Nonlinear
 Analysis

Existence results for a superlinear p-Laplacian equation with indefinite weights ${ }^{\star}$

Benjin Xuan ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Science and Technology of China, China
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, National University of Colombia, Bogota, Colombia

Received 25 January 2002; accepted 9 July 2002

Abstract

In this paper, using Mountain Pass Lemma and Linking Argument, we prove the existence of nontrivial weak solutions for the Dirichlet problem of the superlinear p-Laplacian equation with indefinite weights in the case where the eigenvalue parameter $\lambda \in\left(0, \lambda_{2}\right), \lambda_{2}$ is the second positive eigenvalue of the p -Laplacian with indefinite weights.

 © 2003 Elsevier Science Ltd. All rights reserved.MSC: 35J60

Keywords: p-Laplacian; Indefinite weight; Mountain pass Lemma; Linking argument

1. Introduction

In this paper, we shall investigate the existence of weak solutions for the following Dirichlet problem of the p-Laplacian with indefinite weights:

$$
\left\{\begin{array}{l}
-\Delta_{p} u=:-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\lambda V(x)|u|^{p-2} u+f(x, u) \quad \text { in } \Omega, \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega,
\end{array}\right.
$$

[^0]where $p>1, \Omega \subset R^{N}$ is a bounded domain, $V(x)$ is a given function which may change sign and λ is the eigenvalue parameter. Assume that
\[

$$
\begin{equation*}
V^{+} \not \equiv 0 \text { and } V \in L^{s}(\Omega) \tag{1.2}
\end{equation*}
$$

\]

for some $s>N / p$ if $1<p<N$ and $s=1$ if $p>N$.
For $p=2, V \equiv 1$, many results on the existence of linking-type critical points of problem (1.1) have been obtained (eg. [2,4,7]); For $p \neq 2, V \equiv 1$, by two linking results, Fan and Li [10] obtained the existence results of problem (1.1) when $0<\lambda<\lambda_{2}$; while Alves et al. [1] consider the multiple solutions for the resonance involving p-Laplacian, under certain conditions on $f(x, u)$, the authors obtained at least three solutions of problem (1.1) when $p \neq 2, \lambda=\lambda_{1}, V=h(x) \in L^{\infty}(\Omega)$ is a essentially bounded function. Using Morse theory, Liu [13] consider the existence of solutions to problem:

$$
\left\{\begin{array}{l}
-\Delta_{p} u=:-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=f(x, u) \quad \text { in } \Omega \tag{1.3}\\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

under condition that $\int_{0}^{s} f(x, s) \mathrm{d} s$ lies between the first two eigenvalues of p -Laplacian, which includes problem (1.1) with $V \equiv 1$ as special case.

It is interesting here that function V is just belonging to $L^{s}(\Omega)$ and may change sign. Our results will mainly rely on the results for the eigenvalue problem correspondent to problem (1.1) in [9]. Let us first recall the main results of Cuesta [9]. Consider the nonlinear eigenvalue problem:

$$
\left\{\begin{array}{l}
-\Delta_{p} u=:-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\lambda V(x)|u|^{p-2} u \quad \text { in } \Omega \tag{1.4}\\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where V satisfies condition (1.2). Define C^{1} functionals Φ and $J: W_{0}^{1, p}(\Omega) \rightarrow R$ by

$$
\Phi(u) \equiv \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x, \text { and } J(u) \equiv V(x)|u(x)|^{p} \mathrm{~d} x
$$

and set \mathscr{M} by

$$
\mathscr{M}=\left\{u \in W_{0}^{1, p}(\Omega): J(u)=1\right\} .
$$

Assumption (1.2) ensures that $\mathscr{M} \neq \emptyset$. If $\gamma(A)$ denotes the Krasnoselski genus on $W_{0}^{1, p}(\Omega)$ and for any $k \in \mathscr{N}$, set $\Gamma_{k} \equiv\{A \subset \mathscr{M}: A$ is compact, symmetric and $\gamma(A) \geqslant k\}$. Then by the standard arguments of Ljusternik-Schnirelman critical point theory, value

$$
\begin{equation*}
\lambda_{k}=\inf _{A \in \Gamma_{k}} \max _{u \in A} \Phi(u) \tag{1.5}
\end{equation*}
$$

is an eigenvalue of problem (1.4). Moreover, $0<\lambda_{1}<\lambda_{2} \leqslant \lambda_{3} \leqslant \cdots \leqslant \lambda_{k} \rightarrow+\infty$, as $k \rightarrow+\infty$.

