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Abstract

In this paper, using Mountain Pass Lemma and Linking Argument, we prove the existence
of nontrivial weak solutions for the Dirichlet problem of the superlinear p-Laplacian equation
with inde'nite weights in the case where the eigenvalue parameter �∈ (0; �2), �2 is the second
positive eigenvalue of the p-Laplacian with inde'nite weights.
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1. Introduction

In this paper, we shall investigate the existence of weak solutions for the following
Dirichlet problem of the p-Laplacian with inde'nite weights:{−9pu =: −div(|∇u|p−2∇u) = �V (x)|u|p−2u + f(x; u) in �;

u = 0 on @�;
(1.1)
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where p¿ 1, � ⊂ RN is a bounded domain, V (x) is a given function which may
change sign and � is the eigenvalue parameter. Assume that

V+ �≡ 0 and V ∈Ls(�); (1.2)

for some s¿N=p if 1¡p¡N and s = 1 if p¿N .
For p = 2, V ≡ 1, many results on the existence of linking-type critical points of

problem (1.1) have been obtained (eg. [2,4,7]); For p �= 2, V ≡ 1, by two link-
ing results, Fan and Li [10] obtained the existence results of problem (1.1) when
0¡�¡�2; while Alves et al. [1] consider the multiple solutions for the resonance in-
volving p-Laplacian, under certain conditions on f(x; u), the authors obtained at least
three solutions of problem (1.1) when p �= 2, �=�1, V =h(x)∈L∞(�) is a essentially
bounded function. Using Morse theory, Liu [13] consider the existence of solutions to
problem:{−9pu =: −div(|∇u|p−2∇u) = f(x; u) in �;

u = 0 on @�;
(1.3)

under condition that
∫ s

0 f(x; s) ds lies between the 'rst two eigenvalues of p-Laplacian,
which includes problem (1.1) with V ≡ 1 as special case.

It is interesting here that function V is just belonging to Ls(�) and may change sign.
Our results will mainly rely on the results for the eigenvalue problem correspondent
to problem (1.1) in [9]. Let us 'rst recall the main results of Cuesta [9]. Consider the
nonlinear eigenvalue problem:{−9pu =: −div(|∇u|p−2∇u) = �V (x)|u|p−2u in �;

u = 0 on @�;
(1.4)

where V satis'es condition (1.2). De'ne C1 functionals � and J : W 1;p
0 (�) → R by

�(u) ≡
∫
�
|∇u|p dx; and J (u) ≡ V (x)|u(x)|p dx

and set M by

M = {u∈W 1;p
0 (�) : J (u) = 1}:

Assumption (1.2) ensures that M �= ∅. If �(A) denotes the Krasnoselski genus
on W 1;p

0 (�) and for any k ∈N, set �k ≡ {A ⊂ M: A is compact, symmetric and
�(A)¿ k}. Then by the standard arguments of Ljusternik–Schnirelman critical point
theory, value

�k = inf
A∈�k

max
u∈A

�(u) (1.5)

is an eigenvalue of problem (1.4). Moreover, 0¡�1 ¡�26 �36 · · ·6 �k → +∞, as
k → +∞.

For p = 2, V (x) ≡ 1, it is well known that the values obtained by (1.5) are all
the eigenvalues of problem (1.4) and some other results, such as the 'rst positive
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eigenvalue �1 is simple, isolated and it is the unique eigenvalue with positive eigen-
function. But for the general case p �= 2, the situation becomes far more complicated
(cf. [5,11,15] and the references therein). Fortunately, Cuesta [9] proved that the above
properties of the 'rst eigenvalue are also true in our case. Moreover, let

�2 ≡ min{�∈R+ : � is an eigenvalue and �¿�1}: (1.6)

Then �2 = �2.

2. Linking results

Let ek ∈M be the eigenfunction associated to the eigenvalue �k , then ‖ek‖p = �k .
Denote G = {u∈M : �(u)¡�2}. Obviously, G is an open set containing e1 and e2.
Moreover −G = G. First we shall prove the following Lemma.

Lemma 2.1. e1 and −e1 do not belong to the same connected component of G.

