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We present a derivation of the analytic result for on-axis field values of the Rayleigh diffraction integral, a result that was originally
presented in a paper by Osterberg and Smith (1961). The method on which our derivation is based is then applied to other diffraction
integrals used in acoustics and optics, e.g., the far-field Rayleigh integral, the Debye integral and the separate near-field part of the Rayleigh
integral. Having available our on-axis analytic or semi-analytic solutions for these various cases, we compare the various integrals for wave
numbers k pertaining to low-frequency acoustic applications all the way up to high-frequency optical applications. Our analytic results are
compared to numerical results presented in the literature. [DOI: 10.2971/jeos.2008.08039]
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1 INTRODUCTION

The propagation of the optical or acoustical disturbance from
the aperture or pupil towards the focal region admits various
treatments. In this paper we consider the disturbance to be a
scalar quantity, typically the pressure in the acoustical domain
or the amplitude of the field in the optical domain. More re-
fined propagation models including vector effects (propaga-
tion of density waves in solids, propagation of optical fields
with a high degree of focusing) are outside the scope of this
paper. Within the scalar approximation, we are left with two,
or even three, possible representations, due to Rayleigh [1]
and Kirchhoff [2]. In this paper we will use the Rayleigh in-
tegral that connects the pressure distribution on the aperture
to the pressure distribution in the near and far field [3], the so-
called Rayleigh-I integral [4]. We will also consider the special
approximated diffraction integral that was proposed by De-
bye for focused fields [5]. For this integral to be a good approx-
imation, the number of Fresnel zones in the aperture should
be substantially larger than unity [6]–[8]. In the optical do-
main, where also the lateral dimension of the diffracting aper-
ture is mostly many wave lengths large (typically in excess of
104 wave lengths), this condition is generally met. In that case,
an approximated version of the Rayleigh integral leads to the
Debye integral. This integral representation of the focused
field was further developed for high-numerical-aperture op-
tical diffraction problems including the vector character of the

electromagnetic optical field [9]–[11] and a nonuniform am-
plitude mapping from the entrance to the exit pupil of a thick
lens system. Possible aberration and transmission defects of
the focusing wave field have been treated in [12]–[17]. It is im-
portant to note that the Debye integral also neglects the near-
field diffraction term that is present in the Rayleigh integral. In
the optical domain, the distance from the aperture to the focal
region is many wave lengths large and the near-field effects
do not need to be considered. This condition even holds for
microlenses [18]. In the acoustical domain, the near field can
be important. To check the influence of the near-field term, we
will also treat in this paper the so-called incomplete Rayleigh
integral where the near-field term in the integrand has been
omitted.

Regarding the boundary conditions at the edge of the aper-
ture, throughout this paper we will adopt the so-called hard
boundary conditions. These allow a discontinuity in the pres-
sure distribution or in the optical field (Kirchhoff boundary
condition). Although physically unrealistic, these boundary
conditions are acceptable if the lateral size of the aperture is
larger than, say, ten to twenty wave lengths. Although these
boundary conditions are often applied for even smaller diam-
eters, it should be born in mind that the real physical result
might seriously deviate from the one in the Kirchhoff approx-
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imation. In general, one could say that in acoustic diffraction
problems, the Kirchhoff conditions are not always applicable,
but in ultrasound applications and certainly in the optical do-
main one is in a safe region for applying these hard Kirchhoff
boundary conditions.

An extensive literature is available on the subjects described
above. The acoustic field of a focusing radiator was studied in
[19] and a deviation of the location of highest acoustic power
from the geometric focus was demonstrated, both theoreti-
cally and experimentally. Numerical calculations and mea-
surements of the complex field in the focal region of a small-
aperture microlens have been carried out by Farnell [20]. An
analytic result for the axial field component behind an aper-
ture illuminated by a converging spherical wave was given
(without derivation) by Osterberg and Smith [21] in a seminal
paper that also draws interesting physical conclusions from
the nature of the analytic solution. The special effects arising
at small aperture focusing, viz. the asymmetry of the axial in-
tensity with respect to the geometrical focus, has been been
treated in [22]–[26]. Special attention has also been paid to the
transition from low to high aperture when the quadratic path-
length approximation starts to produce incorrect results. Ex-
tensions and improvements of the Fresnel appoximation have
been proposed to adequately address the higher aperture case
[27]–[29]. The asymmetry around focus, first remarked at low
aperture, has also been analyzed at high aperture in the frame-
work of high-resolution three-dimensional microscopy. An
analysis of the focal shift as a function of Fresnel number
and aperture is presented in references [30]–[32]. In reference
[31], an analytic result for the on-axis field as predicted by the
Kirchhoff diffraction integral is given, using the initial Oster-
berg and Smith result. The near field, of special interest in the
acoustic domain, has been studied in [33]–[39]. From the nu-
merical point of view, the computation of the near-field part
of the diffraction integral is the most challenging because of
its strongly oscillatory behaviour. The Debye integral, mainly
used in optical diffraction problems, has been analyzed with
respect to its domain of validity in [25] and [40].