For $p=2, V(x) \equiv 1$, it is well known that the values obtained by (1.5) are all the eigenvalues of problem (1.4) and some other results, such as the first positive
eigenvalue λ_{1} is simple, isolated and it is the unique eigenvalue with positive eigenfunction. But for the general case $p \neq 2$, the situation becomes far more complicated (cf. [5, 11,15] and the references therein). Fortunately, Cuesta [9] proved that the above properties of the first eigenvalue are also true in our case. Moreover, let

$$
\begin{equation*}
\underline{\lambda}_{2} \equiv \min \left\{\lambda \in R^{+}: \lambda \text { is an eigenvalue and } \lambda>\lambda_{1}\right\} . \tag{1.6}
\end{equation*}
$$

Then $\underline{\lambda}_{2}=\lambda_{2}$.

2. Linking results

Let $e_{k} \in \mathscr{M}$ be the eigenfunction associated to the eigenvalue λ_{k}, then $\left\|e_{k}\right\|^{p}=\lambda_{k}$. Denote $G=\left\{u \in \mathscr{M}: \Phi(u)<\lambda_{2}\right\}$. Obviously, G is an open set containing e_{1} and e_{2}. Moreover $-G=G$. First we shall prove the following Lemma.

Lemma 2.1. e_{1} and $-e_{1}$ do not belong to the same connected component of G.
Proof. Otherwise, there exists a continuous curve σ connecting e_{1} and $-e_{1}$ in G. Let $A=\sigma \cup\{-\sigma\}$, then from the definition of $\mathscr{M}, 0 \notin A$, hence $\gamma(A)>1$. By connectedness of $A, A \in \Gamma_{2}$. Hence, as A is a compact set in G, and from the definition of G, we will have $\max \{\Phi(u) ; u \in A\}<\lambda_{2}$, and this contradicts the definition of λ_{2}.

Let G_{1} be the connected component of G containing e_{1}, then $-G_{1}$ is the connected component of G containing $-e_{1}$. Let

$$
K_{1}=\left\{t u: u \in G_{1}, t>0\right\}, K=K_{1} \cup\left\{-K_{1}\right\} .
$$

Then, we have

$$
\begin{equation*}
\int|\nabla u|^{p}<\lambda_{2} \int V(x)|u|^{p} \quad \forall u \in K \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int|\nabla u|^{p}=\lambda_{2} \int V(x)|u|^{p} \quad \forall u \in \partial K \tag{2.2}
\end{equation*}
$$

where ∂K is the boundary of K in $X=W_{0}^{1, p}(\Omega)$. Let $(\partial K)_{\rho}=\{u \in \partial K:\|u\|=\rho\}$.
Set

$$
\begin{aligned}
& \mathscr{E}_{1}=\operatorname{span}\left\{e_{1}\right\}, \mathscr{E}_{2}=\operatorname{span}\left\{e_{1}, e_{2}\right\}, \\
& \mathscr{Z}=\left\{u \in X: \int_{\Omega}|\nabla u|^{p}=\lambda_{2} \int_{\Omega} V(x)|u|^{p}\right\} .
\end{aligned}
$$

(2.2) implies $\partial K \subset \mathscr{Z}$.

Similar to Proposition 2.1 and Proposition 2.2 in [10], we obtain the following two linking results concerning the p-Laplacian with indefinite weights.

Theorem 2.2. Assume that $v \in \mathscr{E}_{1}, v \neq 0, Q=[-v, v]$ is the line segment connecting $-v$ and $v, \partial Q=\{-v, v\}$. Then $\partial Q \subset Q$ and \mathscr{Z} link in X, that is,
(i) $\partial Q \cap \mathscr{Z}=\emptyset$ and
(ii) For any continuous map $\psi: Q \rightarrow X$ with $\left.\psi\right|_{\partial Q}=i d$, there holds $\psi(Q) \cap \mathscr{Z} \neq \emptyset$.

