
Purity in Erlang

Mihalis Pitidis1 and Konstantinos Sagonas1,2

1 School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

2 Department of Information Technology, Uppsala University, Sweden
mpitid@gmail.com, kostis@cs.ntua.gr

Abstract. Motivated by a concrete goal, namely to extend Erlang with the abil-
ity to employ user-defined guards, we developed a parameterized static analysis
tool called PURITY, that classifies functions as referentially transparent (i.e., side-
effect free with no dependency on the execution environment and never raising
an exception), side-effect free with no dependencies but possibly raising excep-
tions, or side-effect free but with possible dependencies and possibly raising ex-
ceptions. We have applied PURITY on a large corpus of Erlang code bases and
report experimental results showing the percentage of functions that the analysis
definitely classifies in each category. Moreover, we discuss how our analysis has
been incorporated on a development branch of the Erlang/OTP compiler in order
to allow extending the language with user-defined guards.

1 Introduction

Purity plays an important role in functional programming languages as it is a corner-
stone of referential transparency, namely that the same language expression produces
the same value when evaluated twice. Referential transparency helps in writing easy
to test, robust and comprehensible code, makes equational reasoning possible, and aids
program analysis and optimisation. In pure functional languages like Clean or Haskell,
any side-effect or dependency on the state is captured by the type system and is reflected
in the types of functions. In a language like ERLANG, which has been developed pri-
marily with concurrency in mind, pure functions are not the norm and impure functions
can freely be used interchangeably with pure ones. Still, even in these languages, being
able to reason about the purity of functions can prove useful in various situations.

This paper discusses properties that functions must satisfy in order to be classified as
having a certain level of purity, and describes the design and implementation of a fully
automatic parameterized static analyzer, called PURITY, that determines the purity of
ERLANG functions. Although the analysis is simple and very conservative, we were able
to determine the purity of roughly 90% of the functions in the code bases we tested.

As a practical application, our analysis has been integrated in a development branch
of the ERLANG compiler, allowing functions that the analyzer determines as pure to
be used in guard expressions, something not previously possible in ERLANG and, for
many years now, one of the most frequent user requests for extending the language. Fur-
thermore, our analysis could make way for some types of optimisations in the ERLANG

compiler including common subexpression elimination, useless call elimination, defor-
estation and automatic parallelization.

J. Hage, M.T. Morazán (Eds.): IFL 2010, LNCS 6647, pp. 137–152, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357302624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

138 M. Pitidis and K. Sagonas

The contributions of this paper are as follows:

– we present a relatively simple but parameterized static analysis that can determine
the purity of ERLANG functions at different levels;

– we give detailed measurements of percentages of functions that our analysis clas-
sifies as definitely pure; to the best of our knowledge this is the first time that
such numbers are reported in the literature (especially for a dynamically typed lan-
guage); and

– we discuss how the analysis has served as a basis for allowing the ERLANG lan-
guage to be extended with the ability to employ user-defined guards.

The next section reviews the ERLANG language and aspects of its evolution and
implementation which are relevant to the topic of the paper. Section 3 describes the
analyses we employ to determine the purity of ERLANG functions, followed by a Sec-
tion 4 which presents experiences from running these analyses on a large corpus of
ERLANG code bases. Section 5 describes how the analysis information can be used to
allow for user-defined guards in ERLANG and the paper ends with reviewing purity in
other languages (Section 6) and some concluding remarks.

2 Erlang: The Language and Its Features

ERLANG is a concurrent functional programming language with dynamic types. What
sets ERLANG apart from other functional languages is its support for concurrency,
fault tolerance and distributed programming. Other notable features include hot-code
reloading whereby the code of some module of an executing ERLANG program can be
replaced with a newer version of that module without interrupting the program’s execu-
tion. The language also provides soft real-time guarantees.

The aforementioned features make ERLANG ideal for building highly scalable, reli-
able and robust systems. While initially conceived to develop software for telecommu-
nication systems, ERLANG has outgrown this particular niche and with the advent of
the multi-core era it is being used for the development of a growing number of diverse
software applications. This includes web and chat servers, distributed document stores,
and network servers.

ERLANG employs a mixture of purely functional programming, in the form of im-
mutable data structures and single assignment variables, combined with a limited set of
impure functions and expressions, in order to support concurrency and distribution. In
particular, ERLANG implements the actor model of concurrency [1]. Its implementa-
tion can be summarised as concurrency based on lightweight processes communicating
via asynchronous message passing with copying semantics. This helps express complex
concurrency schemes in a more natural and declarative manner.

Impurities in ERLANG originate from particular expressions and functions. An ex-
ample of the former is the receive expression which is used to extract messages from
the mailbox of a process. For examples of the latter, we first need to mention the gen-
eral concept of built-in functions, or BIFs as they are usually known in the ERLANG

community. BIFs are functions native to the ERLANG virtual machine, implemented
in the language the VM is written in, in this case C. Besides some primitive operations

Purity in Erlang 139

which otherwise cannot be expressed in pure ERLANG, BIFs often substitute commonly
used functions for optimisation purposes. As it happens, many BIFs are impure, usually
because they interface with the runtime system in various ways.

