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Abstract— The performance of a class of distributed

control systems is analyzed when the interconnected

fault tolerant components switch their mode of oper-

ation according to independent, identically distributed

processes. New expressions for performance metrics are

presented for this case, including their sensitivity analysis.

These metrics require non-trivial derivations that are not

just simplified expressions of the known metrics for the

homogeneous Markov case. For a class of distributed

control systems, the performance metrics are also com-

puted when the actuators are assumed to have or not

have memory. Finally, the results are illustrated with a

distributed flight control example.

I. INTRODUCTION

An interconnection of L devices with L ≥ 2 that

are working together to accomplish a certain function

represents a high level view of a fault tolerant network

architecture. Operation of the network in a harsh en-

vironment can result in one or more devices randomly

switching their modes of operation. Since these fault

tolerant networks are the enabling technology in safety

critical control system applications, it is important to

analyze the effect of the random jumps of functionality

on the controlled dynamical system. Let (Ω,F ,Pr) be

the ambient probability space. It is assumed that the

mode of operation of each device forming a network is

characterized with a state of an independent, identically

distributed (i.i.d.) process. In particular, suppose that

a harsh environment randomly switches each device’s

mode of operation from among V possibilities such that

the mode of operation of the lth device during each

sample period is represented by a state of the i.i.d.

process zl(k), where l ∈ {1, . . . , L} and k ∈ Z
+ ,

{0, 1, . . . }. When zl(k) = 0, the lth device is operating

as intended and, in general, zl(k) = v denotes the
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vth mode of operation during the kth sample period,

where v ∈ IV , {0, 1, . . . , V − 1}. From the point of

view of the dynamical control system, it is important

to characterize the modes of operation of the fault

tolerant network, since they determine the closed-loop

system’s modes. The network’s mode is characterized

by a random process, ρ(k), that is a transformation of

the joint process z(k) = (z1(k), . . . ,zL(k)). In this

paper, a class of networks that result in ρ(k) being an

i.i.d. process is characterized. Then the performance of

a distributed control system that can be represented as a

jump linear system (JLS) switched by this i.i.d. process

is analyzed. Most of the JLS literature has addressed

the case where the switching process is a homogeneous

first order Markov process (see, e.g., [1]–[4]). Some of

these papers and others have presented results for i.i.d.

switching processes (see, e.g., [1], [2], [5]–[7] and their

references). Of course, an i.i.d. process also satisfies the

first order Markov property and all the known results

would apply in this case. However, simpler formulas

can be derived that do not trivially follow from the

known Markov results. This has been commented in,

e.g., [2], [8] regarding stability results of an i.i.d. JLS.

In fact, one motivation for this paper was to reduce

the dimensions of the matrices used in the performance

analysis of an i.i.d. JLS. If performance metrics derived

for a homogeneous first order Markov process are

used in an i.i.d. JLS, higher dimensional matrices than

necessary are utilized. To avoid possible numerical

issues, new closed-form expressions are derived here.

Thus, the goals of this paper are to characterize a

class of fault tolerant systems that induce an i.i.d.

process driving a JLS, derive analytic expressions for

two i.i.d. JLS performance metrics, and characterize

the sensitivity of these metrics. The presentation of

the paper follows this order. Section II characterizes

the modes of operation of a class of fault tolerant

systems. New analytic expressions for two performance

metrics for an i.i.d. JLS are derived in Section III.

The sensitivity of one of the performance measures is
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analyzed in Section IV. In Section V these results are

applied to a particular distributed control system and

an illustrative example is presented. A more thorough

description of this distributed control system with a

Boeing 747 example is reported in [9]. Finally, the

conclusions are given in Section VI.

II. FAULT TOLERANT NETWORKS

WITH I.I.D. UPSETS

Consider a fault tolerant network consisting of L

devices such that the V modes of operation of each

device are represented by the states of the i.i.d. process

zl(k), where l ∈ {1, . . . , L} and k ∈ Z
+. When

each device is independently affected by the harsh

environment, a useful preliminary result is given in

Lemma 1.

