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Pole Constraints of Reference Models in 2-DOF Servo System
Design for Non-Minimum Phase Systems

Toru ASAI ∗, Hiroshi OKAJIMA ∗∗, and Chee Leong OOI ∗∗∗

Abstract : This paper is concerned with the analysis of pole constraints in servo system design for non-minimum phase
(NMP) systems. We first characterize the achievable closed-loop system for a SISO plant. For simplicity, we assume
that the plant has only one NMP zero. Based on the characterization and the tracking condition, we show for some
combinations of degree and relative degree of the closed-loop system that the admissible location of poles is restricted.
For these cases, we provide a quantitative measure for the limitation. We also provide its concrete formula for some
specific cases.
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1. Introduction

A problem of perpetual interest in the field of control is the
difficulty to control non-minimum phase (NMP) systems. NMP
systems are generally known to be difficult to control when
compared to minimum phase systems. In the field of track-
ing control, this difficulty is evident in the step response. In this
case, NMP zeros may cause severe transient like the output un-
dershoots [1]. Hence, this inherent property imposes limitation
to the transient performance of the system.

Over the years, the performance limitations due to NMP ze-
ros have been revealed theoretically [2]. Recently, the analytic
forms of the limitations on some performance criteria have also
been given [3]–[6]. In servo system design, analysis on realiz-
able transfer functions and its fundamental structures have been
given [7],[8]. However, more details such as possible pole lo-
cations have not been explored.

This paper deals with the constraints of poles and zeros in
servo system design for NMP systems. In order to achieve good
transient performance, the locations of the closed-loop poles
play an important role. In this paper, by considering the con-
straints caused by NMP zeros, we seek to analyze and clarify
the limitations of the closed-loop poles in servo system design.
This study is carried out for a single input single output (SISO)
linear time invariant plant with one NMP zero in order to ex-
pose the essential features of pole and zero constraints.

The remainder of this paper is organized as follows. In Sec-
tion 2, we establish the problem formulation of this paper. In
Sections 3 and 4, we present the main result of our analysis.
In Section 3, we show our results on the constraints of poles
caused by NMP zeros and tracking conditions. More detailed
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Fig. 1 Block diagram of SISO system.

analysis is given in Section 4 for some rather simple but practi-
cally important cases.

Notation is standard. Polynomial m(s) is of degree μ, if m(s)
is written by

m(s) = aμs
μ + aμ−1s μ−1 + · · · + a1s + a0

where aμ � 0. Moreover, m(s) is Hurwitz, if all the roots of
m(s) lie in the open left half plane.

2. Problem Formulation

We consider a SISO system as depicted in Fig. 1, where P(s)
is a given strictly proper plant and K(s) is a controller to be
designed. Note that K(s) has two degree of freedom. u, r and y
are the control input, the reference input and the control output
respectively. G(s) is the closed-loop system from r to y.

The purpose of our study is to analyze how NMP zeros of
P(s), i.e. the zeros in the closed right half plane, affects the pos-
sible locations of the closed-loop poles. To simplify the analy-
sis, we focus on set of possible G(s), instead of constructing or
parameterizing K(s). The set of G(s), given by the set of proper
and internally stabilizing controllers K(s), is characterized by
the following lemma:

Lemma 1 There exists K(s) such that the feedback system in
Fig. 1 is internally stable, iff G(s) satisfies the following condi-
tions:

(C1) : G(s) has the same NMP zeros as P(s)

(C2) : RD of G(s) ≥ RD of P(s)

(C3) : G(s) is stable
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where RD stands for the relative degree.

Proof: (Necessity) We first write K(s) as

K(s) = [ KFF(s) KFB(s) ]

according to its inputs. Then, the transfer function from r to y
is given by

G(s) =
P(s)

1 + P(s)KFB(s)
KFF(s).