Like many functional languages, ERLANG supports pattern matching, a way of match-
ing a sequence of values against a corresponding sequence of patterns. The result, if suc-
cessful, is a mapping of variables from the first pattern that matches to the various terms
in the sequence of values. Pattern matching plays a central role in expressing control
flow in ERLANG. Additional constraints can be placed on pattern matches with the use
of guard tests. Guard tests consist of boolean expressions which are evaluated for each
pattern matched and only if their result is true will the match be successful. With guards
it is possible to extend the expressiveness of pattern matching significantly, e.g. to add
support for value ranges for numbers, or tests for abstract values like process identifiers
and function objects.

However, ERLANG currently imposes strict limitations on guard tests. Specifically,
they must lack side-effects and execute in bounded time, preferably constant. To this
end, guards are limited by the ERLANG language to a small predefined set of built-in
functions also known as guard BIFs [2, § 6.20, p. 103].

The example in Listing 1 showcases the use of pattern matching in ERLANG and
how it is further extended with guard tests. This combination allows for concise and
declarative code, offering a significant boost in programmer productivity.

area({square, Side}) when is_integer(Side) ->

Side * Side;

area({circle, Radius}) when is_number(Radius) ->

3.14 * Radius * Radius; %% well, almost

area({triangle, A, B, C}) ->

S = (A + B + C) / 2,

math:sqrt(S * (S-A) * (S-B) * (S-C)).

Listing 1. Examples of pattern matching and guard tests

As mentioned, ERLANG is dynamically typed. Furthermore, the ERLANG compiler
currently does not perform any form of type analysis. This has certain implications on
PURITY, which are discussed in detail in Section 3.

3 Purity Analysis in Erlang

In order to determine the purity of ERLANG functions we designed and implemented
a fully automated static analysis which operates on ERLANG source code (or compiled
bytecode files which include debugging information). The analysis is flexible and al-
lows the user to select between different purity criteria, depending on the intended use
of the analysis’ results.

3.1 Flavours of Purity

We should first clarify what we mean by pure and impure functions. A pure function is
one that is referentially transparent, i.e., calls to the function can be replaced by their

140 M. Pitidis and K. Sagonas

return values without changing the semantics of the program in any way in any execu-
tion environment. This is the strongest definition of purity that our analysis supports. In
addition, it offers a choice between a few progressively weaker criteria, depending on
the intended use of the analysis’ results.

In general, a function may lose its referential transparency and be classified as im-
pure: a) either due to modifying the execution environment in some way other than
returning a value, or b) by depending on the environment of execution in some way
other than its arguments. A function that falls into the first category is said to have side-
effects. Such a function will always be considered impure by our analysis. Regarding
the second category, certain uses of the analysis may choose to ignore such violations
of referential transparency and force the analysis to consider functions which fall in it
as pure. We shall elaborate on this design decision in a later section.

Besides the fundamental categories described above, our analysis distinguishes be-
tween yet another condition of purity, one that is more specific to ERLANG. This con-
dition concerns exceptions, which represent a non-local return out of a function and
are somewhat problematic in their classification. First of all, it is not clear whether ex-
ceptions break referential transparency. While we can no longer replace the function
by its value, we can still replace it by an exception raising expression, preserving the
semantics of the program. This is not the whole truth however, since exceptions usually
carry context sensitive information, specifically the series of function calls leading up
to them, otherwise referred to as a stack trace. In the case of ERLANG, exceptions are
regular terms that can be pattern matched on. The stack trace may or may not be part
of the exception value, depending on the expression used to catch it. The older catch
expression converts exceptions to tuples which often contain this stack trace, so using
catch will break referential transparency. The newer and more robust try-catch con-
struct [4] however, does not directly capture the stack trace, which is otherwise available
through a specific ERLANG built-in function, aptly named get stacktrace(). So, in
the absence of a call to this function, try-catch blocks can be considered pure.

Still, when it comes to certain uses of the analysis’ results — such as optimisations
like common subexpression elimination — it makes sense to consider all exceptions as
impure. This is why our analysis is flexible and parameterized in this respect as well.

A final note regarding exceptions concerns the semantics of process termination in
ERLANG. If a process is terminated by an exception which is not a member of the exit
class, then this event is reported by the ERLANG runtime system to the error logging
service [4, § 2.7]. We choose to ignore this potential side-effect since it does not directly
influence the execution of the program, but primarily because we wish to maintain a
conceptual separation between exceptions and side-effects. This is important, as we
will see in Section 5 that exceptions can be safely ignored in certain contexts.

To sum up, the analysis we will describe in the rest of this section will classify
functions as impure based on three progressively stronger criteria of impurity, namely
considering a function as impure if it:

1. contains side-effects — this is the default;
2. contains no side-effects but has dependencies on the environment; and
3. contains no side-effects, has no dependencies on the environment, but possibly

raises exceptions.

