ontology engineers do not need to make early
commitments about all possible relationships that instances of a class may have.
In Zhi# programs, ontological individuals can be related to other individuals



and XSD data type values using an object-oriented notation. In contrast to au-
thoritative type declarations of class members in statically typed object-oriented
programming languages, domain and range declarations of OWL object proper-
ties are used to infer the types of the subject (i.e. host object) and object (i.e.
property value). Hence, the types of the related individuals do not necessarily
need to be subsumed by the domain and range declarations of the used object
property before the statement. The only requirement here is that the related
individuals are not declared to be instances of classes disjoint to the declared
domain and range. In the following Zhi# program, the ontological individuals
referred to by e and l are inferred to be not only an Event and a Location but
also a Lecture and a LargeRoom, respectively.

1 #Event e = [ . . . ] ; // e refers to e, e:Event
2 #Locat ion l = [ . . . ] ; // l refers to l, l:Location
3 e.#takesPlaceInAuditor ium = l ; // e:Lecture, l:LargeRoom

Both for OWL object and non-functional OWL datatype properties the prop-
erty assignment semantics in Zhi# are additive. The following assignment state-
ment adds the individual referred to by b as a value for property R of the
individual referred to by a; it does not remove existing triples in the ontology.

a.#R = b ;

Correspondingly, property access expressions yield arrays of individuals and
arrays of XSD data type values for OWL object properties and non-functional
OWL datatype properties, respectively, since an individual may be related to
more than one property value. Accordingly, the type of OWL object property
and non-functional OWL datatype property access expressions in Zhi# is always
an array type, where the base type is the range declaration of the property.

The type of an assignment to an OWL object property and a non-functional
OWL datatype property is always an array type, too. This behavior is slightly dif-
ferent from the typical typing assumptions in programming languages. Because
the assignment operator (=) cannot be overloaded in .NET, after an assignment
of the form x = y = z all three objects can be considered equal based on the
applicable kind of equivalence (i.e. reference and value equality). The same is
not always true for assignments to OWL properties considering the array ranks
of the types of the involved objects. In the following cascaded assignment ex-
pression, the static type of the expression b.#R = c is Array Range(R) because
individual b may be related by property R to more individuals than only c.
As a result, with the following assignment in Zhi#, individual a is related by
property R to all individuals that are related to individual b by property R.

a.#R = b.#R = c ; // a, b, and c refer to individuals a, b, and c, respectively

Ontological equality. In Zhi#, the equality operator (==) can be used to deter-
mine if two ontological individuals are identical (i.e. refer to the same entity in
the described world). The inequality operator (!=) returns true if two individu-
als are known (either explicitly or implicitly) to be not identical. Note that the



inequality operator is thus not implemented as the logical negation of == as
individuals can be unknown to be identical or di�erent.

Auxiliary properties and methods. The Zhi# compiler framework supports a
full-�edged object-oriented notation for external types. In particular, compiler
plug-ins can provide methods, properties, and indexers for static references and
instances of external types. The OWL compiler plug-in implements a number
of auxiliary properties and methods for ontological classes, properties, and in-
dividuals in Zhi# programs. For example, in order to remove property value
assertions from the ontology, the OWL compiler plug-in provides the auxiliary
methods Remove and Clear for OWL properties to remove one particular value
and all values for an OWL property of the speci�ed individual, respectively. In
line 2 in the following code snippet, the ontological individual b is removed as a
property value for property R of individual a. In line 3, all property values for
property R of individual a are removed.

1 #A a = new #A("#a " ) ; // Note: Other clients of the ontological know-
2 a.#R.Remove(new #B("#b " ) ) ; // ledge base could have added b as a property
3 a.#R. Clear ( ) ; // value between the execution of line 1 and 2.

As a second example, for static references of OWL classes the auxiliary prop-
erties Exists, Count, and Individuals are de�ned. The Exists property yields
true if individuals of the given type exist in the ontology, otherwise false. Count
returns the number of individuals in the extension of the speci�ed class de-
scription. Individuals yields an array of de�ned individuals of the given type.
The Individuals property is generic in respect of the static type reference on
which it is invoked. In the following array de�nition, the type of the property
access expression #Person.Individuals is Array Person (and not Array Thing).
Accordingly, it can be assigned to variable persons of type Array Person.