Since K(s) is internally stabilizing, G(s) must be stable and
have the same NMP zeros as P(s). Moreover, the relative de-
gree of G(s) is greater than or equal to that of P(s).
(Sufficiency) Suppose G(s) satisfies (C1), (C2) and (C3). Then,
construct K(s) as depicted in Fig. 2 [7], where CFB(s) is an arbi-
trary controller that internally stabilizes the closed-loop system
composed by P(s) and CFB(s). The transfer function from r to
y is G(s) regardless of CFB(s). Moreover, due to (C1) and (C2),
P(s)−1G(s) is proper and stable. Hence, the whole control sys-
tem in Fig. 2 is internally stable. �

Lemma 1 clarifies the requirement for G(s). If G(s) satisfies
(C1) to (C3), there always exists an internally stabilizing K(s)
that attains G(s). Hence, instead of searching K(s), we can de-
sign the control system by choosing an appropriate G(s) under
(C1), (C2) and (C3). In other words, G(s) can be used as a ref-
erence model for the control system to be designed. As long as
(C1) to (C3) are satisfied, G(s) can be chosen arbitrarily. For
example, the order of G(s) can be much smaller than those of
P(s) and K(s) to be implemented.

While attaining internal stability, we consider servo system
design. In this paper, we shall consider a step and/or trigono-
metrical reference signals whose frequencies are denoted by
0 ≤ ω1 < ω2 < · · · < ωN . Therefore, the condition of tracking
is given by

(C4) : G( jωi) = 1 for any i = 1, . . . ,N.

(C4) introduces the additional constraint to G(s). This may
result in constraining pole locations. Hence, this paper aims to
investigate the constraints of poles of G(s) in the above tracking
control problem.

In order to make the technical manipulations easier, we
parametrize G(s) such that (C3) and (C4) hold. The following
lemma gives such a parameterization:

Lemma 2 Let G(s) be a given real rational transfer function.
Then, (C3) and (C4) hold, iff there exist a polynomial n(s) and
a Hurwitz polynomial m(s) such that the following equation
holds:

G(s) =
n(s)σ(s)

∏N
i=2(s2 + ω2

i ) + m(s)

m(s)
(1)

Fig. 2 2DOF control system.

where

σ(s) =

{
s (ω1 = 0)

s2 + ω2
1 (ω1 > 0)

.

Proof: Suppose that G(s) is given by (1). Since m(s) is
Hurwitz, (C3) holds trivially. (C4) also holds, since, for any
i = 1, . . . ,N, the followings hold:

n( jωi)σ( jωi)
N∏

k=2

(( jωi)
2 + ω2

k) = 0, m( jωi) � 0

where the latter condition follows since m(s) is assumed to be
Hurwitz.

Suppose (C3) and (C4) hold. Then, G(s) − 1 has zeros at s =
jωi (i = 1, . . . ,N). Since G(s) is real rational and stable, there
exist n(s) and Hurwitz m(s) such that the following equation
holds:

G(s) − 1 =
n(s)σ(s)

∏N
i=2(s2 + ω2

i )

m(s)
. (2)

(2) gives (1). �
Note that n(s) in (1) must be a nonzero polynomial. Oth-

erwise, G(s) = 1 and it contradicts to (C2) for strictly proper
P(s). Moreover, we can assume m(s) monic without loss of
generality.

Note that, even if the degree of m(s) is μ, the order of G(s)
in (1) may no be μ, since there can be stable pole/zero cancel-
lations between m(s) and n(s). However, the relative degree of
G(s) is independent of the existence of the pole/zero cancella-
tions.

We carry out the analysis based on (1), (C1) and (C2). How-
ever, it looks difficult to obtain general results. Hence, we focus
on some rather simple but practically important cases. Specifi-
cally, we consider the case that the following conditions hold:

• P(s) has only one NMP zero at s = z1 > 0.

• The number of the frequencies is one, i.e. N = 1.

Since P(s) is strictly proper, the possible order μ of G(s) is
greater than or equal to two, and the relative degree of G(s)
can be between one and μ − 1.