Purity in Erlang 141

3.2 The Core of the Analysis

Our analysis is relatively straightforward. It operates on a set of ERLANG modules
which are first compiled to CORE ERLANG [3] (an intermediate, simpler representation
of ERLANG source code). The analysis consists of two distinct stages: an information
gathering and an information propagation stage.

The first stage collects necessary information by traversing the Abstract Syntax Tree
of each function and constructs its dependency set: the set of other functions it calls
somewhere in its body. In our implementation, functions are identified with triples of
the form {m, f, a} (where m is a module name, f is a function name, and a is its arity).
However, for convenience in this section we will use shorter identifiers for functions:
f0, f1, . . . for those that are analyzed and b0, b1, . . . for those that are BIFs or previously
analyzed and their purity level is a priori known to the analysis.

All analysis information is kept in a lookup table which is a hash table whose keys are
the function identifiers f and contains as values the purity level pf of each f and Df the
dependency set of f . Purity levels are elements from the domain {s, d, e, p} representing
functions which contain side-effects (s), are side-effect free but have a dependency on
the environment (d), are side-effect free and independent from the environment but
possibly raise exceptions (e), or are pure (p). The analysis domain is thus ordered as:
s > d > e > p. We will denote by sup(pf1 , pf2) the supremum of purity levels pf1
and pf2 and by sup(F) the supremum of purity levels of a set of functions F . Note
that the purity level of a function is fully determined only when its dependency set
is empty; for a function with a non empty dependency set Df , its purity level is still
conditional on the functions which appear in Df . As we will see, during the information
propagation stage of the analysis, dependency sets will be decreasing while purity levels
will be increasing. If a function’s purity level ever reaches the maximal value (s), its
dependency set is not needed anymore and is removed by the algorithm.

Let us see the analysis on an example; cf. Figure 1(a). In the first stage, the analysis
has scanned the code of five functions f0 . . .f4 and has constructed their dependency
sets. In our example, function f2 depends on the built-in function b1, while f4 depends
on functions f1 and f2 which will be analyzed and on function f5 which was not given
to the analysis. The purity level of all built-in functions is a priori known to the analysis;
see the bottom part of the tables in Fig. 1. The purity level of all functions that will
be analyzed is initialized to p. The analysis maintains as its working set the functions
whose purity level is fully determined (i.e. those with empty dependency sets). For each
of them it propagates its purity level to functions that depend on it, “contaminating”
them with their (im)purity level in the process. After having done so, it also removes
the function from the dependency set or completely removes the dependency set if the
function it contaminated has reached the highest level of impurity (s). In our example,
functions with known purity level are the two BIFs and by propagating their information
we end up with the table of Fig. 1(b). Note that Df3 has been set to empty because it has
reached the highest level of impurity. Functions f2 and f3 join the working set and their
use by the information propagation stage results in the table of Fig. 1(c). At this point
the working set of the analysis is empty, but there are still some functions whose purity
level is still conditional on functions which are part of the analysis. To achieve further
progress the analysis finds an independent strongly connected component (SCC), i.e.,

142 M. Pitidis and K. Sagonas

f pf Df

f0 p f1
f1 p f0
f2 p b1
f3 p b0, f1, f2
f4 p f1, f2, f5
b0 s
b1 d

b0,b1−−−→

f pf Df

f0 p f1
f1 p f0
f2 d
f3 s
f4 p f1, f2, f5
b0 s
b1 d

f2−−→

f pf Df

f0 p f1
f1 p f0
f2 d
f3 s
f4 d f1, f5
b0 s
b1 d

f0,f1−−−→
SCC

f pf Df

f0 p
f1 p
f2 d
f3 s
f4 d f1, f5
b0 s
b1 d

f1−−→

f pf Df

f0 p
f1 p
f2 d
f3 s
f4 d f5
b0 s
b1 d

(a) (b) (c) (d) (e)

Fig. 1. Illustration of the analysis algorithm on an abstract example

a set of functions mutually dependent on each other, but on no other functions outside
the SCC, sets their purity level to the supremum of their purity levels, and simplifies
the dependency sets of these functions. In our example, functions f0 and f1 form such
an SCC. (If functions in the SCC had different purity levels, which is not the case here,
they would all collapse to their supremum at this point.) Simplifying their dependency
sets results in the table of Fig. 1(d) and adds f0 and f1 to the analysis’ working set.
After a further simplification using f1 (f0 has no effect here), the final result of the
analysis on our example is shown in Fig. 1(e).

We can now present the information propagation stage of the analysis in more detail.
Algorithm 1 shows its pseudocode which is self-explanatory. What is not shown in
that pseudocode is that, for efficiency reasons, the actual implementation maintains a
working set. Whenever a function’s dependency set becomes empty, the function is
added to this working set. Another data structure maintained by the analysis is the
active function dependency graph: its nodes are functions with non-empty dependency
sets and its edges are formed by the elements in these dependency sets. This graph is
used to find independent SCCs whenever needed.