Lemma 1: Let the i.i.d. processes z1(k), . . . ,zL(k)

with common state space IV be independent, and

let the state probability vector for each process be

πzl
,
[
Pr{zl(k) = 0}, . . . ,Pr{zl(k) = V − 1}

]
,

l ∈ {1, . . . , L}. Then the joint process z(k) =

(z1(k), . . . ,zL(k)) is i.i.d. with state space IL
V ,

IV × · · · × IV
︸ ︷︷ ︸

L times

and its state probability vector is πz ,

πz1
⊗· · ·⊗πzL

, where ⊗ denotes the Kronecker product.

Proof: This is a special case of [3, Lemma 1].

In this paper, the fault tolerant networks of interest

are those where the mode of operation of the network

is a structure function of z(k). A definition based on

[10] is given next.

Definition 1: Let z(k) = (z1(k), . . . ,zL(k)) be

i.i.d. with state space IL
V , and let Iℓ = {0, . . . , ℓ − 1}

be a finite set with 1 < ℓ < V L. The onto, memoryless

function φ : IL
V → Iℓ mapping z(k) into φ(z(k)) is

called a structure function.

The set Iℓ denotes the modes of operation of the net-

work. Then during each sampling period, the network’s

mode of operation is given by the random variable

ρ(k) = φ (z(k)) for k ∈ Z
+, which is assumed to

have ℓ states satisfying 1 < ℓ < V L. Since φ reduces

the number of states of z(k) from V L to ℓ, it is a

lumping transformation, and ρ(k) is called a lumped

process. It is well-known that lumping transformations

of a homogeneous Markov chain (HMC) do not, in

general, preserve the Markov property [11]–[13]. In

Theorem 1 below it is shown that a lumping transfor-

mation does preserve the zeroth order Markov property

when applied to an i.i.d. process. This theorem also

characterizes the distribution of ρ(k). First, observe that

the lumping transformation φ partitions the state space

of z(k) as follows: IL
V =

⋃ℓ−1
j=0 Ij , where for each

j ∈ Iℓ, Ij = φ−1(j) = {ξ ∈ IL
V : φ(ξ) = j}.

Theorem 1: Let z1(k), . . . ,zL(k) be independent

i.i.d. processes with common state space IV and de-

fined over the same probability space. Let φ be a

lumping transformation of the joint process z(k) =

(z1(k), . . . ,zL(k)) mapping IL
V into Iℓ such that 1 <

ℓ < V L. Then ρ(k) = φ(z(k)) is an i.i.d. process, and

its probability distribution function is given by

Pr{ρ(k) = j} =
∑

ξ∈Ij

L∏

l=1

πzl






1{ξl=0}
...

1{ξl=V −1}




 , (1)

where 1{·} is the indicator function of the event {·},

and ξl is the lth component of ξ.

Proof: Since the joint process z(k) is i.i.d., the

sigma algebras σ({z(k)}), k ∈ Z
+ are independent.

Thus, the claim follows immediately from the fact that

the lumping transformation φ is a memoryless measur-

able function implying that σ({ρ(k)}) = σ({z(k)}).

Finally, (1) follows from [14, Lemma 1] for the i.i.d.

case.

III. PERFORMANCE ANALYSIS

In this section the performance of a JLS driven by an

i.i.d. sequence ρ(k) that takes values in the set Iℓ with

distribution characterized by pi , Pr{ρ(k) = i} for

i ∈ Iℓ is analyzed . The i.i.d. JLS that models the dy-

namical system effect of the randomly switched modes

of operation of an interconnection of components is

x(k + 1) = Aρ(k)x(k) + Bρ(k)w(k), (2a)

x(0) = x0,

y(k) = Cρ(k)x(k), (2b)

where x(k) ∈ R
n, y(k) ∈ R

p, x0 is a random

vector with finite second moment, and w(k) ∈ R
q is a

zero mean white noise process with identity covariance

matrix Iq and independent of ρ(k) and x0. Since ρ(k)

is i.i.d., the initial distribution ρ(0) is the same as for

ρ(k), k ≥ 1. A standard mean square stability (MSS)

definition applied to the i.i.d. case is given next.

