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An Alternate Geometric Perspective 
on MIMO Systems 

M. L. Nagurka1 and T. R. Kurfess1 

An alternate graphical representation of linear, time-invariant, 
multi-input, multi-output (MIMO) system dynamics is pro­
posed that is highly suited for exploring the influence of closed-
loop system parameters. The development is based on the 
adjustment of a scalar forward gain multiplying a cascaded 
multivariable controller/plant embedded in an output feed­
back configuration. By tracking the closed-loop eigenvalues 
as explicit functions of gain, it is possible to visualize the 
multivariable root loci in a set of "gain plots" consisting of 
two graphs: (i) magnitude of system eigenvalues versus gain 
and (ii) argument (angle) of system eigenvalues versus gain. 
The gain plots offer an alternative perspective of the standard 
MIMO root locus plot by depicting unambiguously the polar 
coordinates of each eigenvalue in the complex plane. Two 
example problems demonstrate the utility of gain plots for 
interpreting closed-loop multivariable system behavior. 

Introduction 
Since their introduction, classical control tools have been 

popular for analysis and design of single-input, single-output 
(SISO) systems. These tools may be viewed as specialized ver­
sions of more general methods that are applicable to multi-
input, multi-output (MIMO) systems. Although modern "state-
space" control techniques (relying on dynamic models of in­
ternal structure) are generally promoted as the predominant 
tools for multivariable system analysis, the classical control 
extensions offer several advantages, including requiring only 
an input-output map and providing direct insight into stability, 
performance, and robustness of MIMO systems. The under­
standing generated by these graphically based methods for the 
analysis and design of MIMO systems is a prime motivator of 
this research. 

An early graphical method for investigating the stability of 
linear, time-invariant (LTI) SISO systems was developed by 
Nyquist (1932) and is based on a polar plot of the loop trans­
mission transfer function. The MIMO analog of the Nyquist 
diagram is the multivariable Nyquist diagram which is used in 
conjunction with the corresponding multivariable Nyquist cri­
terion (Rosenbrock, 1974; Lehtomaki et al., 1981; Friedland, 
1986). This criterion is complicated in the MIMO case because 
it is expressed in terms of the determinant of the return dif-
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ference transfer function matrix ([I + G(s)] where G(s) is 
the open-loop system transfer function matrix, rather than just 
1 + g(s) for the SISO case where g{s) is the system transfer 
function). Despite the complication, significant research has 
supported the MIMO Nyquist extension for assessment of mul­
tivariable system stability and robustness (MacFarlane and 
Postlethwaite, 1977). 

The Bode plots (Bode, 1940) recast the information of the 
Nyquist diagram, with frequency extracted as an explicit pa­
rameter. The MIMO analog or extension of the classical Bode 
magnitude plot is the singular value Bode-type plot that shows 
maximum and minimum singular values of transfer function 
matrices as a function of frequency (Doyle and Stein, 1981). 
This generalized magnitude versus frequency plot is useful for 
analysis, providing performance insight in terms of command 
following, disturbance rejection, modeling error, space, and 
sensor noise sensitivity, as well as for design, in terms of fre­
quency shaping (Doyle and Stein, 1981; Safanov et al., 1981; 
Athans, 1982; Maciejowski, 1989). 

Although promoted as an SISO tool, Evans root locus 
method (Evans, 1954) is also extendable to MIMO systems 
since it depicts the trajectories of closed-loop eigenvalues (of 
either SISO or MIMO systems) in a complex plane. As such, 
it provides insight into stability and performance of the closed-
loop system. However, the generalization to multivariable root 
loci has not made as significant an impact as the MIMO ver­
sions of the classical frequency-domain tools for a number of 
reasons. First, in similarity to the multivariable Nyquist dia­
gram and Bode plot, the MIMO root locus plot does not, in 
general, follow the straightforward sketching rules applicable 
to SISO systems. Second, part of the complication of the 
MIMO root locus relates to the fact that "multivariable root 
loci live on a Riemann surface. . . as compared with the single-
input, single-output case where the root loci lie on a simple 
complex plane (a trivial, i.e., one sheeted, Riemann surface)" 
(Postlethwaite and MacFarlane, 1979). As a result, multivar­
iable root loci tend to have confusing patterns when drawn in 
a single complex plane, since loci can be multi-valued functions 
of gain. 

To aid the controls engineer in extracting more information 
from the multivariable Evans root locus plot, we propose a 
set of "gain plots" that provide a direct and unique window 
into the stability, performance, and robustness of LTI MIMO 
systems. A conceptual framework motivating the gain plots 
and a discussion of their applicability to SISO systems has 
been presented previously (Kurfess and Nagurka, 1991). 