Proof. It is obvious that $\partial Q \cap \mathscr{Z}=\emptyset$. Now let $\psi: Q=[-v, v] \rightarrow X$ be continuous and $\left.\psi\right|_{\partial Q}=$ id. From the definition of K and Lemma 2.1, K has two connected components K_{1} and $-K_{1}$. Assume $v \in K_{1},-v \in-K_{1}$, then $\psi(Q)$ is a continuous curve connecting v and $-v$, therefore there holds $\psi(Q) \cap \partial K \neq \emptyset$ and thus $\psi(Q) \cap \mathscr{Z} \neq \emptyset$.

Theorem 2.3. Assume $0<\rho<r<\infty$, let $\tilde{e}_{1}=e_{1} / \lambda_{1}^{1 / p}, \tilde{e}_{2}=e_{2} / \lambda_{2}^{1 / p}$, and

$$
\begin{aligned}
& Q=Q_{r}=\left\{u=t_{1} \tilde{e}_{1}+t_{2} \tilde{e}_{2}:\|u\| \leqslant r, t_{2} \geqslant 0\right\}, \\
& \partial Q=\partial Q_{r}=\left\{u=t_{1} \tilde{e}_{1}:\left|t_{1}\right| \leqslant r\right\} \cup\left\{u \in Q_{r}:\|u\|=r\right\}, \\
& Z_{\rho}=\{u \in \mathscr{Z}:\|u\|=\rho\} .
\end{aligned}
$$

Then $\partial Q_{r} \subset Q_{r}$ and Z_{ρ} link in X.
Proof. $\partial Q_{r} \cap Z_{\rho}=\emptyset$ is obvious. Let $\psi: Q_{r} \rightarrow X$ be continuous and $\left.\psi\right|_{\partial Q_{r}}=$ id. Denote $d_{1}=\operatorname{dist}\left(\tilde{e}_{1}, \partial K\right)$ and define mapping $P: X \rightarrow \mathscr{E}_{2}$ as follows:

$$
\begin{gathered}
P(u)=\left(\min \left\{\operatorname{dist}(u, \partial K), r d_{1}\right\}\right) \tilde{e}_{1}+(\|u\|-\rho) \tilde{e}_{2}, \text { if } u \notin-K_{1} ; \\
-\left(\min \left\{\operatorname{dist}(u, \partial K), r d_{1}\right\}\right) \tilde{e}_{1}+(\|u\|-\rho) \tilde{e}_{2}, \text { if } u \in-K_{1} .
\end{gathered}
$$

It is easy to see that P is continuous, and P maps $v=r \tilde{e}_{1}$ to $v_{1}=P v=r d_{1} \tilde{e}_{1}+$ $(r-\rho) \tilde{e}_{2}$, the origin 0 to $0_{1}=P 0=-\rho \tilde{e}_{2}$, the line segment $[v, 0]$ onto the line segment [$v_{1}, 0_{1}$] homeomorphically; $-v=-r \tilde{e}_{1}$ to $v_{2}=P(-v)=-r d_{1} \tilde{e}_{1}+(r-\rho) \tilde{e}_{2}$, the line segment $[0,-v]$ onto a line segment $\left[0_{1}, v_{2}\right]$ homeomorphically; and the half circle $\{u \in \partial Q:\|u\|=r\}$ which is from v to $-v$ in ∂Q onto the line segment $\left[v_{1}, v_{2}\right]$, where $P\left(r \tilde{e}_{2}\right)=(r-\rho) \tilde{e}_{2}$.

Let $f=P \circ \psi: Q \rightarrow \mathscr{E}_{2}$. From the discussion above, there holds $0 \notin f(\partial Q)$, and when u turns a circuit along ∂Q anticlockingly, $f(u)$ also moves a circuit around the original 0 in \mathscr{E}_{2} anticlockingly. Hence, by a degree argument, there holds $\operatorname{deg}(f, Q, 0)=1$. So there exists some $u \in Q$ such that $f(u)=0$, i.e., $P(\psi(u))=0$, which implies that $\psi(u) \in \partial K$; and $\|\psi(u)\|=\rho$. Thus $\psi(u) \in(\partial K)_{\rho}$ and $\psi(Q) \cap(\partial K)_{\rho} \neq \emptyset$. Since $(\partial K)_{\rho} \subset$ Z_{ρ}, hence $\psi(Q) \cap \mathscr{Z} \neq \emptyset$.