In this paper, with respect to the existing literature, we present
some new explicit analytic and semi-analytic results for the
axial fields represented by the various diffraction integrals.
These analytic results are then evaluated and compared with
standard numerical calculation results. We start by present-
ing a proof of the Osterberg and Smith analytic result for the
Rayleigh integral. Although the original diffraction problem
presented by Osterberg and Smith applied to an integration
over a sphere and ours to integration over a plane, the proof
can also be directly applied to the integration over a spheri-
cal cap. Using the method we applied to obtain the Osterberg-
Smith result, we address the incomplete Rayleigh integral and
we develop an approximating analytic expression that will be
compared with the result following from a numerical evalu-
ation of the incomplete Rayleigh integral. We will especially
consider the ability of the various integral expressions and an-
alytic results, exact and approximated, to produce the correct
value of the diffracted field relatively close to the diffracting
aperture. In all cases, the analysis of the diffracted and focused
field is limited to the axis perpendicular to the aperture and
going through its center. We also suppose a uniformly focused

wave field in the aperture and do not include amplitude or
phase deviations from this ideal profile in the aperture. This
special case can be treated analytically to a large extent, and
thus provides a well-understood yardstick for the validity of
the various approximations. From there one can extrapolate
towards assessment of off-axis performance in the presence of
aberrations.

The paper has been organized as follows. In Section 2, we
present the general expressions for the complete and incom-
plete Rayleigh integral and for the Debye integral. In Section 3
we develop the special form of these integrals in the case of
circular symmetry and on-axis field evaluation. In Section 4
we present the new derivation of the analytic expressions for
the on-axis field after the diffracting aperture that are then
used to obtain accurate and fast evaluations of the on-axis
fields. In Section 5 we concentrate on the special cases that
arise when calculating the field in the aperture itself (extreme
‘near field’) and close to the focal point. Finally, in Section 6,
we present numerical examples illustrating the domain of ap-
plicability of the various integral representations.

2 COMPLETE AND INCOMPLETE
RAYLEIGH INTEGRAL AND DEBYE
INTEGRAL

We consider in this section fields on a circular aperture A of
radius a and the associated integral expressions of Rayleigh
and Debye for the (scalar) field due to focusing; we restrict
attention to the field values on the axis through the center of
the aperture and perpendicular to it. That is, we consider in
the aperture plane z = z′ a field of the form

EA(x′, y′, z′) = E0(x′, y′)
exp

{
−ikRQF

}
RQF

, (1)

where k is the wave number of the focusing wave, RQF =
{(x′ − x f )2 + (y′ − y f )2 + (z′ − z f )2}1/2 is the distance from
a general point Q(x′, y′, z′) on the aperture to the on-axis field
point F(x f , y f , z f ) with x f = y f = 0, and E0 is an amplitude
factor that vanishes outside A. The subscript f refers to ‘fo-
cal’. The direction-dependent amplitude factor E0(x′, y′) has
the dimension of amplitude times meter and is an invariant
quantity along a straight line joining Q(x′, y′, z′) in the field
and the focal point F. We refer to Figure 1 for the configura-
tion in the case of a circular aperture and for definitions and
notations.

It follows from the Huygens-Fresnel principle that the field
E f (x, y, z; z′) in the plane with axial coordinate z is basically
given by each of two integrals of the Rayleigh type. In this
paper, we choose the Rayleigh integral (usually called the
Rayleigh-I integral) that uses the field in the aperture in the
integrand and not the z-derivative of the field. This allows us
to have a direct relationship between comparable quantities
in the aperture domain and in the near and far field. We thus
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FIG. 1 Propagation of an incident spherical wave from the apertureA towards a general

point P on the axis of the radiating aperture. The position of a general point Q on the

circular aperture with diameter a is denoted by σ = aρ with ρ the normalized lateral

coordinate on the aperture. The axial distance from the aperture to the focal point

F is given by R
√

1− s2
0 with s0 = sin α = a/R and α the angular extent of the

aperture as seen from the focal point F. In the optical domain, s0 is commonly called

the numerical aperture (NA) of the focusing beam. The location of the aperture plane

is given by z = z′, a general point P on the axis by its coordinate z.

write

E f (x, y, z; z′) =
−1
2π

+∞∫∫
−∞

EA(x′, y′, z′)
∂

∂z

[
exp

{
ikRQP

}
RQP

]
dx′dy′

=
−1
2π

∂

∂z

 +∞∫∫
−∞

EA(x′, y′, z′)
exp

{
ikRQP

}
RQP

dx′dy′


(2)

with RQP = [(x′ − x)2 + (y′ − y)2 + (z′ − z)2]1/2 the distance
between the field point P(x, y, z) in the observation plane and
the point Q(x′, y′, z′) on the aperture A. Eq. (2) takes a sim-
pler form in the case that P is on the axis (x = y = 0) and the
amplitude factor E0 in Eq. (1) for EA equals unity through-
out the aperture, pertaining to a spherical wave with uniform
amplitude. We shall turn to this case later. Carrying out the
∂/∂z-operation in Eq. (2), there results

E f (x, y, z; z′) = − z− z′

2π
× (3)∫∫ +∞

−∞
EA(x′, y′, z′)

exp
{

ikRQP
}

R3
QP

(
ikRQP − 1

)
dx′dy′.