Multivariable Eigenvalue Description 

Basic MIMO Concepts. A LTI MIMO plant can be rep­
resented in the standard state-space form as 

xp(t)=Apxp(t) + Bpu(t) (1) 

y(t) = Cpxp(t) + Opn(t) (2) 
where state vector xp is length n, input vector u is length m, 
and output vector y is length m. Matrices Ap, Bp, Cp, and Dp 
are the system matrix, the control influence matrix, the output 
matrix, and the feed-forward matrix, respectively, of the plant 
with appropriate dimensions. The plant input-output dynamics 
are governed by the transfer function matrix, Gp (s), 

GpW^CplsI-ApV'Bp + Vp (3) 
The system is embedded in the closed-loop configuration 

shown in Fig. 1, where the controller is a dynamic compensator, 
kGc{s), implying that each error signal is scaled by the same 
constant gain k. The controller transfer function matrix can 
be expressed as 

Gc(s)=Cc[sI-Ac]-iBc + Oc (4) 
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Fig. 1 Ml MO closed-loop negative feedback configuration 

where Ac, Bc, Cc, and Dc are the controller matrices repre­
senting its internal structure, in similarity to Eqs. (1) and (2), 
with the controller input being the error, e(t), and the con­
troller output being the plant input, u(/)-

The closed-loop transfer function matrix, G*(^), between 
the reference vector, r(t), of length m, and the output vector, 
y ( 0 , i s 

G*(s) = [l + kGp(s)Gc(s)riG„(s)Gc(s)k (5) 

In the MIMO root locus plot, the migration of the eigenvalues 
of G*(5) in the complex plane is graphed for 0 < k < oo. 
(By equating the determinant of [I + kGp(s)Gc(s)] to zero, 
the MIMO generalization of the SISO characteristic equation 
1 + kgp(s)gc(s) = 0 is obtained. The presence of the deter­
minant is the major challenge in generalizing the SISO root 
locus sketching rules to MIMO systems and complicates the 
root locus plot.) The closed-loop system dynamics can alter­
natively be cast in state-space form in terms of state vector 
\(t) = [xp(t) xc(t)]

r. The closed-loop system matrix then 
becomes 

A* = 
-BpD.MVT 
-BCA:M-IC„ 

'Cp BpQ-BpD^M- 'DpC, ' 
A,-BrA:M~ DPCC 

(6) 

where M = [I + DpDck]. The eigenvalues of the closed-loop 
system,5 = X; = eig(A') (i = 1,2, . . . , «) , may be computed 
numerically from Eq. (6). In the examples, the loci of the 
eigenvalues are calculated as k is monotonically increased from 
zero. 

High Gain Behavior. As the gain is swept from zero to 
infinity, the closed-loop eigenvalues trace out "root loci" in 
the complex plane. At zero gain, the poles of the closed-loop 
system are the open-loop eigenvalues. At infinite gain some 
of the eigenvalues approach finite transmission zeros, defined 
to be those values of s that satisfy the generalized eigenvalue 
problem. In the absence of pole/zero cancellation, the finite 
transmission zeros are the roots of the determinants of Gp(s) 
and Gc(s). Algorithms have been developed for efficient and 
accurate computation of transmission zeros (Davison and 
Wang, 1974; Laub and Moore, 1978; Westreich, 1991). 

The eigenvalues can be considered as always migrating from 
the open-loop poles to their matching transmission zeros 
(Friedland, 1986). However, those eigenvalues that do not have 
matching zeros in the finite part of the s-plane are considered 
to have matching zeros at infinity. In the global SISO per­
spective, whenever there exists an excess of poles over zeros, 
the eigenvalues migrate toward infinity in a Butterworth con­
figuration. If the excess of poles over zeros is greater than two 
for an SISO system the closed-loop eigenvalues must become 
unstable as k — oo. A single Butterworth configuration at high 
gain is generally not seen in the MIMO case; rather, multiple 
Butterworth configurations are generated. It can be shown that 
for a square system with m inputs, m outputs, and m or more 
eigenvalues migrating toward infinity, m high gain Butterworth 
patterns occur (on m different Riemann sheets) (Kwakernaak, 
1976; Shaked,1978; Thompson et al., 1982). These patterns 
do not necessarily demonstrate criteria of the well known SISO 
Butterworth configurations (e.g., the angle criterion). The 

MIMO Butterworth patterns do, however, reveal the typical 
Butterworth magnitude characteristic demonstrated for SISO 
systems (Kurfess and Nagurka, 1992). 