3. Existence results for problem (1.1)

In this section, we will give some conditions on $f(x, u)$ to guarantee the functional associated to problem (1.1) satisfies the Palais-Smale condition ((PS) condition) and
the geometric assumptions of Mountain Pass Lemma (cf. Theorem 6.1 in Chapter 2 of [14]) in the case of $0<\lambda<\lambda_{1}$; the ($\left.C\right)_{c}$ condition due to Cerami and the assumptions of the linking theorem (cf. Theorem 8.4 in Chapter 2 of [14]) in the case of $\lambda_{1} \leqslant \lambda<\lambda_{2}$.

Assume $f: \Omega \times R \rightarrow R$ satisfies:
(f_{1}) (Subcritical growth). $|f(x, s)| \leqslant c_{1}|s|^{r-1}+c_{2} \forall s \in R$, a.e. $x \in \Omega$, where $1<r<p^{*}$ $=\frac{N P}{N-\underline{P}}$, if $1<p<N ; 1<r<+\infty$ if $p \geqslant N ;$
(f_{2}) $f \in C(\bar{\Omega} \times R, R), f(x, 0)=0, u f(x, u) \geqslant 0, u \in R$ and a.e. $x \in \Omega$;
(f_{3}) (Asymptotic property at infinity). $\exists \theta>p$ and $M>0$ such that $0<\theta F(x, u) \leqslant$ $u f(x, u)$ for $|u| \geqslant M$ and a.e. $x \in \Omega$;
(f_{4}) (Asymptotic property at $u=0$). $\lim _{s \rightarrow 0} f(x, s) /|s|^{p-1}=0$ uniformly a.e. $x \in \Omega$.
Assumptions of (1.2) and (f_{1}) imply that functional $I: W_{0}^{1, p}(\Omega) \rightarrow R$:

$$
I(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x-\frac{\lambda}{p} \int_{\Omega} V(x)|u|^{p} \mathrm{~d} x-\int_{\Omega} F(x, u) \mathrm{d} x
$$

is well-defined and $I \in C^{1}\left(W_{0}^{1, p}(\Omega) ; R\right)$, where $F(x, s)=\int_{0}^{s} f(x, t) \mathrm{d} t$, and the weak solutions of problem (1.1) is equivalent to the critical points of I. (f_{2}) implies that 0 is a trivial solution to problem (1.1).

Lemma 3.1. If f satisfies assumptions $\left(f_{1}\right)-\left(f_{3}\right)$, then I satisfies the $(P S)$ condition for $\lambda \in\left(0, \lambda_{1}\right)$.

Proof. (1) The boundedness of (PS) sequence of I.
Suppose $\left\{u_{m}\right\}$ is a (PS) sequence of I, that is, there exists $C>0$ such that $\left|I\left(u_{m}\right)\right|$ $\leqslant C$ and $I^{\prime}\left(u_{m}\right) \rightarrow 0$ in X^{\prime}, the dual space of X, as $m \rightarrow \infty$. The properties of the first eigenvalue λ_{1} imply that for any $u \in X$, there holds

$$
\lambda_{1} \int_{\Omega} V(x)|u|^{p} \mathrm{~d} x \leqslant \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x .
$$