Now it is customary in optics, where in many cases kRQP >>

1, to ignore the −1 in the term (ikRQP − 1) occurring in the
integrand in Eq. (3) so that one arrives at, what is sometimes

called, the incomplete Rayleigh integral

E f ,inc(x, y, z; z′) = − ik(z− z′)
2π

× (4)∫∫ +∞

−∞
EA(x′, y′, z′)

exp
{

ikRQP
}

R2
QP

dx′dy′.

It is interesting to see how close the field point P should get
to the aperture and how small k should get so that the incom-
plete expression (4) ceases to be an accurate approximation to
the complete expression (2) or (3). We shall consider this ques-
tion for the case that P is on the axis and E0 is uniform on A.

A second approximation, essentially due to Debye, for the
case of a focused field EA as in Eq. (1), is obtained by adopting
a spectral approach. The angular spectrum of the field in the
aperture is given by

Ẽ(z′; kx, ky) =
∫∫
A

EA(x′, y′; z′) exp
{
−i[kxx′ + kyy′]

}
dx′dy′.

(5)
The field E f (x, y, z; z′) is obtained from Ẽ(z′; kx, ky) by Fourier
inversion according to

E f (x, y, z; z′) =
1

(2π)2× (6)∫∫ +∞

−∞
Ẽ(z′; kx, ky) exp

{
i[kxx + kyy + kz(z− z′)]

}
dkxdky

where

kz =


√

k2 − k2
x − k2

y , k2
x + k2

y ≤ k2,

i
√

k2
x + k2

y − k2 , k2
x + k2

y > k2,
(7)

with nonnegative square roots at the right-hand side of Eq. (7)
in either case. In the case of the purely imaginary value for
kz, this choice assures an exponentially decreasing field in the
propagation direction. The integral in Eq. (6) extends over all
real values of (kx, ky). In order to make the integration range
into a bounded set, Ẽ(z′; kx, ky) is approximated by

Ẽ(z
′
; kx, ky) =

(
2π

ikz

)
E0

(
x f −

kx

kz
[z f − z′], y f −

ky

kz
[z f − z′]

)
× exp{−i[kxx f + kyy f + kz(z f − z′)]} (8)

inside Ω and Ẽ(z
′
; kx, ky) = 0 outside Ω. Here EA has been

assumed as in Eq. (1), with focal point F = (x f , y f , z f ), and
Ω denotes the solid angle that the aperture A subtends at F.
The quantity E0, with dimension of field strength times me-
ter, is commonly denoted as the ‘ray strength’ because it is an
invariant quantity along a fixed propagation direction in the
focusing field distribution. E0 is obtained by multiplying the
field strength in a point on a spherical surface, having its cen-
ter at the focus, with the radius of curvature of that surface.
The value of E0 in the specific case of a telecentric system with
the exit pupil at infinity or of a telescopic system with both
pupils at infinity is treated in [17].

Eq. (8) results upon asymptotic expansion of Ẽ in Eq. (5) for
the case that E0 is uniform on the aperture by using the sta-
tionary phase method [8] in which only the contribution of
the dominant stationary point is retained and the rim contri-
bution to the integral is neglected.
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Then, by using this in Eq. (5), the Debye integral approxima-
tion

ED(x, y, z; z′) = − i
2π

(9)

×
∫∫

Ω

1
kz

E0

(
x f −

kx

kz
[z f − z′], y f −

ky

kz
[z f − z′]

)
× exp

{
i
[
kx(x− x f ) + ky(y− y f ) + kz(z− z f )

]}
dkxdky

of the field E f in Eq. (6) follows.

3 COMPLETE AND INCOMPLETE
RAYLEIGH INTEGRAL AND DEBYE
INTEGRAL FOR THE ON-AXIS,
ABERRATION-FREE CASE

In this section we develop the special form of the three inte-
grals to be considered for the case of circular symmetry. The
circular symmetry is present due to the fact that we choose
our observation point on the axis of symmetry of the aperture;
moreover, we limit ourselves to a perfect focusing field with-
out any amplitude variation or phase aberration. The constant
amplitude approximation is generally not allowed in high-
numerical-aperture large-field imaging with optical lenses.
An amplitude roll-off proportional to k1/2

z is found in this case
[10], but for the relatively low values of the aperture s0 that
we consider in this paper, the amplitude can be assumed to be
uniform. We then take a unit radius of curvature for the spher-
ical surface on which E0 is measured and assume that the ray
strength E0(x′, y′) has unit value for (x′, y′) ∈ A and is zero
for (x′, y′) outside A. We obtain for the complete Rayleigh in-
tegral in Eq. (2) the expression

E f (x, y, z; z′) = − 1
2π

∂

∂z

∫∫
A

exp
{

ik(RQP − RQF)
}

RQPRQF
dx′dy′ .