Definition 2: The i.i.d. JLS (2) is MSS if there exists

a non-negative constant α such that for any initial

condition x(0) = x0 with finite second moment, it

follows that limk→∞ E{‖x(k)‖2} = α. If w(k) = 0

for k ∈ Z
+ then α = 0.
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Two useful properties of the i.i.d. JLS are introduced

in Lemma 2. Denote by Fk , σ({ρ(k)}), the sigma-

algebra generated by ρ(k), k ∈ Z
+.

Lemma 2: Let ρ(k) be the process driving the i.i.d.

JLS (2). Then x(k) and 1{ρ(k)=i} are independent for

i ∈ Iℓ and k ≥ 1. In addition, for each k ∈ Z
+ the

random variables x(k) and w(k) are independent.

Proof: From (2a) it follows that x(k) is Fk−1-

measurable for k ≥ 1. Since 1{ρ(k)=i} is Fk-

measurable for each i ∈ Iℓ, the claim follows because

ρ(k) is an i.i.d. process implying that the sigma alge-

bras Fk−1 and Fk are independent. The independence

between x(k) and w(k) follows from the assumption

that w(k) is independent of ρ(k).

For each k ∈ Z
+ define Q(k) , E{x(k)xT (k)}.

The following lemma gives another characterization of

MSS.

Lemma 3: The i.i.d. JLS (2) is MSS if and only if

there exists a positive semi-definite matrix Q ∈ R
n×n

not depending on x(0) such that limk→∞ Q(k) = Q.

Moreover, when (2) is MSS, Q satisfies the Lyapunov

equation

Q =
ℓ−1∑

i=0

AiQAT
i pi +

ℓ−1∑

i=0

BiB
T
i pi, (3)

and

Q = vec−1
(
(In2 −A)−1 vec (B)

)
, (4)

where

A ,

ℓ−1∑

i=0

(Ai ⊗ Ai)pi, (5)

B =

ℓ−1∑

i=0

BiB
T
i pi, (6)

and vec denotes the column stacking operator.

Proof: The claim follows from [1, Theorem 3.33]

and [15, Theorem 2.3.3]. Equations (3) and (4) follow

from the definition for Q(k).

When B is positive definite, the Lyapunov equation

is a particular case of [1, Corollary 3.26]. A test for

mean square stability is given next.

Lemma 4: The i.i.d. JLS (2) is MSS if and only if

the spectral radius of A is less than 1, where A is

defined in (5).

Proof: This stability test has appeared in, e.g., [2],

[5]–[7], and it is proven in [5].

The matrix A in (5) has dimension n2 × n2. If

ρ(k) had been an HMC taking values in Iℓ then the

corresponding MSS test would compute the spectral

radius of an ℓn2 × ℓn2 matrix. The lower dimension

of A in (5) is a benefit of working with an i.i.d.

JLS instead of a Markov JLS. An additional benefit

is that an equivalent MSS test for a Markov JLS

requires solving a set of coupled algebraic generalized

Lyapunov equations [1, Theorem 3.9]. For an i.i.d.

JLS, only one algebraic generalized Lyapunov equation

needs to be solved, (3).