Let $d:=\sup _{m} I\left(u_{m}\right)$. Then by the above inequality and $\left(\mathrm{f}_{3}\right)$, as $m \rightarrow \infty$, there holds

$$
\begin{aligned}
d-\frac{1}{\theta} \mathrm{o}(1)\left\|u_{m}\right\|= & \left(\frac{1}{p}-\frac{1}{\theta}\right) \int_{\Omega}\left|\nabla u_{m}\right|^{p}-\lambda\left(\frac{1}{p}-\frac{1}{\theta}\right) \int_{\Omega} V(x)\left|u_{m}\right|^{p} \\
& +\int_{\Omega}\left(\frac{1}{\theta} f\left(x, u_{m}\right) u_{m}-F\left(x, u_{m}\right)\right) \\
\geqslant & \left(\frac{1}{p}-\frac{1}{\theta}\right)\left(1-\frac{\lambda}{\lambda_{1}}\right) \int_{\Omega}\left|\nabla u_{m}\right|^{p} \\
& +\int_{\Omega\left(u_{m} \geqslant M\right)}\left(\frac{1}{\theta} f\left(x, u_{m}\right) u_{m}-F\left(x, u_{m}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{\Omega\left(u_{m}<M\right)}\left(\frac{1}{\theta} f\left(x, u_{m}\right) u_{m}-F\left(x, u_{m}\right)\right) \\
\geqslant & \left(\frac{1}{p}-\frac{1}{\theta}\right)\left(1-\frac{\lambda}{\lambda_{1}}\right)\left\|u_{m}\right\|^{p}-C_{1}
\end{aligned}
$$

where $C_{1} \geqslant 0$ is a constant independent of u_{m}. The above estimate implies the boundedness of $\left\{u_{m}\right\}$ for $0<\lambda<\lambda_{1}$.
(2) By (f_{1}), f satisfies the subcritical growth condition, by a standard argument, one can obtain that there exists a convergent subsequence of $\left\{u_{m}\right\}$ from the boundedness of $\left\{u_{m}\right\}$ in X.

Theorem 3.2. If f satisfies assumptions $\left(f_{1}\right)-\left(f_{4}\right)$, then problem (1.1) has a nontrivial weak solution $u \in W_{0}^{1, p}(\Omega)$ provided that $0<\lambda<\lambda_{1}$.

Proof. We will verify the geometric assumptions of the Mountain Pass Lemma (cf. [14] Chapter 2, Theorem 6.1):
(1) $I(0)=0$ is obvious;
(2) $\exists \rho>0, \alpha>0:\|u\|=\rho \Rightarrow I(u) \geqslant \alpha$;

In fact, $\forall u \in X$, there holds

$$
\begin{align*}
I(u) & =\frac{1}{p} \int_{\Omega}|\nabla u|^{p}-\frac{\lambda}{p} \int_{\Omega} V(x)|u|^{p}-\int_{\Omega} F(x, u) \\
& \geqslant \frac{1}{p}\left(1-\frac{\lambda}{\lambda_{1}}\right) \int_{\Omega}|\nabla u|^{p}-\int_{\Omega} F(x, u) . \tag{3.1}
\end{align*}
$$

From $\left(\mathrm{f}_{4}\right), \forall \varepsilon>0, \exists \rho_{0}=\rho_{0}(\varepsilon)$ such that: if $0<\rho=\|u\|<\rho_{0}$, then $|f(x, u)|<\varepsilon|u|^{p-1}$, thus

$$
\int_{\Omega} F(x, u) \mathrm{d} x \leqslant \int_{\Omega} \int_{0}^{u(x)} f(x, t) \mathrm{d} t \mathrm{~d} x \leqslant \frac{\varepsilon}{p} \int_{\Omega}|u(x)|^{p} \mathrm{~d} x \leqslant \frac{c_{0} \varepsilon}{p}\|u\|_{W_{0}^{1, p}}^{p} .
$$

Choose $c_{0} \varepsilon_{0}=\left(1-\frac{\lambda}{\lambda_{1}}\right) / 2>0, \rho=\frac{\rho_{0}\left(\varepsilon_{0}\right)}{2}$, from (3.1), one has

$$
\begin{equation*}
I(u) \geqslant \frac{1}{p}\left(1-\frac{\lambda}{\lambda_{1}}-c_{0} \varepsilon_{0}\right) \int_{\Omega}|\nabla u|^{p} \geqslant \frac{\lambda_{1}-\lambda}{2 \lambda_{1} p} \cdot \rho=: \alpha>0 . \tag{3.2}
\end{equation*}
$$

(3) $\exists u_{1} \in X:\left\|u_{1}\right\| \geqslant \rho$ and $I\left(u_{1}\right)<0$.