Algorithm 1. The information propagation stage of the analysis

repeat
for each function e in the lookup table with De = ∅

for each function f where e ∈ Df

pf := sup(pf , pe)
if pf = s then Df := ∅ else Df := Df \ {e}

F := an independent strongly connected component
for each f in F

pf := sup(F)
Df := Df \ F

until there are no more changes to the lookup table

The result of the analysis is left in the lookup table where the purity level of some
functions may still be conditional; i.e. their dependency sets may still contain some
elements, like the dependency list of function f4 in Fig. 1(e). Note that in this way the
analysis is also able to handle incomplete programs. Subsequent uses of the analysis’
results must typically consider this information in a conservative way: all functions with
unknown dependencies are viewed as belonging to the highest level of impurity.

Purity in Erlang 143

3.3 Higher Order Functions

Higher order functions, i.e. functions that return other functions or accept functions as
arguments, are common in functional programming languages. Considering the latter
type of higher order functions, if a call is made to one of the arguments in the body of
the higher order function, it follows that its purity depends on that argument, and cannot
be resolved to a fixed value. The only exception to this is when the function depends on
other impure functions as well.

Let us consider the example of a higher order function, h, which just makes a call
to its first argument. Clearly this has an unfixed purity. But what can be said about a
function g, which depends on h? This function would either be a higher order function
itself, taking another function as argument, and passing it along to h, or it would pass a
concrete function f , as argument to h. It is thus possible in the second case —assuming
the purity of f is known— to resolve the purity of this specific instance of h and conse-
quently that of g. Listing 2 shows such an example; the comments in the code provide
the necessary explanations.

%% A higher order function which depends on its first argument.

fold(_Fun, Acc, []) -> Acc;

fold(Fun, Acc, [H|T]) -> fold(Fun, Fun(H, Acc), T).

%% A pure closure is passed to a higher order function

%% so function g1/0 will be determined pure by the analysis.

g1() -> fold(fun erlang:’*’/2, 1, [2, 3, 7]).

%% An impure closure is passed to a higher order function

%% so function g2/0 is classified as impure.

g2() -> fold(fun erlang:put/2, computer, [ok, error]).

Listing 2. An example showing the treatment of higher order functions

This is a fairly simple example, but it manages to capture the most common use of
higher order functions in ERLANG. To handle higher order functions the implementa-
tion extends the dependency sets to also contain information about argument positions
that may contain function closures that will be called. Another important case, albeit a
less frequent one, has to do with higher order functions which do not call their argu-
ments directly, passing them instead to other higher order functions. This way, multiple
levels of indirection are present between a call with a concrete function as argument
and the actual higher order function which will end up using it. This is better illustrated
by way of an example, like the one in Listing 3. To detect such cases and analyse them
correctly in the absence of type information, we employ dataflow analysis. The current
dataflow analysis we use is pretty simple and therefore not so accurate. Its details are
beyond the scope of this paper. We note however that such cases account for less than
10% of the functions in the code bases we examined (cf. Sect. 4).

Another limiting factor is the fact that functions may be passed as parts of more
complex data structures instead of directly as arguments. Common cases include, but

144 M. Pitidis and K. Sagonas

%% One level of indirection: it is not apparent this is a higher

%% order function since no direct call to its argument is made.

fold1(Fun, Acc, Lst) ->

fold(Fun, Acc, Lst).

%% Two levels of indirection. The function argument has also

%% changed position.

fold2(Lst, Fun) ->

fold1(Fun, 1, Lst).

g3() -> fold1(fun erlang:put/2, ok, [computer, error]).

g4() -> fold2([2, 3, 7], fun erlang:’*’/2).

Listing 3. An example of indirect higher order functions

are not limited to lists, tuples and records. In fact, most of these cases require runtime
information in order to be properly resolved.

3.4 Implementation Aspects

Some aspects relating to the implementation of PURITY deserve further elaboration.
The most important is the way the analysis is bootstrapped, in other words, the way
we obtain the initial set of functions whose purity is predefined. This set includes all
functions built-in to the ERLANG runtime system. Since these are implemented in C
instead of ERLANG, they cannot be analysed. Therefore, it was necessary to extract
them from the ERLANG runtime system and hard-code their purity. The values assigned
were derived from their semantics, not the actual implementation.

Beyond this, it is possible to bootstrap the analysis with a more generalised mech-
anism, the persistent lookup table or PLT for short. The PLT is used to store all the
information necessary to repeat the analysis as well as cached versions of the analysis’
results for a given set of modules. This way, the user does not have to re-analyse every
library his application depends on. The PLT also plays an important role in contexts
were only one module can be analysed at a time but information regarding functions in
other modules is necessary.

4 Experiences

In the course of testing our implementation diverse code bases were analysed providing
some insight as to the current practices of ERLANG programmers. The applications
analysed (Table 1) were primarily high profile open source projects.

Table 2 includes further information about each application. Table 3 presents the
results of the analysis with the default options. Tables 4 and 5 present alternate runs of
the analysis with progressively stronger purity criteria.