To characterize the performance of the i.i.d. JLS

(2) with a white noise input, analytic expressions are

derived for the average energy and power of the output

signals based on the definitions given in [1], [4]. Anal-

ogous expressions appeared in [4] when ρ(k) is a first

order HMC. Since an i.i.d. process is an HMC of order

zero, Theorem 9 in [4] can be also used when ρ(k) is

i.i.d., however, simpler and lower dimensional formulas

are derived here. The output performance metrics for

(2) are defined as follows:

J =







Jw , limk→∞ E{‖y(k)‖2} , w(k) 6= 0

J0 ,

∞∑

k=0

E{‖y(k)‖2} , w(k) = 0

where Jw is called the steady-state mean output power,

and J0 is the mean output energy. The order of the

sum and the expectation in J0 have been changed with

respect to [4] to match the order given in [1]. Analytic

expressions for Jw and J0 are given in Theorems 2 and

3, respectively.

Theorem 2: If the i.i.d. JLS (2) is MSS then it

follows that Jw < ∞ and

Jw =

ℓ−1∑

i=0

tr(CiQCT
i )pi (7)

with Q defined in (4).

Proof: From (2b) and Lemma 2 it follows that

E{‖y(k)‖2} = tr

{
ℓ−1∑

i=0

CiE{x(k)xT (k)}CT
i

}

pi.

When (2) is MSS, taking limits as k → ∞ on both

sides of this equation gives (7) by Lemma 3.

For each k ∈ Z
+ define M(k) =

∑k
i=0 Q(i).

When w(k) = 0, the following lemma gives another

equivalent characterization of MSS.

Lemma 5: The i.i.d. JLS (2) with w(k) = 0 is MSS

if and only if there exists a positive semi-definite matrix
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M not depending on x(0) such that M =
∑∞

k=0 Q(k).

Moreover, when (2) is MSS, M satisfies the Lyapunov

equation

M =
ℓ−1∑

i=0

AiMAT
i pi,

and

M = vec−1(In2 −A)−1 (8)

with A defined in (5).

Proof: By [16, Theorem 2] the following inequal-

ities hold for each k ∈ Z
+:

1

n
E
{
‖x(k)‖2

}
≤ ‖Q(k)‖ ≤ E

{
‖x(k)‖2

}
. (9)

Suppose that (2) is MSS. Since MSS is equivalent

to stochastic stability [17],
∑∞

i=0 E
{
‖x(i)‖2

}
< ∞.

Thus, the sequence of partial sums,
∑k

i=0 E
{
‖x(i)‖2

}
,

is Cauchy. This implies that M(k) is Cauchy since

‖M(m) − M(n)‖ ≤

m∑

k=n+1

‖Q(k)‖

≤

m∑

k=n+1

E
{
‖x(k)‖2

}
,

where the last inequality follows from the second

inequality in (9). Thus, the series
∑∞

k=0 Q(k) is conver-

gent. Assume now that the series
∑∞

k=0 Q(k) is conver-

gent. Then limk→∞ Q(k) = 0 and, therefore, the first

inequality in (9) implies that limk→∞ E(‖x(k)‖2) = 0,

i.e., (2) is MSS. The expressions for M follow from

its definition. This completes the proof.

Theorem 3: If the i.i.d. JLS (2) with w(k) = 0 is

MSS then J0 < ∞, and

J0 =

ℓ−1∑

i=0

tr(CiMCT
i )pi,

with M defined in (8).

Proof: When (2) is MSS, equation (2b) and Lem-

mas 2 and 5 directly give the formula for J0.

IV. SENSITIVITY PERFORMANCE ANALYSIS

When the i.i.d. JLS (2) is MSS, the output perfor-

mance metrics Jw and Jo can be seen as the real-valued

functions Jw(p) and Jo(p), mapping a mean-square

stabilizing subset of [0, 1]ℓ , [0, 1] × · · · × [0, 1]
︸ ︷︷ ︸

ℓ times

into

R, where p , (p0, . . . , pℓ−1) and pj , Pr{ρ(k) = j},

j ∈ Iℓ. In fact, from Theorems 2 and 3 it follows

that the performance metrics are rational functions of

these mean-square stabilizing probabilities. Moreover,

the following lemma makes possible the evaluation of

partial derivatives.