Proof. Otherwise, there exists a continuous curve � connecting e1 and −e1 in G. Let
A=�∪{−�}, then from the de'nition of M, 0 �∈ A, hence �(A)¿ 1. By connectedness
of A, A∈�2. Hence, as A is a compact set in G, and from the de'nition of G, we
will have max{�(u); u∈A}¡�2, and this contradicts the de'nition of �2.

Let G1 be the connected component of G containing e1, then −G1 is the connected
component of G containing −e1. Let

K1 = {tu : u∈G1; t ¿ 0}; K = K1 ∪ {−K1}:
Then, we have∫

|∇u|p ¡�2

∫
V (x)|u|p ∀u∈K (2.1)

and ∫
|∇u|p = �2

∫
V (x)|u|p ∀u∈ @K; (2.2)

where @K is the boundary of K in X = W 1;p
0 (�). Let (@K)! = {u∈ @K : ‖u‖ = !}.

Set

E1 = span{e1}; E2 = span{e1; e2};

Z = {u∈X :
∫
�
|∇u|p = �2

∫
�
V (x)|u|p}:

(2.2) implies @K ⊂ Z.
Similar to Proposition 2.1 and Proposition 2.2 in [10], we obtain the following two

linking results concerning the p-Laplacian with inde'nite weights.
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Theorem 2.2. Assume that v∈E1, v �= 0, Q = [ − v; v] is the line segment connecting
−v and v, @Q = {−v; v}. Then @Q ⊂ Q and Z link in X , that is,

(i) @Q ∩Z = ∅ and
(ii) For any continuous map  : Q → X with  |@Q = id, there holds  (Q) ∩Z �= ∅.

Proof. It is obvious that @Q∩Z=∅. Now let  : Q=[− v; v] → X be continuous and
 |@Q =id. From the de'nition of K and Lemma 2.1, K has two connected components
K1 and −K1. Assume v∈K1, −v∈ − K1, then  (Q) is a continuous curve connecting
v and −v, therefore there holds  (Q) ∩ @K �= ∅ and thus  (Q) ∩Z �= ∅.

Theorem 2.3. Assume 0¡!¡r¡∞, let ẽ1 = e1=�
1=p
1 ; ẽ2 = e2=�

1=p
2 , and

Q = Qr = {u = t1ẽ1 + t2ẽ2 : ‖u‖6 r; t2¿ 0};

@Q = @Qr = {u = t1ẽ1 : |t1|6 r} ∪ {u∈Qr : ‖u‖ = r};

Z! = {u∈Z : ‖u‖ = !}:
Then @Qr ⊂ Qr and Z! link in X .

Proof. @Qr ∩ Z! = ∅ is obvious. Let  : Qr → X be continuous and  |@Qr = id. Denote
d1 = dist (ẽ1; @K) and de'ne mapping P : X → E2 as follows:

P(u) = (min{dist(u; @K); rd1})ẽ1 + (‖u‖ − !)ẽ2; if u �∈ −K1;

−(min{dist(u; @K); rd1})ẽ1 + (‖u‖ − !)ẽ2; if u∈ − K1:

It is easy to see that P is continuous, and P maps v = rẽ1 to v1 = Pv = rd1ẽ1 +
(r−!)ẽ2, the origin 0 to 01 =P0=−!ẽ2, the line segment [v; 0] onto the line segment
[v1; 01] homeomorphically; −v = −rẽ1 to v2 = P(−v) = −rd1ẽ1 + (r − !)ẽ2, the line
segment [0;−v] onto a line segment [01; v2] homeomorphically; and the half circle
{u∈ @Q : ‖u‖ = r} which is from v to −v in @Q onto the line segment [v1; v2], where
P(rẽ2) = (r − !)ẽ2.

Let f=P◦ : Q → E2. From the discussion above, there holds 0 �∈ f(@Q), and when
u turns a circuit along @Q anticlockingly, f(u) also moves a circuit around the original
0 in E2 anticlockingly. Hence, by a degree argument, there holds deg(f;Q; 0) = 1. So
there exists some u∈Q such that f(u) = 0, i.e., P( (u)) = 0, which implies that
 (u)∈ @K ; and ‖ (u)‖=!. Thus  (u)∈ (@K)! and  (Q)∩ (@K)! �= ∅. Since (@K)! ⊂
Z!, hence  (Q) ∩Z �= ∅.