MIMO Gain Plots. Just as the Bode plots embellish the 
information of the Nyquist diagram by exposing frequency 
explicitly in a set of magnitude versus frequency and angle 
(phase) versus frequency plots, it follows that a pair of gain 
plots (Kurfess and Nagurka, 1991) can enhance the standard 
root locus plot. As the gain-domain analog of the frequency-
domain Bode plots, the gain plots explicitly depict the eigen­
value magnitude versus gain in a magnitude gain plot, and the 
eigenvalue angle versus gain in an angle gain plot. In similarity 
to the Bode plots, the magnitude gain plot employs a log-log 
scale whereas the angle gain plot uses a semi-log scale (with 
the logarithms being base 10). Although gain is selected as the 
variable of interest in the gain plots, it should be noted that 
any scalar parameter may be used in the geometric analysis, 
leading to the more generic idea of parametric plots. 

Gain plots can be drawn for both SISO and MIMO systems. 
In MIMO systems it is assumed that a single scalar gain am­
plifies all controller/plant inputs. For such systems, inspection 
of the magnitude and angle gain plots enables one to uniquely 
identify locus branches as a function of gain. As such, gain 
plots are a natural complement to multivariable root locus 
plots, where uncharacteristically confusing eigenvalue trajec­
tories can result from being drawn in a single complex plane. 
Furthermore, it can be shown that the slopes of the lines in 
the gain plots are proportionally related to the root sensitivity 
function (Kurfess and Nagurka, 1992). 

MIMO Examples 
This section presents two multivariable examples. The first 

example introduces the concept of the gain plots and dem­
onstrates the insight they offer by "unwrapping" the multi-
variable root locus and exposing unambiguous behavior. The 
second example highlights the power of the gain plots in re­
vealing typical multivariable properties, such as high gain But­
terworth patterns. 

Example 1: Coupled MIMO Example. The forward loop 
dynamics of this example are given by the transfer function 
matrix 

G„(s)Gc{s) = 

(s-l) 
(s+l)(s + 2) 

- 6 

(s+l)(^ + 2) 

(s-2) 
(s+\)(s + 2) (s+\){s + 2) 

(7) 

(Equation (7) is used as an example by Postlethwaite and 
MacFarlane (1979) and later by Yagle (1981).) The MIMO root 
locus diagram, shown in Fig. 2, depicts two eigenvalue tra­
jectories beginning at 5 = - 1 and s = -2. The eigenvalue 
at s = - 2 follows a trajectory along the negative real axis. 
The eigenvalue at s - - 1 initially migrates to the right, pro­
ceeding to 5 = 1/24 = 0.042, and then reverses, moving back 
to the left of the imaginary axis. Both eigenvalues are always 
purely real. Notice that Fig. 2 does not follow the rules of the 
familiar SISO root locus, and is counter-intuitive. 

The gain plots presented in Fig. 3(a, b) show that gain values 
in the range 1 < k < 2 yield an unstable closed-loop system. 
The stable-unstable transitions are highlighted by a 180 deg 
jump as the eigenvalue passes through the origin. In contrast, 
the standard root locus plot is confusing, with two Riemann 
surfaces collapsed into a single complex plane. Since the root 
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P!g, % Root loeus plot of example 1 

Re[s: 

locus plot is drawn in two dimensions, branch points may be 
generated by more than one gain value and may not be uniquely 
presented. The gain plots, in contrast, display eigenvalue mag­
nitude and angle information in an unambiguous and concise 
manner. 

Example 2; Aircraft Vertical Plane Dynamics. The state 
space model (from Hung and MacFarlane (1982) and studied 
in detail by Maciejowski (1989)), 
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Fig. 3 (a) Magnitude and (b) angle gain plots of example 1 
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Fig. 5 (a) Magnitude and (b) angle gain plots ot example 2 
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1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 

(9) 

represents a linearized model of the vertical plane dynamics 
of an aircraft. The controller is assumed to be Qc(s) = I. The 
system, with three inputs, three outputs and five state variables, 
has no finite transmission zeros and has open-loop eigenvalues 
of X, = 0, -0.7801 ±1.0296/, -0.0176±0.1826/'. The eigen­
value at the origin indicates that the open-loop system is mar­
ginally stable. The trajectories of the closed-loop system 
eigenvalues may be graphically displayed in the MIMO root 
locus plot shown in Fig. 4. However, it is not clear if there 
exist gains for which all of the eigenvalues reside in the left-
half plane, implying that the system is stable. 