In fact, from $\left(\mathrm{f}_{2}\right)$ and (f_{3}), one can deduce that there exist constants $c_{3}, c_{4}>0$ such that

$$
\begin{equation*}
F(x, u) \geqslant c_{3}|u|^{\theta}-c_{4} \quad \forall u \in R . \tag{3.3}
\end{equation*}
$$

Since $\theta>p$, a simple calculation shows that as $t \rightarrow \infty$, there holds

$$
\begin{align*}
I\left(t e_{1}\right) & =\frac{t^{p}}{p} \int_{\Omega}\left|\nabla e_{1}\right|^{p}-\frac{\lambda t^{p}}{p} \int_{\Omega} V(x)\left|e_{1}\right|^{p}-\int_{\Omega} F\left(x, t e_{1}\right) \\
& \leqslant \frac{t^{p}}{p} \int_{\Omega}\left|\nabla e_{1}\right|^{p}-\frac{\lambda t^{p}}{p} \int_{\Omega} V(x)\left|e_{1}\right|^{p}-c_{3} t^{\theta} \int_{\Omega}\left|e_{1}\right|^{\theta}+c_{4}|\Omega| \\
& \rightarrow-\infty . \tag{3.4}
\end{align*}
$$

Eq. (3.4) implies that $I\left(t e_{1}\right)<0$ for $t>0$ large enough.
Thus Lemma 3.1 and the Mountain Pass Lemma imply that value

$$
\beta=\inf _{p \in P} \sup _{u \in p} E(u) \geqslant \alpha>0
$$

is critical, where $P=\left\{p \in C^{0}([0,1] ; X): p(0)=0, p(1)=u_{1}\right\}$. That is, there is a $u \in X$, such that

$$
\begin{gathered}
E^{\prime}(u)=0, E(u)=\beta>0 \\
E(u)=\beta>0 \text { implies } u \neq 0 .
\end{gathered}
$$

Lemma 3.3. Assume that f satisfies assumptions $\left(f_{1}\right)-\left(f_{3}\right)$. Furthermore, $\theta>p s /$ $(s-1)$ in $\left(\mathrm{f}_{3}\right)$. Then for any $\lambda \in R$, I satisfies the $(C)_{c}$ condition introduced by Cerami in [6], that is, any sequence $\left\{u_{m}\right\} \subset X$ such that $I\left(u_{m}\right) \rightarrow c$ and $(1+$ $\left.\left\|u_{m}\right\|\right)\left\|I^{\prime}\left(u_{m}\right)\right\|_{X^{\prime}} \rightarrow 0$ possesses a convergent subsequence.

Proof. The boundedness of $(C)_{c}$ sequence in X.
Let $\left\{u_{m}\right\} \subset X$ be such that $I\left(u_{m}\right) \rightarrow c$ and $\left(1+\left\|u_{m}\right\|\right)\left\|I^{\prime}\left(u_{m}\right)\right\|_{X^{\prime}} \rightarrow 0$. Then from $\left(\mathrm{f}_{2}\right),\left(\mathrm{f}_{3}\right)$ and (3.3), as $m \rightarrow \infty$, there holds

$$
\begin{align*}
p c+\mathrm{o}(1)= & p I\left(u_{m}\right)-\left\langle I^{\prime}\left(u_{m}\right), u_{m}\right\rangle=\int_{\Omega}\left(u_{m} f\left(x, u_{m}\right)-p F\left(x, u_{m}\right)\right) \mathrm{d} x \\
& =\int_{\Omega}\left(u_{m} f\left(x, u_{m}\right)-\theta F\left(x, u_{m}\right)\right) \mathrm{d} x+(\theta-p) \int_{\Omega} \theta F\left(x, u_{m}\right) \mathrm{d} x \\
& \geqslant-C_{1}+(\theta-p) c_{3}\left|u_{m}\right|_{\theta}^{\theta}-c_{4}|\Omega| \tag{3.5}
\end{align*}
$$