3. Analysis of Pole Constraints

In this section, we reveal the constraints on the pole locations
for some cases of degree and relative degree. We first consider
the case of ω1 = 0. In this case, there is no pole restrictions. In
fact, the following fact is obtained:

Lemma 3 Suppose N = 1 and ω1 = 0. Let μ ≥ 2 be a given
order and z1 > 0 be a given NMP zero. Then, for any Hurwitz
m(s) of degree μ and any ρ where 1 ≤ ρ ≤ μ − 1, there exists
n(s) such that the relative degree of G(s) in (1) is ρ and that
(C1) holds.

Proof: Choose an arbitrary polynomial d(s) of degree μ − ρ
such that the following equations hold:

d(0) = m(0), d(z1) = 0.

Such d(s) always exists, since μ − ρ ≥ 1 is assumed. Define
n(s) as
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n(s) =
d(s) − m(s)

s
.

Note that the above n(s) is a polynomial, since d(0)−m(0) = 0,
i.e. s is a factor of d(s) − m(s). Then, G(s) in (1) is given by

G(s) =
n(s) s + m(s)

m(s)
=

d(s)
m(s)
.

The relative degree of G(s) is μ − (μ − ρ) = ρ. We have as-
sumed d(z1) = 0. Moreover, m(z1) � 0 since m(s) is Hurwitz.
Therefore, (C1) holds. �

Lemma 3 shows that there is no constraints on the poles of
G(s). Hence, we can assign the poles anywhere, unless other
specifications are concerned.

We next consider the case of ω1 > 0. In this case, the situa-
tion depends on the relative degree of G(s).

Lemma 4 Suppose N = 1 and ω1 > 0. Let μ ≥ 3 be a given
order and z1 > 0 be a given NMP zero. Then, for any Hurwitz
m(s) of degree μ and any ρ where 1 ≤ ρ ≤ μ − 2, there exists
n(s) such that the relative degree of G(s) in (1) is ρ and that
(C1) holds.

Proof: Choose an arbitrary polynomial d(s) of degree μ − ρ
such that the following equations hold:

d(± jω1) = m(± jω1), d(z1) = 0.

Such d(s) always exists, since μ − ρ ≥ 2 is assumed. The rest
of the proof is quite similar to Lemma 3 and it is omitted. �

Lemma 5 Suppose N = 1 and ω1 > 0. Let z1 > 0 be a given
NMP zero. Then, for any μ ≥ 2, there exists a Hurwitz m(s)
of degree μ that can not satisfy both of the following conditions
for G(s) in (1):

• (C1) holds.

• The relative degree of G(s) is μ − 1.

In other words, for any n(s), one of the above conditions is
violated.

Proof: Suppose that μ ≥ 2 is given. Then, m(s) of degree μ
can be written by

m(s) = s μ + aμ−1s μ−1 + · · · + a1s + a0.

Note that m(s) can be monic without loss of generality. On the
other hand, in order to make G(s) have the relative degree of
μ − 1, the degree of n(s)(s2 + ω2

1) + m(s) must be one. Hence,
n(s) must have degree μ − 2, and it can be written by

n(s) = bμ−2s μ−2 + bμ−3s μ−3 + · · · + b1s + b0

where bμ−2 � 0. If G(s) has the relative degree of μ − 1 and
G(z1) = 0, there exists c � 0 such that the following equation
holds:

n(s)(s2 + ω2
1) +m(s) = c(s − z1)

Hence, the coefficients of the above equation satisfies

Mv = −u

where

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
0 1 0 · · · 0 0
ω2

1 0 1 · · · 0 0
0 ω2

1 0 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · 0 −1
0 0 0 · · · ω2

1 z1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bμ−2

bμ−3

bμ−4
...

b0

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

aμ
aμ−1

aμ−2

aμ−3
...

a1

a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since the number of rows of M is strictly greater than the
number of columns, there exists a nonzero vector η such that
ηM = 0. This implies η u = 0. Such η can be written by

η =
[
∗ · · · ∗ z1 1

]
without loss of generality.

Now, suppose that m(s) is given by (s− p)μ. Note that m(s) is
Hurwitz, if p is negative real. The coefficients of m(s) are given
by

a0 = (−p)μ,

ai =

∏i−1
k=0(μ − k)

i!
(−p)μ−i, i = 1, . . . , μ − 1.