#Person [ ] persons = #Person . I nd i v i dua l s ;

Note that all described functionality is provided in a �pay-as-you-go� manner:
in Zhi#, there is no runtime performance or code size overhead for conventional
C# code and Zhi# programs that do not use external type de�nitions.

2.2 Dynamic Checking

In a statically typed programming language such as C# the possible types of an
object are known at compile time. Unfortunately, the non-contextual property
centric data modeling features of the Web Ontology Language render static type
checking only a partial test on Zhi# programs. As a result, the OWL plug-in for
the Zhi# compiler framework and the Zhi# runtime library facilitate dynamic
checking of ontological knowledge bases.

Ontological individuals can be in the extensions of a number of di�erent
class descriptions. In the same way, explicitly made RDF type assertions may be
inconsistent with particular property values or the number of values for a par-
ticular property of an individual. More severely, ontological knowledge bases are



subject to concurrent modi�cations via interfaces of di�erent levels of abstrac-
tion (e.g., RDF triples, logical concept view). In Zhi#, before each single usage
of an individual 1) the individual is dynamically checked to be in the extension
of the declared class and 2) the knowledge base is checked to be consistent; an
exception is thrown if either is not the case.

Runtime type checks. Reasoning is used to infer the classes an individual belongs
to. This corresponds to the use of the instanceof and is-operator in Java and C#,
respectively. In Zhi#, the is-operator is used to determine whether an individual
is in the extension of a particular class description. The use of the is-operator is
completely statically type-checked both on the programming language and the
ontology level. For example, the Zhi# compiler will detect if an individual will
never be included by a class description that is disjoint with its asserted type.
See the Zhi# program in Section 3 for an exemplary use of the is-operator.

Checked property assignments. In general, neither domain nor range declara-
tions of OWL properties are constraints. This is in contrast to frame languages
and object-oriented programming languages. In statically typed object-oriented
programming languages such as C#, properties are declared as class members.
The domain of a property corresponds to the type of the containing host object.
Only instances of the domain type can have the declared property. The range
of a property (i.e. class attribute) is also given by an explicit type declaration.
This type declaration is constraining, too. All objects that are declared to be
values of a property must be instances of the declared type at the time of the
assignment. Many ontology engineers favor a rather frame-like composite view
of classes and their associated properties, too. Indeed, the advantage of using
property domain and range descriptions to constrain the set of conforming RDF
triples is a more succinct structuring of an ontology or schema. In Zhi#, the
checked -keyword, which can be used as an operator or a statement, supports
the frame-like notion of OWL object properties. The following example demon-
strates the checked -operator on an OWL object property assignment expression.
For an OWL object property takesPlaceInAuditorium, which relates Lectures
with LargeRooms, an exception is thrown at runtime if the individuals referred
to by e and l are not in the extensions of the named class descriptions Lecture
and LargeRoom, respectively.

1 #Event e = [ . . . ] ; // Lecture v Event
2 #Locat ion l = [ . . . ] ; // LargeRoom v Location
3 e.#takesPlaceInAuditor ium = checked ( l ) ; //  InvalidCastException

XSD and OWL were integrated with the Zhi# programming language simi-
larly like generic types in Java. XSD data types and OWL DL class descriptions
in Zhi# programs are subject to type substitution where references of external
types are translated into 1) a constant set of proxy classes and 2) function calls
on the Zhi# runtime library and its extensions for XSD and OWL. Detailed
explanations how Zhi# programs are compiled into conventional C# are given
in [17].



3 Validation

The Zhi# compiler was regression tested with 12 KLOC of Zhi# test code, which
was inductively constructed based on the Zhi# language grammar, and 9 KLOC
of typing information to regression test the semantic analysis of Zhi# programs.

The ease of use of ontological class descriptions and property declarations in
Zhi# is illustrated in [17] by contradistinction with C#-based implementations
of �ontological� behavior for .NET objects. The Zhi# approach facilitates the
use of readily available ontology management systems compared to handcrafted
reasoning code.