Thus $\theta>p$ implies the boundedness of $\left\{u_{m}\right\}$ in $L^{\theta}(\Omega)$. Since $\theta>p s /(s-1)$, the Hölder inequality and the boundedness of Ω show that

$$
\begin{align*}
\left.\left|\int_{\Omega} V(x)\right| u_{m}\right|^{p} \mathrm{~d} x \mid & \leqslant\|V(x)\|_{L^{s}}\left\|u_{m}\right\|_{L^{p s /(s-1)}}^{p} \\
& \leqslant C\|V(x)\|_{L^{s}}\left\|u_{m}\right\|_{L^{\theta}}^{p} \tag{3.6}
\end{align*}
$$

which, together with the boundedness of $\left\{u_{m}\right\}$ in $L^{\theta}(\Omega)$, means that $\left\{\left.\left|\int_{\Omega} V(x)\right| u_{m}\right|^{p} \mathrm{~d} x \mid\right\}$ is bounded. Then from $\left(f_{3}\right)$, a simple calculation shows that

$$
\begin{align*}
\theta c+\mathrm{o}(1)= & \theta I\left(u_{m}\right)-\left\langle I^{\prime}\left(u_{m}\right), u_{m}\right\rangle \\
& =\left(\frac{\theta}{p}-1\right)\left\|\nabla u_{m}\right\|_{L^{p}}^{p}-\lambda\left(\frac{\theta}{p}-1\right) \int_{\Omega} V(x)\left|u_{m}\right|^{p} \mathrm{~d} x \\
& +\int_{\Omega}\left(u_{m} f\left(x, u_{m}\right)-\theta F\left(x, u_{m}\right)\right) \mathrm{d} x \\
\geqslant & \left(\frac{\theta}{p}-1\right) \int_{\Omega}\left|\nabla u_{m}\right|^{p} \mathrm{~d} x-C \\
& +\int_{\Omega\left(u_{m}<M\right)}\left(u_{m} f\left(x, u_{m}\right)-\theta F\left(x, u_{m}\right)\right) \mathrm{d} x \\
& +\int_{\Omega\left(u_{m} \geqslant M\right)}\left(u_{m} f\left(x, u_{m}\right)-\theta F\left(x, u_{m}\right)\right) \mathrm{d} x \\
\geqslant & \left.\frac{\theta}{p}-1\right)\left\|\nabla u_{m}\right\|_{L^{p}}^{p}-C \tag{3.7}
\end{align*}
$$

where $C>0$ is a universal constant independent of u_{m}, which may be different from line to line. Thus $\theta>p$ and (3.7) imply the boundedness of $\left\{u_{m}\right\}$ in X.
(2) By $\left(\mathrm{f}_{1}\right), f$ satisfies the subcritical growth condition, by a standard argument, one can obtain that there exists a convergent subsequence of $\left\{u_{m}\right\}$ from the boundedness of $\left\{u_{m}\right\}$ in X.

Theorem 3.4. Suppose f satisfies assumptions $\left(f_{1}\right)-\left(f_{4}\right)$, and furthermore, $\theta>p s /$ $(s-1)$ in $\left(f_{3}\right)$. Then problem (1.1) has a nontrivial weak solution $u \in W_{0}^{1, p}(\Omega)$ provided that $\lambda_{1} \leqslant \lambda<\lambda_{2}$.

Proof. It was shown in [3] that $(C)_{c}$ condition actually suffices to get a deformation theorem (Theorem 1.3 in [3], see also Proposition 2.1 in [12]), which is crucial for minimax type critical point theory, and it also remarked in $[3,8,12]$ that the proofs of the standard Mountain Pass Lemma and saddle-point theorem go through without change once the deformation theorem (Theorem 1.3 in [3]) is obtained with $(C)_{c}$ condition. Here we verify the assumptions of standard Linking Argument Theorem (cf. [15] Chapter 2, Theorem 8.4) hold with ($C)_{c}$ condition replacing (PS) c_{c} condition.

Since $\partial Q_{r} \subset Q_{r}$ and Z_{ρ} link in X, it suffices to show that
(1) $\alpha_{0}=\sup _{u \in \partial Q_{r}} I(u) \leqslant 0$, when $r>0$ is large enough;
(2) $\alpha=\inf _{u \in Z_{\rho}} I(u)>0$, when $\rho>0$ is small enough.