3. Existence results for problem (1.1)

In this section, we will give some conditions on f(x; u) to guarantee the functional
associated to problem (1.1) satis'es the Palais–Smale condition ((PS) condition) and
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the geometric assumptions of Mountain Pass Lemma (cf. Theorem 6.1 in Chapter 2
of [14]) in the case of 0¡�¡�1; the (C)c condition due to Cerami and the assump-
tions of the linking theorem (cf. Theorem 8.4 in Chapter 2 of [14]) in the case of
�16 �¡�2.

Assume f : � × R → R satis'es:

(f1) (Subcritical growth). |f(x; s)|6 c1|s|r−1 +c2 ∀s∈R; a:e: x∈�, where 1¡r¡p∗

=
NP

N − P
, if 1¡p¡N ; 1¡r¡ + ∞ if p¿N ;

(f2) f∈C( K� × R; R), f(x; 0) = 0, uf(x; u)¿ 0, u∈R and a.e. x∈�;
(f3) (Asymptotic property at in3nity). ∃+¿p and M ¿ 0 such that 0¡+F(x; u)6

uf(x; u) for |u|¿M and a.e. x∈�;
(f4) (Asymptotic property at u = 0). lims→0f(x; s)=|s|p−1 = 0 uniformly a.e. x∈�.

Assumptions of (1.2) and (f1) imply that functional I : W 1;p
0 (�) → R:

I(u) =
1
p

∫
�
|∇u|p dx − �

p

∫
�
V (x)|u|p dx −

∫
�
F(x; u) dx

is well-de'ned and I ∈C1(W 1;p
0 (�);R), where F(x; s) =

∫ s
0 f(x; t) dt, and the weak

solutions of problem (1.1) is equivalent to the critical points of I . (f2) implies that 0
is a trivial solution to problem (1.1).

Lemma 3.1. If f satis3es assumptions (f1) – (f3), then I satis3es the (PS) condition
for �∈ (0; �1).

Proof. (1) The boundedness of (PS) sequence of I .
Suppose {um} is a (PS) sequence of I , that is, there exists C ¿ 0 such that |I(um)|

6C and I ′(um) → 0 in X ′, the dual space of X , as m → ∞. The properties of the
'rst eigenvalue �1 imply that for any u∈X , there holds

�1

∫
�
V (x)|u|p dx6

∫
�
|∇u|p dx:

Let d := supm I(um). Then by the above inequality and (f3), as m → ∞, there holds

d− 1
+
o(1)‖um‖ =

(
1
p

− 1
+

) ∫
�
|∇um|p − �

(
1
p

− 1
+

) ∫
�
V (x)|um|p

+
∫
�

(
1
+
f(x; um)um − F(x; um)

)

¿
(

1
p

− 1
+

)(
1 − �

�1

)∫
�
|∇um|p

+
∫
�(um¿M)

(
1
+
f(x; um)um − F(x; um)

)
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+
∫
�(um¡M)

(
1
+
f(x; um)um − F(x; um)

)

¿
(

1
p

− 1
+

)(
1 − �

�1

)
‖um‖p − C1;

where C1¿ 0 is a constant independent of um. The above estimate implies the bound-
edness of {um} for 0¡�¡�1.

(2) By (f1), f satis'es the subcritical growth condition, by a standard argument, one
can obtain that there exists a convergent subsequence of {um} from the boundedness
of {um} in X .

Theorem 3.2. If f satis3es assumptions (f1) – (f4), then problem (1.1) has a non-
trivial weak solution u∈W 1;p

0 (�) provided that 0¡�¡�1.