The columns of Table 3 labeled Pure and Impure are self-explanatory. The column la-
beled Undetectablerepresents the percentage of functions which cannot be analysed stati-
cally. These include functions like erlang:apply(M, F, Args)which applies function

Purity in Erlang 145

Table 1. Brief description of the applications which were analysed

Erlang/OTP The latest open source ERLANG distribution; among other things, it includes
the bytecode and native code compilers, the standard library, static analysis
tools like DIALYZER, an XML parsing library, and the Open Telecom Plat-
form with its various networking applications

Wings3D A subdivision modeler, used for generation of polygon models in computer
graphics

CouchDB A distributed, fault-tolerant and schema-free document oriented distributed
database system

ejabberd A server for the Extensible Messaging and Presence Protocol (XMPP), an
open standard used primarily for instant messaging

Yaws A high performance HTTP 1.1 server
ibrowse An HTTP 1.1 client, also a dependency of Yaws
erlssom Another XML parsing library and dependency of Yaws
purity The analyzer described in this paper

Table 2. Details of analysed applications

Application Version Modules Functions LOC
Erlang/OTP R14A 1,900 120,982 742,681
Wings3D 1.2 168 9,523 78,996
ejabberd 2.1.4 149 5,186 53,881
CouchDB 0.11.0 97 2,509 22,938
Yaws 1.88 42 1,563 19,438
Erlsom 1.2.1 18 568 9,562
ibrowse 1.6.1 7 227 2,683
purity 0.2 12 517 3,208

F in module M to some argument list of terms Args. Since this list can be of any length we
cannot know the exact arity of the function being called at compile time. The percentage
also includes functions which depend on such functions or on functions whose source
code was not available during the analysis. The Limited column represents the percent-
age of functions which could not be conclusively analysed because of limitations in our
implementation. Finally, the last column shows the CPU time required to analyse each
application (in minutes/seconds), as reported by the erlang:statistics/0 function.
The tests were run on a GNU/Linux system, equipped with an Intel Core 2 Duo processor
clocked at 1.6GHz and 2 GBs of RAM. Currently, our analysis only takes advantage of
the second core during the information gathering stage by spawning a separate process
(up to the number of available cores) for each module which is analyzed.

To better interpret the above results one should keep the following in mind. First of
all, ERLANG is primarily a concurrent language and is thus expected of most applica-
tions to make extended use of concurrency primitives which render the corresponding
functions impure. Furthermore, it only takes one impure function call to characterise all
dependent functions as impure. Finally, although purity may initially seem as something
easy to detect, reasoning about the purity of functions is not always straightforward
— at least not as easy as the average programmer naı̈vely expects — according to our

146 M. Pitidis and K. Sagonas

Table 3. Analysis results with side-effects impure

Application Pure Impure Undetectable Limited Time
Erlang/OTP 44.0% 41.4% 1.1% 13.6% 2:43
Wings3D 54.3% 34.9% 1.2% 9.6% 0:12
ejabberd 39.1% 51.2% 5.8% 4.0% 0:06
CouchDB 44.4% 44.7% 1.2% 9.7% 0:03
Yaws 44.6% 46.9% 1.1% 7.4% 0:03
Erlsom 46.0% 9.2% 0.5% 44.4% 0:02
ibrowse 44.1% 55.9% 0.0% 0.0% 0:01
purity 68.5% 20.1% 1.9% 9.5% 0:01

Table 4. Analysis results with side-effects and non-determinism impure

Application Pure Impure Undetectable Limited Time
Erlang/OTP 37.3% 58.2% 0.6% 4.0% 2:35
Wings3D 44.6% 47.4% 1.0% 7.0% 0:10
ejabberd 33.9% 63.2% 1.6% 1.3% 0:06
CouchDB 41.8% 48.9% 0.5% 8.8% 0:03
Yaws 40.8% 52.0% 0.9% 6.3% 0:03
Erlsom 38.4% 41.5% 0.5% 19.5% 0:01
ibrowse 39.2% 60.8% 0.0% 0.0% 0:01
purity 64.4% 24.8% 1.9% 8.9% 0:01

experience. Consider for example a function like filename:basename/1which is part
of the ERLANG standard library. This function takes a filename and returns it with the
leading path component removed, e.g., filename:basename("/usr/bin/purity")
will return "purity". This function is obviously used for the value it returns and, since
strings are lists in ERLANG, one would expect that this function merely performs some
simple list manipulation operations. This is verified by taking a quick look at the actual
source code. Most programmers would therefore consider its use consistent with pro-
gramming in a purely functional style. The function is however impure as our analysis
— and some more careful consideration — demonstrates. The reason has to do with
portability. In order for this function to be useful across different operating systems, its
behaviour needs to vary according to the character used to separate paths in each OS. It
is thus dependent on the execution environment and is not referentially transparent.