Lemma 6: Let p∗ ∈ [0, 1]ℓ be such that the i.i.d. JLS

(2) is MSS. Then there exist a neighborhood of p∗ such

that for each p in this neighborhood the i.i.d. JLS (2)

remains MSS.

Proof: The result follows because the spectral

radius of A is a continuous function of p.

In Theorem 4 the sensitivity with respect to pj for

j ∈ Iℓ is evaluated at the mean-square stabilizing

probability p∗ ,
(
p∗0, . . . , p

∗
ℓ−1

)
∈ [0, 1]ℓ. A less

local result is given in Theorem 5, where the intervals

over which the performance metric is monotonic are

characterized for a special case. Similar arguments can

be followed for J0.

Theorem 4: Let p∗ ∈ [0, 1]ℓ be such that the i.i.d.

JLS (2) is MSS and let Q∗ , Q(p∗) be the value of Q

at this point. Then for each j ∈ Iℓ

∂Jw(p)

∂pj

∣
∣
∣
∣
p=p∗

=

(
ℓ−1∑

i=0

tr

(

Ci
∂Q(p)

∂pj

∣
∣
∣
∣
p=p∗

CT
i

)

p∗i

)

+ tr(CjQ
∗CT

j ),

where

∂Q(p)

∂pj

∣
∣
∣
∣
p=p∗

=

vec−1
(

(I −A)−1
(
(Aj ⊗ Aj)(I −A)−1·

vec (B) + vec(BjB
T
j )
))

with A and B defined in (5) and (6), respectively.

Proof: Since Jw is a rational function, it is in-

finitely differentiable at any point where it is well-

defined. The partial derivatives of Jw and Q follow

by direct application of ∂
∂pj

and noting that the trace,

vec, and vec−1 are linear transformations. Thus, these

transformations commute with the partial derivative.

To present a less local result let ℓ = 2. Then the

i.i.d. JLS (2) has two modes of operation that are

selected by ρ(k). The mode denoted by ‘0’ represents

a nominal mode in which the closed-loop system is

working correctly. The mode denoted by ‘1’ represents

the upset state in which the system is not performing its

intended function due to the harsh environment. Then

the probability p1 = Pr(ρ(k) = 1) can be interpreted
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as the probability that the closed-loop system is in the

upset state, and the performance Jw can be seen as

a function of this probability. Let U denote the union

of all the disjoint subintervals of [0, 1] containing the

values of p1 that result in (2) being MSS. When U is

nonempty, the endpoints of each open subinterval are

consecutive points taken from the sequence 0 ≤ p̂0 <

p̂1 < · · · < p̂r−1 ≤ 1, where p̂i, i = 0, . . . , r − 1,

satisfy one or more of the following conditions: p̂0 = 0

(p̂r−1 = 1) when A0 (A1) is Hurwitz; p̂i are the values

of p1 that result in a unit spectral radius for A; and p̂i

can also be the distinct real roots of
dJw(p1)

dp1

. If p̂0 = 0

(p̂r−1 = 1) then its subinterval is closed on the left

(right).

Theorem 5: When the i.i.d. JLS (2) is MSS, the sign

of
dJw(p1)

dp1

is constant over each subinterval in U , that

is, Jw(p1) is monotonic on these subintervals.

Proof: Since Jw and
dJw(p1)

dp1

are rational functions

of p1, the only possible endpoints for the subintervals

are those in U .

V. DISTRIBUTED CONTROL SYSTEM

REGULATION PERFORMANCE

An application of the results of this paper to a

distributed control system is presented in this section.