Examples for the advantage of OWL aware compilation in the Zhi# pro-
gramming language over an API-based use of ontology management systems
can be shown based on the following programming tasks, which are all frequent
for ontology-based applications. Assume the following TBox.

A, B v ¬C, ≥1R v A, > v ∀R.B, > v ≤1R, > v ∀U.xsd#positiveInteger

Task 1 Make an ontology available in a computer program.
Task 2 Create individual instances a, o, b, and c of classes >, B, and C.
Task 3 Add individual o as a value for property R of individual a.
Task 4a) List the RDF types of individual o.
Task 4b) Check whether individual o is included by class description B.
Task 4c) List all individuals in the extension of class description B.
Task 5 Add individual c as a value for property R of individual a, which causes

an inconsistent ABox since class descriptions B (range of property R) and
C (which includes c) are disjoint.

Task 6 Add individual b as a value for property R of individual a and test if in-
dividuals o and b are equal (i.e. is there an inferred sameAs(o,b) statement
in the ontology?).

Task 7 Add literals 23, −23, and string literal �NaN� as values for property U
of individual o, where −23 and �NaN� are invalid values for the given TBox.

In line 1 in the Zhi# program shown below, the given TBox, which is de-
�ned in the http://www.zhimantic.com/eval namespace, is imported into the
Zhi# compile unit. In line 2, XML Schema De�nition's built-in data types are
imported. In lines 4�9, ontological individuals are created. In line 9, the fully
quali�ed name of individual c is inferred from the containing namespace of the
named class description C. In line 10, the RDF triple [a R o] is declared in
the ontology. Note how Zhi# facilitates the declaration of ad hoc relationships
(instead of enforcing a frame-like view, where Thing a would not have a slot
R). In line 11, a foreach-loop is used to iterate over all values of the auxiliary
Types property of individual o. Note, in line 12, how ontological individuals are
implicitly convertible to .NET strings. In line 15, the is-operator is used to dy-
namically check the RDF type of individual o. Be aware that the type check is
performed on the ontology level. In line 16, a foreach-loop iterates over all values
of the auxiliary Individuals property of the static class reference B. Note that
the Individuals property is generic with respect to the static class reference on



which it is invoked. The assignment statement in line 19 causes a compile-time
error since individual c cannot simultaneously be in the extension of class C (its
declared type) and B (the range restriction of property R) for consistent ontolo-
gies. In line 22, individuals o and b are compared for equality. Note that the
equality operator (==) evaluates on the ontology level (i.e. o == b evaluates to
true since o and b were both used as values for functional property R). In lines
23�25, XSD data type variables are de�ned. In lines 26�28, property values are
declared for datatype property U of individual o. Lines 27�28 cause compile-time
errors since the XSD data types xsd#integer and xsd#string are not subsumed
by the range restriction of datatype property U (i.e. xsd#positiveInteger).

1 import OWL ont = http ://www. zhimantic . com/ eva l ;
2 import XML xsd = http ://www.w3 . org /2001/XMLSchema ;
3 namespace N { c l a s s Program { s t a t i c void Main ( ) {
4 #owl#Thing a = ↪→
5 new #owl#Thing (" http ://www.w3 . org /2002/07/ owl#a " ) ;
6 #owl#Thing o = ↪→
7 new #owl#Thing (" http ://www.w3 . org /2002/07/ owl#o " ) ;
8 #ont#B b = new #ont#B(" http ://www. zhimant ic . com/ eva l#b " ) ;
9 #ont#C c = new #ont#C("c " ) ;
10 a.#ont#R = o ;
11 fo r each ( s t r i n g T in o . Types ) {
12 Console . WriteLine (T) ;
13 }
14 Console . WriteLine ( o + " i s " + ↪→
15 ( o i s #ont#B ? "" : " not ") + " a 'B ' ! " ) ;
16 fo r each(#ont#B v in #ont#B. I nd i v i dua l s ) {
17 Console . WriteLine (v ) ;
18 }
19 a.#ont#R = c ; // Compile-time error in Zhi#!
20 a.#ont#R = b ;
21 Console . WriteLine (" I nd i v i dua l s ' o ' and 'b ' are " + ↪→
22 ( o == b ? "" : " not ") + " i d e n t i c a l ! " ) ;
23 #xsd#po s i t i v e I n t e g e r xpi = 23 ;
24 #xsd#in t e g e r x i = −23;
25 #xsd#s t r i n g xs = "NaN" ;
26 o.#ont#U = xpi ;
27 o.#ont#U = xi ; // Compile-time error in Zhi#!
28 o.#ont#U = xs ; // Compile-time error in Zhi#!
29 }}}