(10)
The on-axis value of E f results upon taking x = y = 0. Then
the integrand becomes radially symmetric and it follows that

E f (0, 0, z; z′) = − ∂

∂z

[∫ a

0

exp
{

ik(RQP − RQF)
}

RQPRQF
σdσ

]
(11)

where

RQP =
√

(z− z′)2 + σ2 , RQF =
√

R2(1− s2
0) + σ2 (12)

again, see Figure 1. Next, we introduce normalized variables
ρ, S and T according to

ρ =
σ

a
, S = z−z′

a , T =
R
a

√
1− s2

0 (13)

so that

RQP = a
√

S2 + ρ2 , RQF = a
√

T2 + ρ2 (14)

with T being the normalized distance from the aperture plane
to the focal point F of the converging beam. It then follows
that

E f (0, 0, z; z′) = (15)

− ∂

∂z

∫ 1

0

exp
{

ika
[√

S2 + ρ2 −
√

T2 + ρ2
]}

√
S2 + ρ2

√
T2 + ρ2

ρdρ

 .

Note that the quantity on the right-hand side of Eq. (15) be-
tween [ ] depends on z through S = (z− z′)/a, see Eq. (13).

In a similar fashion, there follows for the incomplete Rayleigh
integral in Eq. (4) the on-axis, aberration-free expression

E f ,inc(0, 0, z; z′) = (16)

− ikS
∫ 1

0

exp
{

ika
[√

S2 + ρ2 −
√

T2 + ρ2
]}

(S2 + ρ2)
√

T2 + ρ2
ρdρ.

We finally consider the Debye integral in Eq. (9) on axis for the
aberration-free case, with x = x f = 0, y = y f = 0, so that

ED(0, 0, z; z′) = − i
2π

∫∫
Ω

exp
{

ikz(z− z f )
}

kz
dkxdky , (17)

with Ω, for the circularly symmetric case, given by a conical
solid angle that is delimited by the circular aperture A. Thus,
the integration range is here

Ω =

{
(kx, ky)

∣∣∣∣ 0 ≤
k2

x + k2
y

k2 ≤ s2
0

}
. (18)

With the upper option in the definition of kz in Eq. (7), it then
follows that

ED(0, 0, z; z′) = − i
2π
× (19)

∫∫
Ω

exp

{
ik(z− z f )

(
1− k2

x+k2
y

k2

)1/2
}

k
(

1− k2
x+k2

y
k2

)1/2 dkxdky.

Using polar coordinates (kx, ky) = kκ(cos θ, sin θ), where 0 ≤
κ ≤ 1, 0 ≤ θ ≤ 2π, we then find

ED(0, 0, z; z′) = −ik
∫ s0

0

exp
{

ik(z− z f )
(
1− κ2)1/2

}
(1− κ2)1/2 κdκ

= −ik
∫ 1
√

1−s2
0

exp{ik(z− z f )τ}dτ , (20)

where we have substituted τ = (1− κ2)1/2 ∈
[√

1− s2
0, 1

]
.

Finally, in terms of the variables introduced in Eq. (13), we
have

z− z f = z− z′ − (z f − z′) = a(S− T) , (21)

and there results

ED(0, 0, z; z′) = −ik
∫ 1
√

1−s2
0

exp {ika(S− T)τ} dτ . (22)

4 ANALYTIC AND SEMI-ANALYTIC
EXPRESSIONS FOR THE COMPLETE
AND INCOMPLETE RAYLEIGH INTEGRAL
AND DEBYE INTEGRAL ON AXIS

In this section we show analytic or semi-analytic expressions
for the three diffraction integrals that were derived in the pre-
vious section. The analytic expressions allow a fast and accu-
rate calculation of the near and far field everywhere behind
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the diffracting aperture on axis. Without an explicit deriva-
tion, the analytic result for the complete Rayleigh integral was
already given in [21]. We first present such a derivation for the
complete Rayleigh-I integral and then use the same procedure
to produce analytic or semi-analytic results for the other inte-
grals of interest.

4.1 Derivation of the analyt ic expression
for the complete Rayleigh integral

We have

E f (0, 0, z; z′) =
S

a
√

S2 + 1

exp
{

ika
[√

S2 + 1−
√

T2 + 1
]}

√
S2 + 1−

√
T2 + 1

− 1
a

exp {ika (S− T)}
S− T

. (23)

To prove this result, we start from Eq. (15) and substitute

y(ρ) =
√

S2 + ρ2 −
√

T2 + ρ2 , 0 ≤ ρ ≤ 1 , (24)

in the integral

∫ 1

0

exp
{

ika
[√

S2 + ρ2 −
√

T2 + ρ2
]}

√
S2 + ρ2

√
T2 + ρ2

ρ dρ . (25)

Noting that

y(0) = S− T, y(1) =
√

S2 + 1−
√

T2 + 1 , (26)

and that

y′(ρ) =
ρ√

S2 + ρ2
− ρ√

T2 + ρ2

=
−ρ y(ρ)√

S2 + ρ2
√

T2 + ρ2
, (27)

so that
ρ dρ√

S2 + ρ2
√

T2 + ρ2
=
−1
y

dy , (28)

we get

∫ 1

0

exp
{

ika
[√

S2 + ρ2 −
√

T2 + ρ2
]}

√
S2 + ρ2

√
T2 + ρ2

ρ dρ

= −
∫ y(1)

y(0)

exp{ikay}
y

dy . (29)

Now differentiate Eq. (29) with respect to z, with y(0) and y(1)
depending on z through Eq. (26) and S = (z− z′)/a, to get

E f (0, 0, z; z′) =
∂

∂z

[∫ y(1)

y(0)

exp{ikay}
y

dy
]

=
exp{ikay(1)}

y(1)
∂

∂z
[y(1)]

− exp{ikay(0)}
y(0)

∂

∂z
[y(0)] . (30)

This then gives Eq. (23) as required.