The gain plots for this system, appearing in Fig. 5(a, b), 
show that as the gain increases the eigenvalue at the origin 
initially migrates along the positive real axis (i.e., z s = 0 
deg), indicating instability, until it reaches a maximum value 
of s « 0.010 at a gain k » 0.018. As the gain increases, this 
real eigenvalue reverses direction, crosses the imaginary axis 
at a gain k ~ 0.043, and continues to move along the negative 
real axis (i.e., AS = 180 deg). However, at k « 0.043 one 
pair of complex conjugate eigenvalues has already moved into 
the right-half plane (crossing the imaginary axis at the slightly 
lower gain of k ~ 0.031), as shown in the angle gain plot of 
Fig. 5(b). In summary, the gain plots provide an unambiguous 
means by which stability questions can be answered by in­
spection. In this case, the system is unstable for all gains. 

The gain plots highlight several other important features. 
For example, they show that the gains corresponding to the 
complex conjugate eigenvalue pairs break into the real axis 
and then proceed toward ± oo. Complex conjugate eigenvalues 
are shown as symmetric lines about either the 180 or 0 deg line 
with equal magnitudes. Purely real eigenvalues possess equal 
angles (180 or 0 deg) but distinct magnitudes. This behavior 
is demonstrated in Fig. 5(a, b), from which the gains at the 
breakpoints may be determined directly. 

The rates at which the eigenvalues increase toward infinite 
magnitude is seen in the magnitude gain plot of Fig. 5(a). The 
single eigenvalue that begins at the origin proceeds toward 
infinity (along the negative real axis) at a rate proportional to 
k as evident by the high gain magnitude gain plot slope of 
unity. This slope is characteristic of a first order Butterworth 
pattern. The two complex conjugate eigenvalue pairs proceed 
toward infinity at a rate proportional to kxn (shown as a high 
gain magnitude gain plot slope of 1/2), indicative of a second 
order Butterworth pattern (Kurfess and Nagurka, 1992). 

From Fig. 5(a), the two complex conjugate eigenvalue pairs 
at high gains have slope values of 1/2. As k — oo, this group 
of four parallel lines separates into two colinear sets. An in­
teresting feature is that the two identical lines are comprised 
of an eigenvalue magnitude from each of the original complex 
conjugate pairs. This phenomenon is not apparent from the 
MIMO root locus, although it must occur due to the location 
of the centers of gravity for the two second order Butterworth 
patterns. Each set of colinear trajectories represents a Butter­
worth configuration. 

Conclusions 
In typical MIMO root locus plots trajectories may be cam­

ouflaged as branches may overlap. Gain plots are promoted 
as a means to "untangle" MIMO eigenvalue trajectories. The 
major enhancement is the visualization of eigenvalue trajec­
tories as an explicit function of gain, assumed here to be the 
same static gain applied to all error signals. 

The perspective presented in this note is intended to com­

plement the many tools available to the controls engineer. In 
particular, for MIMO systems the gain plots provide: (/) a 
unique description of eigenvalues and their trajectories as a 
parameter, such as gain, is varied, (ii) a geometric depiction 
of the Riemann sheets at high gain, and (Hi) a rich educational 
tool for conducting parametric analyses of multivariable sys­
tems. 

Research efforts, currently underway, may shed additional 
light on gain plots for multivariable systems. In addition, work 
by MacFarlane and'Postlethwaite (1977, 1979) and Hung and 
MacFarlane (1982) on relating characteristic frequency plots 
to gain domain geometry promises closer connections between 
gain plot methods and singular value frequency methods. 

In conclusion, gain plots enrich the multivarible root locus 
plot in much the same way that singular value frequency plots 
are an alternate and extended presentation of the multivariable 
Nyquist diagram. Their use in conjunction with the multivar­
iable root locus provides a valuable geometric perspective on 
multivariable system behavior. 
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A New Plug-In Adaptive Controller 
for Rejection of Periodic Disturbances 

Jwusheng Hu1 and Masayoshi Tomizuka2 

In this paper, an adaptive digital algorithm for rejecting pe­
riodic disturbances is proposed. Modified from the adaptive 
tracking controller [4], the controller is constructed in a "plug-
in " manner, i.e., it can be added to an existed feedback control 
system without altering the original closed-loop configuration. 
It is shown that the controller can reject disturbances at selected 
frequencies independently. Furthermore, since the controller 
only deals with phase and gain of the error signal, no structural 
information about the plant is required. The controller is im­
plemented on a disk drive system for track following. The 
result shows that by rejecting the disturbance up to four times 
of its fundamental frequency, the tracking error is reduced 
substantially. 