Consider the following discretized state space realiza-

tion of a plant:

xp(k + 1) = Apxp(k) + Bpu(k)

yp(k) = Cpxp(k),
(10)

where xp(k) ∈ R
np is the plant’s state vector, yp(k) ∈

R
m is the plant’s output, and u(k) ∈ R

m is the

plant’s input. The nominal control law used to close the

loop to attain a desired level of regulation performance

is u(k) = w(k) − yc(k), where w(k) ∈ R
m is a

zero mean white noise process with identity covariance

matrix Im and independent of xp(0), and yc(k) ∈ R
m

is the controller’s output. The designed observer-based

controller’s state-space representation is

xc(k + 1) = Apxc(k) + Bpu(k)

+ Lp

(
yp(k) − Cpxc(k)

)

yc(k) = Kxc(k),

(11)

where xc(k) ∈ R
np is the controller’s state vector,

and K and Lp are the pole placement and observer

matrices, respectively. The nominal closed-loop system

is obtained when the nominal control law is applied.

It results in a nominal regulation level of closed-loop

. . .

Sensors Actuators

BIU 0

I/O PE 0

BIU N

PE Controller 

N

RMU 1 RMU M. . .

BIU 1

. . . . . .

PE Controller 

1

Fig. 1. Schematic of a distributed closed-loop system implemented

with a ROBUS-2 fault tolerant communication system.

performance given by Jw = lim
k→∞

E{‖yp(k)‖2}. The

results in this paper make it possible to determine

the performance degradation when an update to the

control law is not received by the actuators at each

control cycle due to random events caused by a harsh

environment acting on a distributed control system

as shown in Fig. 1. It consists of redundant and

equivalent implementations of the controller dynamics

in N Processing Elements (PEs). Each of the PEs

connects to a fault tolerant communication network

with a Bus Interface Unit (BIU) and each BIU is con-

nected to M Redundancy Management Units (RMUs).

For simplicity, all the sensors and actuators are con-

nected using a single I/O PE and BIU. This PE-BIU

node is assumed not to fail. This network is based

on NASA’s SPIDER (Scalable Processor-Independent

Design for Enhanced Reliability) architecture, which

uses the ROBUS-2 communication system [18]–[20].

A more detailed description of the distributed control

system and a Boeing 747 control application is given

in [9]. The network shown in Fig. 1 is referred to as an

N PE × M RMU distributed control system, where the

N PE-BIU nodes and M RMUs will be assumed to be

the only components that can randomly fail silently, i.e.,

the devices produce no output during a control cycle

but can recover and restart operation at the next control

cycle.

To analyze this distributed control system suppose

that for each control cycle k ∈ Z
+ the modes of

operation of the ith PE and the jth RMU are denoted

by the indicator random variables zi(k) and z̃j(k), re-

spectively. The convention for all the indicator random

variables is that a value of ‘0’ denotes that the device

is available and that a value of ‘1’ denotes that the

device has failed silently. Assume that a valid controller

output is delivered to the actuators if at least one PE and
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one RMU are available; otherwise, no controller output

is delivered to the actuators. This event is denoted

with the indicator random variable zv(k) that uses

the same convention assumed for the components. An

application of the results in this paper leads to the

following statistical characterization of zv(k) .

Lemma 7: Consider an N PE × M RMU dis-

tributed control system as in Fig. 1. Assume that

all the availability processes {zi(k), i = 1, . . . ,N}

and {z̃j(k), j = 1, . . . ,M} are i.i.d. and mutually

independent. Let pθi
, Pr{zi(k) = 1} and pνj

,

Pr{z̃j(k) = 1} then zv(k) is an i.i.d. process with

distribution characterized by

p1 , Pr{zv(k) = 1}

= 1 −

(

1 −

N∏

i=1

pθi

)

1 −

M∏

j=1

pνj



 .

Proof: The proof follows by repeated application

of Theorem 1, since

zv(k) = φ2|2

(

φ1|N

(
z1(k), . . . ,zN (k)

)
,

φ1|M

(
z̃1(k), . . . , z̃M (k)

))

,

where the lumping transformations φ1|N (1-out-of-N )

and φ1|M (1-out-of-M ) are parallel structure functions,

and φ2|2 (2-out-of-2) is a series structure function [14].