4.2 Integral expression for the incomplete
Rayleigh integral

In this subsection we derive an adapted and simplified inte-
gral expression for the incomplete Rayleigh integral E f ,inc. In
contrast with the complete Rayleigh integral E f , it was not
possible to develop an exact analytic expression for E f ,inc.
The analysis could not be continued beyond an expression
in terms of sine- and cosine-integrals. With a further approx-
imation to the value of the integrand in E f ,inc, an analytic ex-
pression becomes feasible and, further on in Section 6, we will
study the influence of this approximation of E f ,inc on the field
obtained close by and further away from the diffracting aper-
ture.

We shall now show that

E f ,inc(0, 0, z; z′) = 2ikS
∫ √S2+1−

√
T2+1

S−T

exp {ikay}
y2 − T2 + S2 dy .

(31)
To prove this result, we start from Eq. (16) and use the substi-
tution (24). It follows now that

E f ,inc(0, 0, z; z′) = ikS
∫ √S2+1−

√
T2+1

S−T

exp {ikay}
y
√

S2 + ρ2(y)
dy ,

(32)
with ρ(y) the inverse function of y(ρ) in Eq. (24). It follows
from Eq. (24) that

y2 − 2y
√

S2 + ρ2(y) + S2 + ρ2(y) = T2 + ρ2(y) , (33)

i.e., that 2y
√

S2 + ρ2(y) = y2 − T2 + S2. This completes the
proof of Eq. (31).

The integral expression (31) can be brought into a form involv-
ing the sine and cosine integrals

Si(z) =
∫ z

0

sin t
t

dt,

Ci(z) = γ + ln z +
∫ z

0

cos t− 1
t

dt , (34)

with γ = 0.5772 . . . (Euler’s constant), see Section 5.2 of [41].
Indeed, letting

U = S− T

V =
√

S2 + 1−
√

T2 + 1 (35)

W2 = T2 − S2,

and writing

1
y2 −W2 =

1
2W

1
y−W

− 1
2W

1
y + W

, (36)

one readily finds

E f ,inc(0, 0, z; z′) =
ikS
W

exp{ikaW}
∫ ka(V−W)

ka(U−W)

exp(it)
t

dt (37)

− ikS
W

exp{−ikaW}
∫ ka(V+W)

ka(U+W)

exp(it)
t

dt.

However, this form is not very convenient when one is inter-
ested in simple and effective approximations of E f ,inc. Fur-
thermore, the integration limits ka(V ±W), ka(U ±W) can
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become very large in modulus and are complex in the case
that S > T.

The following observation can be made. The integral expres-
sion in Eq. (31) for E f ,inc is such that in many cases the function
(y2 − T2 + S2)−1 can be considered as being nearly constant.
Letting U and V as in Eq. (35), we have displayed in Table 1
the ratio

U2 − T2 + S2

V2 − T2 + S2 =
S

(S2 + 1)1/2

/
(S2 + 1)1/2 − (T2 + 1)1/2

S− T
,

(38)
of the extreme values of (y2 − T2 + S2)−1 on the integration
range as a function of S ∈ [0, 5T], where T is fixed at the value
8. Note that the right-hand side of Eq. (38) equals

f ′(S)
/

f (S)− f (T)
S− T

; f (X) = (X2 + 1)1/2 , (39)

which is a ratio of the derivative and a differential quotient of
the very smoothly behaved function f .

S U2−T2+S2

V2−T2+S2 S U2−T2+S2

V2−T2+S2

0.0 0.000 7.0 0.999
0.5 0.483 8.0 1.000
1.0 0.745 9.0 1.001
2.0 0.921 12.0 1.002
3.0 0.968 20.0 1.002
4.0 0.985 30.0 1.002
5.0 0.993 40.0 1.001

TABLE 1 Numerical values of the ratio U2−T2+S2

V2−T2+S2 for a fixed value of T = 8.

The table shows that somewhat beyond the value S = 1 the
function (y2 − T2 + S2)−1 can be regarded as almost constant.
Hence, accurate approximations to E f ,inc can be found in the
form

E f ,inc(0, 0, z; z′)

≈ 2ikS
ŷ2 − T2 + S2

∫ √S2+1−
√

T2+1

S−T
exp{ikay} dy

=
2S
(

exp
{

ika
[√

S2 + 1−
√

T2 + 1
]}
− exp {ika(S− T)}

)
a (ŷ2 − T2 + S2)

(40)

where ŷ is a number chosen between the integration limits S−
T and

√
S2 + 1−

√
T2 + 1.

4.3 Analyt ic expression for the Debye
integral

We have immediately from Eq. (20) that

ED(0, 0, z; z′) = − 1
z− z f

×(
exp

{
ik(z− z f )

}
− exp

{
ik(z− z f )

√
1− s2

0

})
. (41)

Recall that, also see Figure 1,

z− z f = z− z′ − (z f − z′) = aS− aT (42)√
1− s2

0 = T/
√

T2 + 1 . (43)

Thus there results

ED(0, 0, z; z′) (44)

=
exp

{
ika(S− T)T/

√
T2 + 1

}
− exp {ika(S− T)}

a (S− T)
.