The results of Table 5 in particular may appear disheartening at first. If one wishes to
use the results of the analysis in contexts were exceptions cannot be regarded as pure,
there is little one can gain from it. All hope is not lost however, since some of these
results may be misleading. The reason so many functions appear to potentially raise
exceptions is that the ERLANG compiler adds extra clauses at function definitions and
case expressions, which raise the corresponding clause failure exception if no pattern is
matched. Later optimisation passes try to remove any such clauses which are redundant,
when a function is total for instance, or when it takes no arguments. Without some
form of type analysis however, it is not possible to safely remove such clauses in more
complex cases. An example of an ERLANG function which warrants such a clause is
that of Listing 1. It is apparent from its definition that the area function does not cover

Purity in Erlang 147

Table 5. Analysis results with side-effects, non-determinism and exceptions impure

Application Pure Impure Undetectable Limited Time
Erlang/OTP 5.3% 94.6% 0.0% 0.1% 2:16
Wings3D 5.7% 94.0% 0.3% 0.1% 0:10
ejabberd 9.4% 89.8% 0.5% 0.3% 0:06
CouchDB 6.3% 92.8% 0.2% 0.7% 0:03
Yaws 7.2% 92.5% 0.1% 0.3% 0:03
Erlsom 3.9% 96.1% 0.0% 0.0% 0:01
ibrowse 6.2% 93.8% 0.0% 0.0% 0:01
purity 7.4% 91.5% 0.8% 0.4% 0:01

foo(42) -> ok;

foo(N) when is integer(N) ->

{error, N}.

bar(N) ->

case foo(N) of

ok -> ok;

{error, } -> error

end.

(a) Code as written by the programmer

foo(42) -> ok;

foo(N) when is integer(N) ->

{error, N};
foo() -> erlang:error(badarg).

bar(N) ->

case foo(N) of

ok -> ok;

{error, } -> error;

-> erlang:error(case clause)

end.

(b) Code with exceptions inserted

Fig. 2. An example where the compiler fails to remove the redundant exception raising clauses
that it has inserted due to lack of type information

all possible arguments it might be called with. On the other hand the exception raising
clauses will not be removed for function bar in the example of Figure 2. The reason
is that the ERLANG compiler currently cannot determine that the pattern matching on
the return value of the call to foo is complete, since it does not keep any information
regarding foo’s return value.

Furthermore, these percentages do not account for the masking of exceptions by
other functions. Consider the example in Listing 4 where an exception is raised by one
function but is later masked in the body of another. With a more sophisticated analysis
it is possible that some of these cases can be detected.

foo(X) ->

throw(X).

bar() ->

try foo(42) of

Val -> {ok, Val}

catch

throw:E -> {error, E}

end.

Listing 4. An example of exception masking

148 M. Pitidis and K. Sagonas

Table 6. Analysis results with side-effects impure and termination analysis

Application Pure Impure Undetectable Limited
Erlang/OTP 23.1% 74.8% 0.5% 1.7%
Wings3D 30.5% 67.6% 0.8% 1.1%
ejabberd 26.6% 69.3% 2.3% 1.7%
CouchDB 30.2% 65.0% 0.4% 4.4%
Yaws 36.0% 61.3% 0.7% 2.0%
Erlsom 29.2% 57.4% 0.4% 13.0%
ibrowse 36.1% 63.9% 0.0% 0.0%
purity 50.9% 45.8% 1.4% 1.9%

For completeness we include one more table. Table 6 presents the results of Table 3
when these are combined with a simple termination analysis we have also developed
(whose details are beyond the scope of this paper). In effect, the first column of the table
shows how many functions are found both pure and terminating. Why this information
is interesting is described in the next section.

5 Extending Erlang with User-Defined Guards

The original motivation for our analysis was to extend the ERLANG language with
support for user-defined guards. Besides being a very popular request by users, such an
extension is important since it increases the language’s expressiveness and allows for
more compact and descriptive code.

We mentioned in Section 2 that guard expressions are currently limited to a pre-
defined set of built-in functions. The reason for this is that the ERLANG specification
requires that guard expressions are an extension of pattern matching. As such, functions
used in guards should have no observable side-effects and should complete in bounded
time. Notice that these prerequisites do not mention determinism. In fact, valid ERLANG

guard expressions include the erlang:node/0 and erlang:node/1 BIFs, which de-
pend on the execution environment. Specifically, the former returns the name of the
current ERLANG node,1 while the latter returns the name of the node a specific process
belongs to. It is possible to change this node name from within the ERLANG runtime
system by calling functions start/1 and stop/0 of the net kernel module. The ex-
ample in Figure 3 shows an excerpt from a session in the ERLANG shell, illustrating
how a guard expression might succeed on one call and fail on another.

Another aspect of ERLANG guards which has not been discussed yet, is that any
exceptions which may be raised as part of a guard test are caught and silently converted
to the value false. That is to say that functions that raise an exception during normal
execution, will not do so when used in a guard context.

With these issues in mind, it should now be clear why we chose to support multiple
criteria of purity in our analysis. The guard in the previous example is not a referentially
transparent function and a more strict analysis would reject it. Other valid guard tests,

1 Taken from the ERLANG manual “A node is an executing Erlang runtime system which has
been given a name”[5, Chapter 12].

Purity in Erlang 149

1> F = fun () when node() =:= nonode@nohost -> error;

() -> {ok, node()}
end.

#Fun<erl eval.6.13229925>

2> F().

error

3> net kernel:start([test@localhost]).

{ok,<0.36.0>}
(test@localhost)4> F().