In this case, ηu is the polynomial of p and can be written by

ηu = (−p)μ + z1μ(−p)μ−1 + · · · .
Hence, if p is sufficiently large, ηu is nonzero. Thus, there
exists a Hurwitz m(s) such that η u � 0 holds. For this m(s), no
n(s) satisfies the requirement. �

Lemma 4 implies that, if the relative degree of G(s) is less
than μ−1, the poles of G(s) can be arbitrarily chosen. However,
in this case, G(s) must have another zero in addition to z1. On
the other hand, by Lemma 5, if G(s) has only one zero at s = z1,
the possible poles of G(s) is constrained.

4. Detailed Analysis of Pole Constraints
The results in the previous section clarify that the pole loca-

tions are restricted in the case of ω1 > 0 and ρ = μ− 1. We will
further investigate the pole constraints deeply in the cases μ = 2
and μ = 3. In these cases, there is no chance to have pole/zero
cancellations between m(s) and n(s) in (1). Hence, the orders
of the resultant G(s) are also two and three, respectively.

Note that simplicity of G(s) may not restrict possible applica-
tions severely. As is explained in Section 2, G(s) can be seen as
a reference model of the control system to be designed. Hence,
even if G(s) is quite simple, complex high order P(s) can be
dealt with, provided (C1) to (C4) are satisfied.

In some cases, simple G(s) is even desirable. If we synthe-
size the control system by choosing an appropriate reference
model, we need to design G(s) first, i.e. we need to determine
the poles and the zeros of G(s). To make the design easy to
deal with, the number of the poles and the zeros are desired to
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be small. In practical situations, complex high order systems
are not appropriate for reference models.

For constrained poles, we evaluate the limitation based on the
following criterion:

β∗ = sup

{
β :
∃G(s) s.t. G(s − β) is stable
and G(s) satisfies (C1) to (C4)

}
.

β∗ is the maximum value such that all the poles can be assigned
on the shaded region in Fig. 3 when G(s) is carefully chosen.
β∗ gives a measure of the best achievable stability margin

and also performance. If β∗ is small, the achievable transient
performance would be poor. If there is no constraint on pole
locations, β∗ = ∞. In the sequel, for μ = 2, 3, β∗ will be denoted
as β(2)

∗ and β(3)
∗ , respectively. Concrete formula of β(2)

∗ and β(3)
∗

are given as follows:

Theorem 1 β(2)
∗ is given by

β(2)
∗ = −z1 +

√
z2

1 + ω
2
1 =

ω2
1

z1 +

√
z2

1 + ω
2
1

(3)

Moreover, β(2)
∗ is attained when the poles p1 and p2 of G(s) are

given by p1 = p2 = −β(2)
∗ .

Proof: Since the degree is two, m(s) and n(s) can be written
as follows:

m(s) = (s − p1) (s − p2), (4)

n(s) = α (5)

where α � 0 is a real constant. p1 and p2 are negative reals or a
complex conjugate pair whose real parts are negative.

Since the relative degree is μ−1 = 1, we must choose α = −1.
In order to achieve (C1), the numerator N(s) of G(s) given by

N(s) = ω2
1 + (p1 + p2) s − p1 p2 (6)

must satisfy N(z1) = 0. Therefore, the following equation can
be deduced:

p1 p2 − z1 (p1 + p2) − ω2
1 = 0. (7)

Applying Lemma 6 in Appendix to (7), (3) is proven. As is
given in the proof of Lemma 6, β(2)

∗ is attained by the poles
p1 = p2 = −β(2)

∗ . �

Theorem 2 β(3)
∗ is given by

β(3)
∗ = −z1 − 2

√
z2

1 + ω
2
1 cos

(
θ + 2π

3

)

= −z1 +

√
z2

1 + ω
2
1 ×(

cos
θ

3
+
√

3 sin
θ

3

)
(8)

Fig. 3 β∗ on the left-hand plane.

where θ = ∠(z1 + ω1 j). Moreover, β(3)
∗ is attained, when the

poles p1, p2 and p3 of G(s) are given by p1 = p2 = p3 = −β(3)
∗ .