Note that the choice ŷ = S− T in Eq. (40) gives

exp
{

ika
[√

S2 + 1−
√

T2 + 1
]}
− exp {ika(S− T)}

a (S− T)
, (45)

for the right-hand side and this comes quite close to the right-
hand side of Eq. (44) since

√
S2 + 1−

√
T2 + 1

S− T
= f ′(X) =

X√
X2 + 1

(46)

for some X between S and T, see Eqs. (38) and (39).

We now have at our disposal exact analytic expressions for the
complete Rayleigh integral E f , see Eq. (23), and for the Debye
integral ED, see Eq. (44). Note that the expression for the De-
bye integral is even with respect to the quantity S− T which
leads to (conjugate) symmetry with respect to the geometri-
cal focus at the position S = T. For the incomplete Rayleigh
integral, we either use the basic expression in Eq. (16) or we
use the semi-analytic expression for E f ,inc in Eq. (31), that can
be further evaluated by numerical integration. These expres-
sions will be further used in Section 6 of this paper when we
discuss various settings that are characteristic for acoustic or
optical focused wave fields.

5 COMPARISON OF THE EXPRESSIONS IN
FOCUS AND AT THE APERTURE

5.1 Value in focus (z = zf )

We have at z = z f , so that S = T,

E f (0, 0, z f ; z′) = ik
(

T√
T2 + 1

− 1
)

+
1
2a

1
T(1 + T2)

, (47)

while

E f ,inc(0, 0, z f ; z′) = ED(0, 0, z f ; z′) = ik
(

T√
T2 + 1

− 1
)

.

(48)
The proof for the complete Rayleigh integral and for the De-
bye integral is straightforward from Eq. (23) and Eq. (44),
respectively. The proof for the incomplete Rayleigh integral
is based on the observations in Subsection 4.2 according to
which the result in Eq. (40) becomes exact when S → T and
ŷ = S− T. Note that in practice, sufficiently far away from the
aperture, the difference between the field values according to
Eqs. (47) and (48) will be very small.

5.2 Value and behaviour at the aperture
(z = z′ )

We have at z = z′, so that S = 0,

E f (0, 0, z′; z′) =
1

aT
exp {−ikaT} , (49)
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while

ED(0, 0, z′; z′) =
1

aT
exp {−ikaT}

− 1
aT

exp
{
−ikaT/

√
T2 + 1

}
. (50)

These results follow readily from Eqs. (23) and (44), respec-
tively.

The analysis of E f ,inc at z = z′ is more awkward. For instance,
the limiting value and behaviour of the right-hand side of
Eq. (40) as z → z′ (S → 0) depends on the choice of ŷ. The
choice ŷ = S− T and S→ 0 yields the non-zero limit

1
aT

exp {−ikaT} − 1
aT

exp
{
−ika(

√
T2 + 1− 1)

}
. (51)

On the other hand, when we choose ŷ =
√

S2 + A2 −√
T2 + A2 where 0 < A ≤ 1, the right-hand side of Eq. (40)

tends to 0 as S → 0. More precisely, we have the limiting
behaviour

1
aA

 exp {−ikaT}
(T2 + A2)1/2 − A

−
exp

{
−ika

(√
T2 + 1− 1

)}
(T2 + A2)1/2 − A

 S

+O
(

S2
)

(52)

as S→ 0, and the factor in front of S does depend on A.

The behaviour of the exact expression for E f ,inc as z → z′ dif-
fers from the approximations just given. This is so since E f
and E f ,inc differ by a term that becomes only non-negligible
when kaS is of the order of unity or smaller while the approx-
imations (51) and (52) are valid in a much larger range. To
better understand this, we note that from Eq. (16) one has

E f ,inc = −ikS
∫ 1

0

exp
{

ika
[√

S2 + 1−
√

T2 + 1
]}

(S2 + ρ2)
√

T2 + ρ2
ρdρ , (53)

while from Eq. (15) (with S = (z− z′)/a)

E f =− ikS
∫ 1

0

exp
{

ika
[√

S2 + 1−
√

T2 + 1
]}

(S2 + ρ2)
√

T2 + ρ2
ρdρ

+
1
a

S
∫ 1

0

exp
{

ika
[√

S2 + 1−
√

T2 + 1
]}

(S2 + ρ2)3/2
√

T2 + ρ2
ρdρ (54)

where, for ease of notation, we have omitted the coordinate
dependence of the expressions for E f and E f ,inc. Thus, the
difference between the two is the term on the second line of
Eq. (54). The integrals in Eq. (54) are of a very similar na-
ture, but the factors by which they get multiplied are vastly
different in order of magnitude. Therefore, the second term
in Eq. (54) cannot be neglected anymore only when the addi-
tional factor 1/(S2 + ρ2)1/2 in the second integral becomes of
the order ka on a substantial part of the integration range, i.e.,
roughly when kaS ≤ 1.