1 Introduction 
To reject periodic distrubances in linear time invariant sys­

tems, repetitive controllers [2, 3, 6, 10] proved to be efficient 
and effective. While many applications [7, 9, 11, 12] about 
repetitive control systems have been studied, certain issues such 
as unmodeled dynamics must be carefully handled to prevent 
instability. In view of the discrete time "internal model" [10], 
the repetitive controller generates control signals consisting of 
./V frequencies, where TV is the period. It has been shown in [4] 
that by treating each frequency separately, the structural in­
formation about the plant is not required. However, controllers 
presented in [4] are designed to fulfill the tracking performance 
specification. For disturbance rejection, it is not possible to 
use those controllers since there is no measurement of dis­
turbances. In this paper, an alternative implementation of the 
adaptive tracking controller is presented. The idea of this par­
ticular controller structure is adopted from the prototype plug-
in repetitive controller developed in [1]. In [1], the plug-in 
module can be added to any existing control loop to perform 
repetitive tracking or disturbance rejection. For example, it 
can be used to enhance the performance of a system under 
analog servo loop without replacing electrical elements. An­
other feature is that turning on/off the plug module will not 
affect the original controller structure. These appealing ad-
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vantages make the plug-in type controller useful in applications 
such as disk drive control system. 

An implementation example of the plug-in type adaptive 
controller on a disk drive system is presented in this paper. 
Due to imperfect disk shape, the read/write head of the drive 
has to follow tracks which are not perfectly circular [8]. Hence, 
compensators designed for regulation cannot achieve asymp­
totic tracking of the actual track. The offset is periodic with 
frequencies appearing at integer-multiple of the fundamental 
harmonic (rotating speed of the disk). Both internal and ex­
ternal based repetitive controllers have been implemented on 
this system [9] successfully. However, the performance of these 
algorithms depends on the accuracy of a system model. At the 
mass-production stage, fine tuning of the controller may still 
be required to accommodate differences among products. For 
example, unless the ^-filter is added, the repetitive controller 
is very sensitive to unstructured model uncertainty. Conversely, 
the adaptive controller is capable of adjusting its parameters 
according to the system's frequency response. It is robust as 
long as the frequency response is not drastically changed. Also, 
after going through every track, which can be done during the 
manufacturing stage, the eccentricity of each track can be 
memorized and used as an initial guess so that a fast conver­
gence can be achieved. 

In order to keep up with the disk speed (60 Hz), the algorithm 
is implemented by fixed point calculations. Furthermore, the 
parallel implementation ability of the proposed controller is 
demonstrated by running the control algorithm in two com­
puters simultaneously. 

2 The Plug-In Module 
In this section, we consider the case of a continuous plant 

under a nominal feedback compensation. Let Gp(s) be the 
plant and Gc(s) be the feedback controller. The structure of 
the overall control system is depicted in Fig. 1. In Fig. 1, d\ 
can be an unknown reference signal and d2 is the disturbance 
at the input side of the system. The discrete dynamic equation 
of Fig. 1 is 

e(k)=Gs(z-l)u(k) + G1(z-l)di(k) + G2(z-])d2(k) (1) 

where Gs(z~^), G, (z~l), and G2(z~') are z-transforms of the 
closed-loop transfer functions. It is assumed that the nominal 
compensated system is stable. Furthermore, both dx(k) and 
d2(k) are periodic with the same period N. Since the plug-in 
module does not change the closed-loop transfer function of 
the nominal system, Eq. (1) can be rewritten as 

e(k) = G,(z~i)u(k) + w{k) (2) 
where w(k), ignoring its transient, is also periodic with period 
N. So it can be represented as 

w(k) = J]wne
j""k,o>n = ̂  (3) 

As a result, if the input is designed to be 
N-l 

« < * ) = - E (A^jB^wy""" 
11 = 0 

where 

An+jBn=\/Gs(e
i"n), 

the error e(k) will reach zero asymptotically provided that 
Gs(e"°") ^ 0. These formulations are essentially the same as 
those in [4] except that in [4], the reference signal is known 
while in Eq. (3), w„'s are unknown in advance. However, the 
theories developed in [4] can still be applied here with some 
modifications. Let w(k) consist of only one frequency, i.e., 

w(k) = w„el""k+tine-J','"k 

Since w(k) is unknown, the input is then designed as 
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