Proof: Since the degree is three, m(s) and n(s) can be chosen,
without loss of generality, as follows:

m(s) = (s − p1)(s − p2)(s − p3) (9)

n(s) = α(s + a) (10)

where α � 0 and a are constants. p1, p2 and p3 are complex
numbers such that m(s) is a real polynomial. All the real parts
of p1, p2 and p3 are assumed negative.

For the relative degree to be μ − 1 = 2, we need to choose α
and a as

α = −1, a = −(p1 + p2 + p3)

In order to achieve (C1), the numerator for G(s) given by

N(s) = (ω2
1 − (p1 p2 + p2 p3 + p3 p1)) s

− (p1 + p2 + p3)ω2
1 + p1 p2 p3 (11)

must satisfy N(z1) = 0. Therefore, the following equation fol-
lows:

(ω2
1 − (p1 p2 + p2 p3 + p3 p1)) z1

− (p1 + p2 + p3)ω2
1 + p1 p2 p3 = 0. (12)

Since m(s) is real polynomial, one of p1, p2 and p3 is real.
We here assume that p3 is real without loss of generality. Then,
(12) can be written by

p1 p2 + φ (p1 + p2) − ω2
1 = 0 (13)

where

φ = − p3z1 + ω
2
1

p3 − z1
= −z − ω

2
1 + z2

1

p3 − z1
.

For p3 < 0, φ takes the value in
(
−z1,

ω2
1

z1

)
. Since φ is mono-

tonically increasing in the interval, p3 and φ have one-to-one
correspondence. In fact, p3 can be represented with respect to
φ as follows:

p3(φ) =
φz1 − ω2

1

φ + z1
= z1 −

z2
1 + ω

2
1

φ + z1

which is monotonically increasing over its domain.
By Lemma 6, γ = minp1,p2 max{Re(p1),Re(p2)} is given by

γ(φ) = −φ −
√
φ2 + ω2

1.

Hence, β(3)
∗ is given by

β(3)
∗ = − inf

φ
max{p3(φ), γ(φ)}.

Since the derivative of γ(φ) is negative over
(
−z1,

ω2
1

z1

)
, γ is

monotonically decreasing. Moreover, the following relations
hold between γ(φ) and p3(φ):

γ(−z1) = z1 −
√

z2
1 + ω

2
1 > lim

φ↓−z1

p3(φ) = −∞,

γ

⎛⎜⎜⎜⎜⎝ω
2
1

z1

⎞⎟⎟⎟⎟⎠ = −ω
2
1

z1

(
1 +

√
ω2

1 + z2
1

)
< p3

⎛⎜⎜⎜⎜⎝ω
2
1

z1

⎞⎟⎟⎟⎟⎠ = 0.
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Therefore, β(3)
∗ is attained at the point p3 = γ, i.e. the point such

that p3 is a negative solution of the following equation:

p4
3 − 4z1 p3

3 + 3(z2
1 − ω2

1)p2
3 + 4z1ω1 p3 − z2

1ω
2
1

= (p3 − z)(p3
3 − 3z1 p2

3 − 3ω2
1 p3 + z1ω

2
1) = 0

Since p3 − z < 0 by the assumptions, p3 is a solution of the
following equation:

f (p3) = p3
3 − 3z1 p2

3 − 3ω2
1 p3 + z1ω

2
1 = 0.

It is straightforward to confirm

f ′
(
z1 ±

√
z2

1 + ω
2
1

)
= 0,

f
(
z1 +

√
z2

1 + ω
2
1

)

= −2(z2
1 + ω

2
1)

(
z1 +

√
z2

1 + ω
2
)
< 0,

f
(
z1 −

√
z2

1 + ω
2
1

)

= 2(z2
1 + ω

2
1)

(√
z2

1 + ω
2
1 − z1

)
> 0

where f ′ is the derivative of f . Hence, we can see by elemen-
tary calculus that all the roots of f are real. Moreover, since

z1 +

√
z2

1 + ω
2
1 > 0, z1 −

√
z2

1 + ω
2
1 < 0 and f (0) = z1ω

2
1 > 0,

there exists a unique negative root p3 < 0. Thus, by applying
the formulae for the roots of cubic polynomials, we can find the
negative root as follows:

p∗ = z1 + 2
√

z2
1 + ω

2
1 cos

(
θ + 2π

3

)
.