Proof. We will verify the geometric assumptions of the Mountain Pass Lemma (cf.
[14] Chapter 2, Theorem 6.1):

(1) I(0) = 0 is obvious;
(2) ∃!¿ 0; 0¿ 0 : ‖u‖ = ! ⇒ I(u)¿ 0;

In fact, ∀u∈X , there holds

I(u) =
1
p

∫
�
|∇u|p − �

p

∫
�
V (x)|u|p −

∫
�
F(x; u)

¿
1
p

(
1 − �

�1

) ∫
�
|∇u|p −

∫
�
F(x; u): (3.1)

From (f4), ∀1¿ 0, ∃!0=!0(1) such that: if 0¡!=‖u‖¡!0, then |f(x; u)|¡1|u|p−1,
thus ∫

�
F(x; u) dx6

∫
�

∫ u(x)

0
f(x; t) dt dx6

1
p

∫
�
|u(x)|p dx6

c01
p

‖u‖p
W 1; p

0
:

Choose c010 = (1 − �
�1

)=2¿ 0, ! = !0(10)
2 , from (3.1), one has

I(u)¿
1
p

(
1 − �

�1
− c010

) ∫
�
|∇u|p¿ �1 − �

2�1p
· ! =: 0¿ 0: (3.2)

(3) ∃u1 ∈X : ‖u1‖¿ ! and I(u1)¡ 0.

In fact, from (f2) and (f3), one can deduce that there exist constants c3, c4 ¿ 0 such
that

F(x; u)¿ c3|u|+ − c4 ∀u∈R: (3.3)
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Since +¿p, a simple calculation shows that as t → ∞, there holds

I(te1) =
tp

p

∫
�
|∇e1|p − �tp

p

∫
�
V (x)|e1|p −

∫
�
F(x; te1)

6
tp

p

∫
�
|∇e1|p − �tp

p

∫
�
V (x)|e1|p − c3t+

∫
�
|e1|+ + c4|�|

→−∞: (3.4)

Eq. (3.4) implies that I(te1)¡ 0 for t ¿ 0 large enough.
Thus Lemma 3.1 and the Mountain Pass Lemma imply that value

2 = inf
p∈P

sup
u∈p

E(u)¿ 0¿ 0

is critical, where P={p∈C0([0; 1];X ) : p(0)=0; p(1)=u1}. That is, there is a u∈X ,
such that

E′(u) = 0; E(u) = 2¿ 0:

E(u) = 2¿ 0 implies u �≡ 0.

Lemma 3.3. Assume that f satis3es assumptions (f1) – (f3). Furthermore, +¿ps=
(s − 1) in (f3). Then for any �∈R, I satis3es the (C)c condition introduced by
Cerami in [6], that is, any sequence {um} ⊂ X such that I(um) → c and (1 +
‖um‖)‖I ′(um)‖X ′ → 0 possesses a convergent subsequence.

Proof. The boundedness of (C)c sequence in X .
Let {um} ⊂ X be such that I(um) → c and (1 + ‖um‖)‖I ′(um)‖X ′ → 0. Then from

(f2), (f3) and (3.3), as m → ∞, there holds

pc + o(1) = pI(um) − 〈I ′(um); um〉 =
∫
�
(umf(x; um) − pF(x; um)) dx

=
∫
�
(umf(x; um) − +F(x; um)) dx + (+− p)

∫
�
+F(x; um) dx

¿− C1 + (+− p)c3|um|++ − c4|�|: (3.5)

Thus +¿p implies the boundedness of {um} in L+(�). Since +¿ps=(s − 1), the
HMolder inequality and the boundedness of � show that∣∣∣∣

∫
�
V (x)|um|p dx

∣∣∣∣6 ‖V (x)‖Ls‖um‖pLps=(s−1)

6C‖V (x)‖Ls‖um‖pL+ ; (3.6)
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which, together with the boundedness of {um} in L+(�), means that {| ∫� V (x)|um|p dx|}
is bounded. Then from (f3), a simple calculation shows that

+c + o(1) = +I(um) − 〈I ′(um); um〉

=
(

+
p

− 1
)
‖∇um‖pLp − �

(
+
p

− 1
) ∫

�
V (x)|um|p dx

+
∫
�
(umf(x; um) − +F(x; um)) dx

¿
(

+
p

− 1
)∫

�
|∇um|p dx − C

+
∫
�(um¡M)

(umf(x; um) − +F(x; um)) dx

+
∫
�(um¿M)

(umf(x; um) − +F(x; um)) dx

¿
(

+
p

− 1
)
‖∇um‖pLp − C; (3.7)

where C ¿ 0 is a universal constant independent of um, which may be
diNerent from line to line. Thus +¿p and (3.7) imply the boundedness of {um}
in X .