Now E f tends to a finite limit (1/aT) exp{−ikaT} 6= 0 as S→
0 while E f ,inc → 0 as S → 0. More precisely, we have as an
approximation from Eq. (37) when 0 < kaS ≤ 1

E f ,inc ≈
ik
T

exp(−ikaT) S [ln(kaS)− C] (55)

in which C is a constant of order unity that we shall ignore be-
low. The quantity k ln(kaS)/T by which S is being multiplied,
becomes very large compared to the limit value 1/aT of |E f |.
Therefore, we see an extremely steep decay to zero of |E f ,inc|
when kaS drops below 1.

6 NUMERICAL EXAMPLES AND
DISCUSSION OF RESULTS

In this section we discuss some numerical results that have
been obtained with the aid of our analytic expressions to il-
lustrate the accuracy of the analytic results and the range of
applicability of the approximations involved. We have the fol-
lowing expressions

• Complete Rayleigh integral E f , with its on-axis analytic
solution according to Eq. (23),

• Incomplete Rayleigh integral E f ,inc with the near-field
term omitted, numerical integration using Eq. (16); for
this we use a low-order method using an adaptive recur-
sive Simpson rule (‘quad’ implemented in MATLAB),

• An approximated analytic expression of the incomplete
Rayleigh integral E f ,inc according to Eq. (40) with the lib-
erty to substitute an arbitrary value for ŷ between the in-
tegration limits S− T and

√
S2 + 1−

√
T2 + 1,

• An analytic result Eq. (44) for the Debye integral ED, an
approximation of the Rayleigh integral for large values
of the wave number k.

The geometry of the diffraction problem has been chosen such
that, with an aperture diameter 2a = 37 mm and a radius
of curvature of the focused wave front R = 71 mm, the nu-
merical aperture of the focusing field equals 0.2606. The wave
number of the radiation field has been chosen k = 12736 m−1,
corresponding to a wave length λ of approximately 0.5 mm.
These values with typically 100 wave lengths fitting into the
aperture are common for acoustic diffraction problems and
they also occur in the optical domain when dealing with
micro-lenses.

In Figure 2 we have plotted the modulus of the axial field per-
taining to the complete Rayleigh integral (blue solid curve),
using the analytic expression of Eq. (23). The incomplete
Rayleigh integral E f ,inc (dotted green curve), approximated
according to Eq. (40) with the choice ŷ =

√
S2 + 1−

√
T2 + 1,

closely follows the exact result in the focal region (the normal-
ized distance T towards the geometrical focus corresponds to
a value S = 3.70527). Close to the aperture, for S < 1, sub-
stantial deviations are observed. These are mainly due to the
approximation that was used in deriving Eq. (40). The third
curve, the Debye integral ED (dashed red), shows significant
deviations from the exact result E f . The approximation in-
volved in deriving the Debye integral induces symmetry with
respect to the geometrical focus. It can be seen in the figure,
that for the relatively small k-value we used, the Debye ap-
proximation is inadequate to reproduce the correct positions
of the axial field zeros, the shift of the maximum field value
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FIG. 2 A comparison of the various exact and approximated expressions for the modu-

lus of the axial field. Blue solid line: exact analytic expression for the Rayleigh integral

E f according to Eq. (23). Dashed red curve: analytic expression for the Debye inte-

gral ED , Eq. (44). Dotted green line: analytic expression for the incomplete Rayleigh

integral E f ,inc according to Eq. (40) with ŷ =
√

S2 + 1−
√

T2 + 1, equal to the up-

per integration limit. Relevant parameter values are: aperture diameter 2a = 37 mm,

R = 71.00 mm, k = 12376 m−1 (λ = 0.493 mm). The aperture value s0 equals

0.2606. The normalized distance T to the geometrical focal point F corresponds to the

value S = 3.70527.

with respect to the geometrical focus and the inherent asym-
metry of the diffracted field with respect to the optimum fo-
cus, see also [17], [25], [31] for an analysis of this phenomenon
and further examples.

In Figure 3 we highlight the difference between the complete
and the incomplete Rayleigh integrals, E f and E f ,inc, respec-
tively. In [39], the difference between E f and E f ,inc has also
been studied, in this case for plane wave illumination. A nu-
merical evaluation of the incomplete Rayleigh integral was
compared with the analytic solution for the complete integral.
In our case, for converging wave illumination, E f (solid blue
curve) has been obtained using the analytic result of Eq. (23),
E f ,inc (dotted magenta curve) has been calculated by numeri-
cal integration of the expression in Eq. (16).

It is seen from the figure that the differences between the com-
plete and incomplete integral are negligible as soon as the ob-
servation point has moved out of the near-field region. Very
close to the aperture, typically for |z − z′| ≤ λ, we observe
an important difference. The incomplete integral approaches
zero field value while the complete integral correctly repro-
duces the field at the aperture itself. The steep drop to zero
of E f ,inc agrees with the observation made at the end of Sub-
section 5.2. Note that this behaviour for the converging wave
illumination is also visible in Figure 9(a) of [39] for plane wave
illumination of a circular aperture. The insert in Figure 3 illus-
trates this phenomenon that in our example occurs in the axial
range S ≤ 0.03.