β(3)
∗ is given by −p∗. �
By Theorem 1, β(2)

∗ must be small, if ω1 is small and/or z1 is
large. Such a small β(2)

∗ will contribute to poor transient perfor-
mance and stability margin.

On the other hand, since 0 ≤ θ ≤ π
2 in Theorem 2, we can

deduce

−
√

3
2
≤ cos

(
θ + 2π

3

)
≤ −1

2
.

Hence, β(3)
∗ satisfies

β(3)
∗ ≥ −z +

√
z2

1 + ω
2
1 = β

(2)
∗ .

In other words, if we increase the order of G(s) from two to
three, the maximal stability margin is not degraded. Moreover,
if z1 = ω1, β(3)

∗ is given by β(3)
∗ = z1 = ω1.

Figure 4 shows β(2)
∗ and β(3)

∗ for each z1, where ω1 is fixed to
ω1 = 1. We can see that β(3)

∗ is strictly greater than β(2)
∗ . Notice

that β(3)
∗ = 1 = ω1 holds, when z1 = 1. Figure 5 shows β(2)

∗
and β(3)

∗ for each w1, where z1 is fixed to z1 = 1. Again, β(3)
∗ is

strictly greater than β(2)
∗ .

5. Conclusion

In this paper, we have shown that the poles of G(s) can be
constrained in servo system design for NMP systems. In some
constrained cases, we have also shown that the limitation of
pole assignments can be measured by using β∗.

Fig. 4 β∗ for ω1 = 1.

Fig. 5 β∗ for z1 = 1.
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Appendix
Lemma 6 Suppose that the following equation is given:

p1 p2 + b (p1 + p2) − c = 0 (A. 1)



SICE JCMSI, Vol. 1, No. 6, November 2008434

where b and c > 0 are given real constants. (p1, p2) are vari-
ables that are either a pair of negative real numbers or of com-
plex conjugates whose real parts are negative. Then, the fol-
lowing equation holds:

min
p1,p2

max{Re(p1),Re(p2)} = −b −
√

b2 + c (A. 2)

where minp1,p2 is taken over all (p1, p2) satisfying (A. 1).

Proof: Suppose that p1 and p2 are negative reals. Fix p1 < 0
arbitrarily. Since (A. 1) holds, p2 is a function of p1. Indeed,
p2(p1) is given by

p2(p1) =
c − b p1

p1 + b
= −b +

b2 + c
p1 + b

.

In the case of b ≥ 0, p1 must satisfy p1 < −b so that p2 is neg-
ative. p2(p1) is monotonically decreasing in terms of p1 over
(−∞,−b), while p1 is monotonically increasing with respect to
p1 itself. Moreover, we have

lim
p1→−∞

p2(p1) = −b > lim
p1→−∞

p1 = −∞,

lim
p1↑−b

p2(p1) = −∞ < lim
p1↑−b

p1 = −b.

In this case, minp1 max{p1, p2} is attained at the point p1 = p2.
Hence, the following equation holds:

min
p1

max{p1, p2} = −b −
√

b2 + c. (A. 3)

In the case of b < 0, p1 must satisfy c
b < p1 < 0. Again,

minp1 max{p1, p2} is attained at the point p1 = p2 due to the
reason similar to the case of b ≥ 0, and (A. 3) holds.

On the other hand, suppose that (p1, p2) is a complex conju-
gate pair. Then, they can be written by

p1 = x + jy, p2 = x − jy

where x < 0. Therefore, (A. 1) leads to

x = −b −
√

b2 + c − y2. (A. 4)

(A. 4) implies that miny x is given by

min
y

x = −b −
√

b2 + c. (A. 5)

Thus, (A. 2) is proven from the above derivations. �
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