(2) By (f1), f satis'es the subcritical growth condition, by a standard argument, one
can obtain that there exists a convergent subsequence of {um} from the boundedness
of {um} in X .

Theorem 3.4. Suppose f satis3es assumptions (f1) – (f4), and furthermore, +¿ps=
(s − 1) in (f3). Then problem (1.1) has a nontrivial weak solution u∈W 1;p

0 (�)
provided that �16 �¡�2.

Proof. It was shown in [3] that (C)c condition actually suOces to get a deforma-
tion theorem (Theorem 1.3 in [3], see also Proposition 2.1 in [12]), which is cru-
cial for minimax type critical point theory, and it also remarked in [3,8,12] that the
proofs of the standard Mountain Pass Lemma and saddle-point theorem go through
without change once the deformation theorem (Theorem 1.3 in [3]) is obtained with
(C)c condition. Here we verify the assumptions of standard Linking Argument
Theorem (cf. [15] Chapter 2, Theorem 8.4) hold with (C)c condition replacing (PS)c
condition.

Since @Qr ⊂ Qr and Z! link in X , it suOces to show that

(1) 00 = supu∈@Qr
I(u)6 0, when r ¿ 0 is large enough;

(2) 0 = inf u∈Z! I(u)¿ 0, when !¿ 0 is small enough.
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In fact, let u = te1 ∈E1, from assumption (f2), F(x; s)¿ 0 for all s∈R and almost
every x∈�, thus there holds

I(u) = I(te1)6
|t|p
p

∫
�
|∇e1|p dx − |t|p�

p

∫
�
V (x)|e1|p dx

=
|t|p
p

(
1 − �

�1

)
‖e1‖6 0: (3.8)

Noticing that

‖u‖+ =
(∫

�
|u|+

)1=+

is a norm on E2, and the norms of 'nite dimensional space are equivalent, thus there
exists a constant c5 ¿ 0 such that∫

�
|u|+ dx¿ c5‖u‖+W 1; p

0
:

From (3.3), there holds

I(u)6
1
p
‖u‖p

W 1; p
0

+
Sp

1 �
p

‖V (x)‖Ls‖u‖p
W 1; p

0
− c3c5‖u‖+W 1; p

0
+ c4|�|; (3.9)

where S1 is the best constant of imbedding X ,→ Lps=(s−1)(�). Since +¿p, there holds

I(u) → −∞; as ‖u‖ → ∞; u∈E2:

This implies (1).
From (f4) and (f1), there holds∫

�
F(x; u) dx = o(‖u‖p) as u → 0 in X;

then for any u∈Z , there holds

I(u) =
1
p

(
1 − �

�2

)∫
�
|∇u|p dx + o(‖u‖p): (3.10)

Since �¡�2, (3.10) implies (2).
Thus the Linking Argument Theorem (cf. [14] Chapter 2, Theorem 8.4)with (C)c

condition replacing (PS)c condition implies that value

2 = inf
h∈�

sup
u∈Q

E(h(u))¿ 0¿ 0

is critical, where � = {h∈C0(X ;X ); h|@Q = id}. That is, there is a u∈X , such that

E′(u) = 0; E(u) = 2¿ 0:

E(u) = 2¿ 0 implies u �≡ 0.
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Remark 3.1.

(1) If V (x)∈L∞, then ps=(s − 1) = p. In particular, V (x) ≡ 1, then Theorem 3.4
recovers a partial result in [13].

(2) It is well-known that problem (1.1) has a nontrivial weak solution u∈W 1;p
0 (�)

for all �∈R if p = 2; V (x) ≡ 1 (cf. [2] and [7]). We conjucture that problem
(1.1) has a nontrivial weak solution u∈W 1;p

0 (�) for all �∈R in our case, that is,
p¿ 1, V (x) satis'es condition (1.2).
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