In Figure 4 we compare the numerically obtained value of
E f ,inc and the analytic expression of Eq. (40) that was obtained
by introducing an approximation in the integrand of the ex-
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FIG. 3 A comparison of the complete and the incomplete Rayleigh integral, E f (blue

solid curve) and E f ,inc (dotted magenta curve), respectively. E f and E f ,inc have been

plotted over a large axial range including the focal region (0 < S < 10). The insert

shows both curves close to the aperture (0 < S < 0.2) where the incomplete Rayleigh

integral starts to deviate substantially in the proper near-field region (S < 0.03 or

z− z′ < λ).
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FIG. 4 A detailed analysis of the behaviour of the various analytic expressions in the

region closer to the aperture (0 ≤ S ≤ 1.5). The magenta dotted curve corresponds

to the incomplete Rayleigh integral E f ,inc, the light blue solid curve and the dotted

green curves correspond to approximations of E f ,inc according to Eq. (40) with ŷ

equal to the integration limits S − T and
√

S2 + 1 −
√

T2 + 1, respectively. The

brown solid curve is obtained by using ŷ = (S − T +
√

S2 + 1−
√

T2 + 1)/2 in

Eq. (40), corresponding to the center of the integration interval.

pression for E f ,inc. A free parameter in obtaining the analytic
solution of Eq. (40) is ŷ, that should be chosen between the
integration limits S− T and

√
S2 + 1−

√
T2 + 1. From the fig-

ure we deduce that the approximated results are reliable for
values of S larger than typically 1.5. For smaller values of S,
the choice of ŷ strongly influences the value of the diffracted
field and strong oscillations remain, either around the cor-
rect average value (ŷ = S − T) or with an off-set towards
zero (see the curves with ŷ =

√
S2 + 1 −

√
T2 + 1 or with

ŷ = (S− T +
√

S2 + 1−
√

T2 + 1)/2). The limiting value for
S→ 0 of the approximating integral for E f ,inc can be obtained
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from Eqs. (51) and (52) given the choice of the parameter ŷ.
The graphs in Figure 4 with the various parameter settings for
ŷ confirm these results for small S-values but also show the
substantial difference between the approximated integral and
the numerically obtained result for E f ,inc. We conclude that the
approximated analytic result of Eq. (40) should only be used
relatively far from the aperture.

Finally, in Figure 5, we keep the aperture and focus geom-
etry fixed but vary the wave number of the radiation and
inspect the behaviour of the complete Rayleigh integral E f
(solid blue curve, Eq. (23)), and the Debye integral (dashed red
curve, Eq. (44)). In the upper left graph, the number of wave
lengths that fits across the aperture is less than 6, in the lower
right graph, this value amounts to 588000. In the first case, we
have a situation that is frequently encountered in acoustical
problems while the very high k-values are typical for optical
diffraction problems. For instance, the example with k = 105

might correspond to an optical microlens with a diameter of
0.3 mm, used in the visible domain of the spectrum; the last
example with k = 108 mm−1 may correspond to a telescope
objective with a typical diameter of 30 cm. Starting with the
low k-value of 103, we immediately see that the (symmetric)
Debye integral is a very poor approximation to the field on
axis. With the numerical aperture value of 0.2606 for the fo-
cusing beam, the agreement is still relatively good, at lower
aperture, the divergence between the Rayleigh result and the
Debye approximation becomes very important. Earlier stud-
ies of the diffraction of a focused beam at low Fresnel number
(in our case ≈ 10) using numerical evaluation of the diffrac-
tion integral already revealed the asymmetry of the intensity
distribution with respect to the geometrical focal point and
the shift of the intensity maximum from the focus towards the
aperture, see [7], [24], Figure 1 of [25], [30], [31].
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FIG. 5 Plots of the complete Rayleigh integral E f (blue solid curves) and the Debye

integral ED (dashed red curves) for different values of the wave number k (aperture

diameter 2a is 37 mm, numerical aperture (a/R) of the focusing beam is 0.2606).

At larger k-values, the Debye result gradually approaches the
exact Rayleigh result and, in the middle right graph, the differ-
ence has become imperceptible. This is due to the fact that we
are now many wave lengths away from the diffracting aper-
ture and, in our example, the numerical aperture is also suffi-
ciently large with many Fresnel zones fitting in the aperture.
We remark that with the very small wave length in the lower
right graph (λ = 63 nm), the central maximum of the focal
field is confined to an axial range of typically 3.5 µm. In many
applications, the exact location of this maximum should be
known and controlled to within 1% of this range. Well-known
examples of such a precise focal setting are found in high-
resolution imaging for optical microlithography and inspec-
tion microscopy. For that reason, we have checked the possi-
ble divergence between the Rayleigh and the Debye integral
up to this very high k-number of 108 m−1. Figure 5 convinc-
ingly illustrates why the Debye integral can be used without
any problem when imaging with classical optical systems. The
lateral extent of the lens aperture is always much larger than
the wave length of the incident radiation and the aperture
size and the numerical aperture should be sufficiently large
to achieve the required image size and image resolution. To-
gether, these conditions lead to a very large number of Fresnel
zones in the aperture and allow a safe application of the De-
bye integral.
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