{ok,test@localhost}
(test@localhost)5> net kernel:stop().

ok

6> F().

error

Fig. 3. Example of a non-deterministic guard expression

e.g., functions like erlang:node/1 and erlang:length/1, raise exceptions when
called with invalid arguments outside of guard contexts. Obviously, we did not want to
break any existing code with our extension. As can be seen from Table 6, there is a fair
number of functions in existing ERLANG programs that our analyses classify as both
pure and terminating and therefore it could enable their employment as a guard.

In our opinion, one of the biggest advantages that such a language extension has to
offer, is the fact that it enables user-defined tests for abstract data types in guards. The
problem with ADTs in ERLANG is that their structural information is exposed, as the
language allows inspection through pattern matching and primitive type tests. Allowing
arbitrary type tests as guards can help make code cleaner and could even discourage
programmers from breaking ADT contracts. The example in Figure 4 illustrates the
benefits of such an approach.

Prototype Implementation. To this end, we developed a proof of concept implemen-
tation on top of the ERLANG compiler. Two distinct aspects of the compilation process
have been altered, while a third modification has been identified in the runtime system
of Erlang/OTP. First of all, a compiler pass performing purity and termination analysis
is placed in the compiler front-end, just after the pass which converts ERLANG source
to CORE ERLANG. Additionally, errors regarding illegal guard expressions are silenced
until the purity of the functions in question can be verified by looking up their values.
Second, the compiler back-end needs to be changed, specifically the code generation
stage up to the point where bytecode is produced. This was the trickiest part, since this
compiler phase heavily relied on the assumption that only built-in functions might be
called from within guard expressions. BIFs differ significantly from a regular ERLANG

function call with respect to the bytecode that needs to be generated.
A third aspect we identified but have not implemented yet has to do with the ERLANG

loader. As mentioned earlier, ERLANG is unique in that it supports loading new code
while the system is still running. It should be evident that a check must be placed at
this stage, to verify that the same properties hold for the newly loaded code as the code
which was previously analyzed, specifically with regard to its purity and termination

150 M. Pitidis and K. Sagonas

foo(Set) ->

case gb sets:is set(Set) of

true ->

handle gb set(Set);

false ->

case sets:is set(Set) of

true ->

handle set(Set);

false ->

error

end

end.

(a) Custom tests not allowed as guards

foo(Set) when gb sets:is set(Set) ->

handle gb set(Set);

foo(Set) when sets:is set(Set) ->

handle set(Set);

foo() ->

error.

(b) When user-defined guards are allowed

Fig. 4. Two ways of writing a function that operates on different term representations when user-
defined tests are forbidden as guards 4(a) and when they are allowed 4(b). The code is not only
more succinct, but it is also significantly more clear. Writing the code of Figure 4(b) is something
currently not possible in ERLANG.

characteristics, and take some appropriate action (e.g. refuse the re-loading or re-
compilation of modules that depend on this code) if there is a difference. Other en-
gineering issues not addressed in our current prototype have to do with optional user
annotations of pure functions. Such annotations would make the programmer’s inten-
tions more explicit and could be further used by the code loader.

6 Related Work

Purity is a fundamental property of programming components, regardless of language.
In this respect, it is a bit surprising that in the literature it is hard to locate descriptions
of analyses that detect purity or papers that report statistical data about the purity as-
pects of programs. In particular, we are not aware of any published such works in the
context of dynamically typed functional languages. Still, being able to determine side-
effect freeness is important for optimisation, automatic parallelization, and for program
transformation tools such as refactoring editors. No doubt many such systems probably
contain analysis components that determine purity properties of programs of different
degrees.

Statically typed languages on the other hand, usually encode purity information in
their type system. One approach which may be employed in languages with impera-
tive features is a type and effect system (see, e.g., Lucassen and Gifford’s paper [6] or
Chapter 3 in Pierce’s book [8]). Such a system extends a traditional type system with
information about how values are computed and the possible effects that expressions
can have (such as their side-effects or the set of memory regions that may be modified
as a result of their evaluation).

Conversely, practical constraints — such as efficient I/O operations — compel many
purely functional programming languages to allow for impure operations, without vio-
lating their pure semantics. Different approaches have been explored, the most notable

Purity in Erlang 151

of which are the uniqueness type system of Clean and the monadic approach of Haskell.
The equivalence between monads and effect systems has also been ascertained [12].

Clean is a general purpose, strongly typed, pure and lazy functional programming
language. Clean handles side-effects and non-determinism by means of a uniqueness
typing system [9, ch. 9]. This extends a traditional type system by allowing the user to
specify that a given argument to a function is unique. Such an annotation guarantees
the function will have private access to the argument, therefore destructively updating
it will not violate the semantics of the function during the execution of the program.
Besides side-effects, uniqueness typing can be used to convert pure operations to muta-
ble state transformations without violating the pure semantics of the operation. With a
uniqueness guarantee it is trivial to verify referential transparency, as the function will
never be called with the same argument. Furthermore, any side-effects of the function
will never influence another function in an unforeseen manner [11].