The effect of the random upsets affecting the N

PEs and M RMUs on the closed-loop system can

be characterized as follows. When zv(k) = 1 no

control input is delivered to the plant’s actuators and

the communication system restarts the N PEs resulting

in the controllers’ state vectors getting reset to zero.

When zv(k) = 0 the closed-loop system behaves

as the nominal one. Thus, the random upsets result

in a switched control system indexed by zv(k). In

particular, the control law is also switched, i.e., u(k) ,

uzv(k)(k). The value of uzv(k)(k) depends on the type

of actuators, which can be memoryless or have mem-

ory. Memoryless actuators assume a zero command

when no data is received. The effective control input is

then

uzv(k)(k) = w(k) − (1 − zv(k)) yc(k), (12)

where the white noise now needs to be also assumed

to be independent of zv(k). Actuators with memory

belong to a class of smart actuators. When no data

is received, these actuators use the previous control

command. The effective control input is

uzv(k)(k) = w(k) − (1 − zv(k)) yc(k)

− zv(k)yc(k − 1). (13)

A realization of the switched closed-loop system fol-

lows from (10), (11) and either (12) or (13) to be

xCL(k + 1) = Āzv(k)xCL(k) + B̄zv(k)w(k)

y
CL

(k) = C̄zv(k)xCL(k),
(14)

where y
CL

(k) = yp(k). For memoryless actuators the

state vector is xCL(k) = [xT
p(k) x

T
c(k)]T ∈ R

2np .

The state equation realization pairs
(
Āzv(k), B̄zv(k)

)
for

zv(k) ∈ {0, 1} are

Ā0 =

[
Ap −BpK

LpCp Ac

]

, B̄0 =

[
Bp

Bp

]

,

Ā1 =

[
Ap 0

0 0

]

, B̄1 =

[
0

0

]

.

where Ac = Ap − BpK − LpCp. The output equation

is not switched. It is characterized by CCL = C̄0 =

C̄1 = [Cp 0]. When the actuators have memory, the

closed-loop system is augmented with an additional

state vector that remembers the previous value of the

controller’s state vector. So the state vector in (14)

is xCL(k) = [xT
p(k) x

T
c(k) x

T
a(k)]T ∈ R

3np , xa(k) =

xc(k − 1). The state equation realization pairs in this

case are

Ā0 =





Ap −BpK 0

LpCp Ac 0

0 I 0



 , B̄0 =





Bp

Bp

0



 ,

Ā1 =





Ap 0 −BpK

0 0 I

0 0 I



 , B̄1 =





0

0

0



 .

The output equation is characterized by CCL = C̄0 =

C̄1 = [Cp 0 0].

The reset and one sample period rollback recovery

models presented here are special cases of more general

error recovery techniques. Comparison of the effect of

these techniques on MSS is given in [21].

The degradation in regulation performance can now

be characterized. The case of memoryless actuators and

actuators with memory are considered in parallel. First,

the nominal closed-loop realization for zv(k) = 0 for

k ∈ Z
+ follows from (14) to be

xn(k + 1) = Ā0(k)xn(k) + B̄0(k)w(k)

yn(k) = CCL(k)xn(k),
(15)

6202



where xn(k) = xCL(k) for k > 0 is the nominal closed-

loop state vector. The regulation error caused by the

random upsets is ye(k) , y
CL

(k) − yn(k) when (14)

and (15) have the same disturbance input w(k). A

realization of this error system is

[
xCL(k + 1)

xn(k + 1)

]

=

[
Āzv(k) 0

0 Ā0

] [
xCL(k)

xn(k)

]

+

[
B̄zv

B̄0

]

w(k),

(16a)

[
xCL(0)

xn(0)

]

=

[
x0

xn,0

]

,

ye(k) =
[
CCL −CCL

]
[
xCL(k)

xn(k)

]

. (16b)

The error system in (16) is an i.i.d. JLS switched

by zv(k). Let its realization be denoted by(

Ãzv(k), B̃zv(k), C̃
)

and the state vector be

x̃(k) ,
[
x

T
CL

(k),xT
n (k)

]T
. The performance metrics

for the i.i.d. JLS (16) have been derived in Section III.