Java code using the Jena Semantic Web Framework for the same given pro-
gramming tasks is available online5. It can be seen that the Zhi# code shown
above treats the OWL terminology as �rst-class citizens of the program code,
and is thus not only inherently less error-prone but can also be checked at com-
pile time. Zhi#'s inherent support for ontologies facilitates type checking on the
ontology level, which is completely unavailable if OWL APIs are used.

5 http://sourceforge.net/p/zhisharp/wiki/Examples of Use/
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Finally, we mapped the CHIL OWL API [8,16,17] on auxiliary properties and
methods of ontology entities in Zhi# programs. The functionality of 50 of the
91 formally speci�ed CHIL OWL API methods could be implemented as Zhi#
programming language features, which facilitates the static checking of related
method preconditions. Thus, more than half of the possible exceptions that may
occur at runtime with API-based access could be eliminated.

The author leaves it to the reader to assess hybrid approaches that pro-
pose methodological means of integrating OWL models, which are managed by
frameworks such as Protégé and Jena, with computer programs (see Puleston
et al. [19] for an OWL-Java combination). Experience shows that integration
shortcomings of hybrid approaches can barely be compensated by methodolo-
gies, which usually put the burden to behave compliantly to the ontology on the
programmer.

4 Related Work

A major disadvantage of using an OWL API compared to, for example, Java-
based domain models is the lack of type checking for ontological individuals.
This lack of compile-time support has lead to the development of code generation
tools such as the Ontology Bean Generator [18] for the Java Agent Development
Framework [22], which generates proxy classes in order to represent elements
of an ontology. Similarly, Kalyanpur et al. [9] devised an automatic mapping
of particular elements of an OWL ontology to Java code. Although carefully
engineered the main shortcomings of this implementation are the blown up Java
class hierarchy and the lack of a concurrently accessible ontological knowledge
base at runtime (i.e. the �knowledge base� is only available in one particular Java
virtual machine in the form of instances of automatically generated Java classes).
This separation of the ontology de�nition from the reasoning engine results in
a lack of available ABox reasoning (e.g., type inference based on nominals).
The two latter problems were circumvented by the RDFReactor approach [25]
where a Java API for processing RDF data is automatically generated from an
RDF schema. However, RDFReactor only provides a frame-like view of OWL
ontologies whereas Zhi# allows for full-�edged ontological reasoning.

In stark contrast to these systems, the Zhi# programming language syntac-
tically integrates OWL classes and properties with the C# programming lan-
guage using conventional object-oriented notation. Also, Zhi# provides static
type checking for atomic XSD data types, which may be the range of OWL
datatype properties, while many ontology management systems � not to men-
tion the above approaches � simply discard range restrictions of OWL datatype
properties. A combination of static typing and dynamic checking is used for on-
tological class descriptions. In contrast to static type checking that is based on
generated proxy classes, Zhi#'s OWL compiler plug-in adheres to disjoint class
descriptions and copes well with multiple inheritance.

Koide and Takeda [11] implemented an OWL reasoner for the FL0 Descrip-
tion Logic on top of the Common Lisp Object System [5] by means of the Meta-



Object Protocol [10]. Their implementation of the used structural subsumption
algorithm [2] is described, however, to yield only incomplete results. The integra-
tion of OWL with the Python programming language was suggested by Vrande£i¢
and implemented by Babik and Hluchy [3] who used metaclass-programming
to embed OWL class and property descriptions with Python. Their approach,
however, o�ers mainly a syntactic integration in form of LISP-like macros. Also,
their prototypical implementation does not support namespaces and open world
semantics.