Haskell is similar to Clean in many respects. It is purely functional, strongly typed
and also features non-strict evaluation. However, Haskell takes a different approach
with respect to purity, utilizing the more general concept of monads. Like Clean, this
information is reflected in the type system and can be automatically inferred by way
of a type inference scheme. Besides side-effects, monads can be used to express more
general, and not necessarily impure, computations [7].

BitC was developed as a systems programming language with the goal of support-
ing formal verification. Unlike the languages previously mentioned, BitC is not purely
functional. It does however support user level type annotations regarding the purity of
functions, by means of an effect type system [10, ch. 10]. Such annotations associate
expressions with an effect type variable which can have a value of pure, impure or un-
fixed. By verifying that certain parts of a program are pure, the BitC compiler can safely
perform certain kinds of optimisations, like automatic parallelization.

7 Concluding Remarks

In this paper, having presented the defining properties of impure functions according
to three independent and progressively weaker criteria (presence of side-effects, de-
pendency on the environment of execution and possibility of raising an exception), we
described the design and implementation of a parameterized static analysis for deter-
mining such properties in the context of ERLANG. Our analysis is relatively simple, but
it has very important consequences both for the optimisation and, more importantly, for
the expressivity of ERLANG programs. As a direct result of the existence of our anal-
ysis, we are currently enhancing the ERLANG language with user-defined guards and
have already developed a suitable patch to the compiler which can form the basis of the
final implementation in Erlang/OTP.

In the course of testing our implementation, we have analyzed diverse code bases
of significant size, providing concrete data regarding the current practices of ERLANG

programmers with respect to purity. The percentage of functions classified as pure by

152 M. Pitidis and K. Sagonas

our analysis ranges on average between 30% and 50% for the applications we exam-
ined. This percentage is significant considering that ERLANG is primarily a concurrent
language. To the best of our knowledge, this is the first time that such data is reported
in the literature, not only for ERLANG, but for any functional language where purity of
functions is not captured by the type system.

Acknowledgements. We thank Patrick Maier and Phil Trinder for their detailed sug-
gestion on how to show a run of the analysis on an example, which has clearly improved
the presentation aspects of our work.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,
Cambridge (1986)

2. Barklund, J., Virding, R.: Erlang 4.7.3 reference manual (February 1999), http://www.
csd.uu.se/ftp/mirror/erlang/download/erl_spec47.ps.gz

3. Carlsson, R., Gustavsson, B., Johansson, E., Lindgren, T., Nyström, S.O., Pettersson, M.,
Virding, R.: Core Erlang 1.0 language specification. Tech. Rep. 030, Information Technology
Department, Uppsala University (November 2000)

4. Carlsson, R., Gustavsson, B., Nyblom, P.: Erlangs exception handling revisited. In: Proceed-
ings of the ACM SIGPLAN Workshop on Erlang, pp. 16–26. ACM (2004)

5. Ericsson, A.B.: Erlang Reference Manual Users Guide, version 5.8 (June 2010), http://
www.erlang.org/doc/reference_manual/users_guide.html

6. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Conference Record of the
Fifteenth Annual ACM Symposium on Principles of Programming Languages, pp. 47–57.
ACM, New York (January 1988)

7. Newbern, J.: All about monads, http://www.haskell.org/all_about_monads/
8. Pierce, B.C. (ed.): Advanced Topics in Types and Programming Languages. MIT Press, Cam-

bridge (2005)
9. Plasmeijer, R., van Eekelen, M.: Clean Language Report, version 2.1 (November 2002),

http://clean.cs.ru.nl/download/Clean20/doc/CleanLangRep.2.1.pdf

10. Shapiro, J., Sridhar, S., Doerrie, M.S.: The origins of the BitC programming language (April
2008), http://www.bitc-lang.org/docs/bitc/bitc-origins.html

11. de Vries, E., Plasmeijer, R., Abrahamson, D.M.: Uniqueness typing simplified. In: Chitil, O.,
Horváth, Z., Zsók, V. (eds.) IFL 2007. LNCS, vol. 5083, pp. 201–218. Springer, Heidelberg
(2008)

12. Wadler, P.: The marriage of effects and monads. ACM SIGPLAN Notices 34(1), 63–74
(1999)

http://www.csd.uu.se/ftp/mirror/erlang/download/erl_spec47.ps.gz
http://www.csd.uu.se/ftp/mirror/erlang/download/erl_spec47.ps.gz
http://www.erlang.org/doc/reference_manual/users_guide.html
http://www.erlang.org/doc/reference_manual/users_guide.html
http://www.haskell.org/all_about_monads/
http://clean.cs.ru.nl/download/Clean20/doc/CleanLangRep.2.1.pdf
http://www.bitc-lang.org/docs/bitc/bitc-origins.html

	Purity in Erlang
	Introduction
	Erlang: The Language and Its Features
	Purity Analysis in Erlang
	Flavours of Purity
	The Core of the Analysis
	Higher Order Functions
	Implementation Aspects

	Experiences
	Extending Erlang with User-Defined Guards
	Related Work
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