In particular, the steady-state mean error power is

Jw,e , lim
k→∞

E{‖ye(k)‖2}. When the white noise,

w(k), is applied to (16), and if it is MSS, then

Theorem 2 gives the closed form expression for

Jw,e. The sensitivity of this metric with respect to

p1 = Pr{zv(k) = 1} follows from Theorem 4.

For the distributed closed-loop system in Fig. 1 the

sensitivities with respect to the upset probabilities of

the PEs and RMUs can also be derived. A special case

is considered next.

Lemma 8: Consider an N PE × N RMU distributed

control system as in Fig. 1. Assume that all the

availability processes {zi(k), i = 1, . . . ,N} and

{z̃j(k), j = 1, . . . ,N} are i.i.d. and mutually indepen-

dent. Let pθ , Pr{zi(k) = 1} = pν = Pr{z̃j(k) = 1}.

Let p∗θ be such that (16) is MSS and Q∗ = Q(p∗θ). Then

p1 = 1 − (1 − (p∗θ)
N )2 and

dJw,e(pθ)

dpθ

∣
∣
∣
∣
p∗

θ

=

[
∂Jw(p0, p1)

∂p1
−

∂Jw(p0, p1)

∂p0

]∣
∣
∣
∣
(p∗

0
,p∗

1
)

·
(
2N(1 − p∗θ)(p

∗
θ)

N−1
)
.

Proof: Apply Theorem 4 and Lemma 7.

A numerical example is presented next.

Example 1: Consider the simplified longitudinal dy-

namics of the AFTI-F16 aircraft given in [22],

where the aircraft model has four states (change in

speed, angle of attack, pitch rate, and pitch angle)

and the output of interest is the pitch rate. The

sampled-data closed-loop system has sampling period

T = 0.004 sec., the pole placement controller

places the nominal continuous-time closed-loop poles

at {−0.2 ± j0.9798,−0.01 ± j0.0995}, and the ob-

server’s discrete-time poles were chosen to be five

times faster than the plant’s closed-loop poles. The

distributed control system consists of 2 PEs and 2

RMUs. When these four devices are allowed to ran-

domly fail independently then U consists of one interval

and (14) is MSS for p∗θ ∈ [0, 0.0174) when memoryless

actuators are used and p∗θ ∈ [0, 0.2461) when actuators

with memory are used. Figure 2 shows the analytic

steady-state mean error power for both actuator cases.

Assuming zero initial conditions for the closed-loop

and nominal state vectors in (16), Jw,e starts at zero

and is finite only for each value p∗θ that results in

MSS. By Theorem 4 this error metric is known to

be monotonically increasing since the nominal closed-

loop system (15) is asymptotically stable. Finally, the

sensitivity of the error metric with respect to pθ is

shown in Figure 3. Therefore, by using actuators with

memory, the closed-loop is MSS over a larger interval,

the error metric is smaller and has less sensitivity.

VI. CONCLUSIONS

Closed-form expressions for two performance met-

rics, the steady-state mean output power and mean

output energy, for an i.i.d. JLS were derived. It was

shown that the i.i.d. JLS can be used to analyze the per-

formance of a class of distributed control systems such

as those based on NASA’s SPIDER distributed fault-

tolerant architecture when the interconnected compo-

nents fail independently according to finite state i.i.d.

processes. The sensitivity of the steady-state mean out-

put power with respect to perturbations of the probabil-

ity distribution of the i.i.d. process driving the JLS was

also characterized. A numerical example was presented

that compared the steady-state mean output power and

its sensitivity for two closed-loop systems: one where

the actuators have memory and one where they do

not. This example showed the advantage of embedding

memory in actuators for fault-tolerant applications.
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