The representation and the type checking of ontological individuals in Zhi#
is similar to the type Dynamic, which was introduced by Abadi et al. [1]. Values
of type Dynamic are pairs of a value v and a type tag T, where v has the
type denoted by T. The result of evaluating the expression dynamic e:T is a
pair of a value v and a type tag T, where v is the result of evaluating e. The
expression dynamic e:T has type Dynamic if e has type T. Zhi#'s dynamic
type checking of ontological individuals corresponds to the typecase construct as
proposed by Abadi et al. in order to inspect the type tag of a given Dynamic.
In Zhi# source programs, the use of OWL class names corresponds to explicit
dynamic constructs. In compiled Zhi# code, invocations of the AssertKindOf
method of the Zhi# runtime correspond to explicit typecase constructs.

Thatte described a �quasi-static� type system [23], where explicit dynamic
and typecase constructs are replaced by implicit coercions and runtime checks.
As in Thatte's work, Zhi#'s dynamic typing for OWL detects errors as early
as possible to make it easy to �nd the programming error that led to the type
error. Abadi et al. and Thatte's dynamic types were only embedded with a
simple λ-calculus. The same is true for recent gradual typing proposals [20].
Tobin-Hochstadt and Felleisen developed the notion of occurrence typing and
implemented a Typed Scheme [24]. Occurrence typing assigns distinct subtypes
of a parameter to distinct occurrences, depending on the control �ow of the
program. Such distinctions are not made by Zhi#'s OWL compiler plug-in since
it is hard to imagine that appropriate subtypes can be computed considering
complex OWL class descriptions.

5 Conclusion

The Zhi# programming language makes the property-centric modeling features
of the Web Ontology Language available via C#'s object-oriented notation (i.e.
normal member access). The power of the �.� can be used to declare ad hoc rela-
tionships between ontological individuals on a per instance basis. Zhi#'s OWL
aware compilation integrates value space-based subtyping of XML Schema Def-
inition and ontological classi�cation with features of the programming language
such as method overriding, user-de�ned operators, and runtime type checks. The
Zhi# programming language is implemented by an extensible compiler frame-
work, which is tailored to facilitate the integration of external classi�er and
reasoner components with the type checking of Zhi# programs. The compiler
was written in C# 3.0 and integrated with the MSBuild build system for Mi-



crosoft Visual Studio. An Eclipse-based frontend was developed including an
editor with syntax highlighting and autocompletion. The complete Zhi# tool
suite totals 110 C# KLOC and 35 Java KLOC. Zhi# is available online6.

Zhi# o�ers a combination of static typing and dynamic checking for onto-
logical class descriptions. Ontological reasoning directly in�uences the execution
of programs: Zhi# programs don't just execute, they reason. Thus, the develop-
ment of intelligent applications is facilitated. In contrast to many OWL APIs,
Zhi# contains extensive support for XSD data types. Zhi# code that uses ele-
ments of an ontology is compiled into conventional C#. All functionality related
to the use of ontologies is provided in a �pay-as-you-go� manner. The underlying
ontology management system can be substituted in the Zhi# runtime library
without recompilation of Zhi# programs.

Future work will include the transformation of Ontology De�nition Metamod-
els [15] into Zhi# programs. With ontological class descriptions being �rst-class
citizens the complete MOF [14] modeling space can be translated into the Zhi#
programming language. We further plan to investigate the interplay of closed
world semantics in an ontology with autoepistemic features (e.g., the epistemo-
logical K-operator) with the static typing in Zhi#.

The Zhi# solution to provide programming language inherent support for
ontologies is the �rst of its kind. Earlier attempts either lack ABox reason-
ing, concurrent access to a shared ontological knowledge base, or fall short in
fully supporting OWL DL's modeling features. In recent years, numerous pub-
lications described the � apparently relevant � OWL-OO integration problem.
However, the plethora of naïve code generation approaches and contrived hy-
brid methodologies all turned out to not solve the problem in its entirety. This
work demonstrates that OWL DL ontologies can be natively integrated into a
general-purpose programming language. The Zhi# compiler infrastructure has
shown to be a viable approach to solving the OWL-OO integration problem.
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