In fact, let $u=t e_{1} \in \mathscr{E}_{1}$, from assumption $\left(\mathrm{f}_{2}\right), F(x, s) \geqslant 0$ for all $s \in R$ and almost every $x \in \Omega$, thus there holds

$$
\begin{align*}
I(u)=I\left(t e_{1}\right) & \leqslant \frac{|t|^{p}}{p} \int_{\Omega}\left|\nabla e_{1}\right|^{p} \mathrm{~d} x-\frac{|t|^{p} \lambda}{p} \int_{\Omega} V(x)\left|e_{1}\right|^{p} \mathrm{~d} x \\
& =\frac{|t|^{p}}{p}\left(1-\frac{\lambda}{\lambda_{1}}\right)\left\|e_{1}\right\| \leqslant 0 \tag{3.8}
\end{align*}
$$

Noticing that

$$
\|u\|_{\theta}=\left(\int_{\Omega}|u|^{\theta}\right)^{1 / \theta}
$$

is a norm on \mathscr{E}_{2}, and the norms of finite dimensional space are equivalent, thus there exists a constant $c_{5}>0$ such that

$$
\int_{\Omega}|u|^{\theta} \mathrm{d} x \geqslant c_{5}\|u\|_{W_{0}^{1, p}}^{\theta}
$$

From (3.3), there holds

$$
\begin{equation*}
I(u) \leqslant \frac{1}{p}\|u\|_{W_{0}^{1, p}}^{p}+\frac{S_{1}^{p} \lambda}{p}\|V(x)\|_{L^{s}}\|u\|_{W_{0}^{1, p}}^{p}-c_{3} c_{5}\|u\|_{W_{0}^{1, p}}^{\theta}+c_{4}|\Omega| \tag{3.9}
\end{equation*}
$$

where S_{1} is the best constant of imbedding $X \hookrightarrow L^{p s /(s-1)}(\Omega)$. Since $\theta>p$, there holds

$$
I(u) \rightarrow-\infty, \text { as }\|u\| \rightarrow \infty, u \in \mathscr{E}_{2}
$$

This implies (1).
From (f_{4}) and (f_{1}), there holds

$$
\int_{\Omega} F(x, u) \mathrm{d} x=\mathrm{o}\left(\|u\|^{p}\right) \text { as } u \rightarrow 0 \text { in } X
$$

then for any $u \in Z$, there holds

$$
\begin{equation*}
I(u)=\frac{1}{p}\left(1-\frac{\lambda}{\lambda_{2}}\right) \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\mathrm{o}\left(\|u\|^{p}\right) \tag{3.10}
\end{equation*}
$$

Since $\lambda<\lambda_{2}$, (3.10) implies (2).
Thus the Linking Argument Theorem (cf. [14] Chapter 2, Theorem 8.4)with (C) ${ }_{c}$ condition replacing (PS) c_{c} condition implies that value

$$
\beta=\inf _{h \in \Gamma} \sup _{u \in Q} E(h(u)) \geqslant \alpha>0
$$

is critical, where $\Gamma=\left\{h \in C^{0}(X ; X) ;\left.h\right|_{\partial Q}=\mathrm{id}\right\}$. That is, there is a $u \in X$, such that

$$
E^{\prime}(u)=0, E(u)=\beta>0
$$

$E(u)=\beta>0$ implies $u \not \equiv 0$.

Remark 3.1.

(1) If $V(x) \in L^{\infty}$, then $p s /(s-1)=p$. In particular, $V(x) \equiv 1$, then Theorem 3.4 recovers a partial result in [13].
(2) It is well-known that problem (1.1) has a nontrivial weak solution $u \in W_{0}^{1, p}(\Omega)$ for all $\lambda \in R$ if $p=2, V(x) \equiv 1$ (cf. [2] and [7]). We conjucture that problem (1.1) has a nontrivial weak solution $u \in W_{0}^{1, p}(\Omega)$ for all $\lambda \in R$ in our case, that is, $p>1, V(x)$ satisfies condition (1.2).

Acknowledgements

The author thanks the referee for calling his attention to [13] and some helpful suggestions in improving the paper.

References

[1] C.O. Alves, P.C. Carriao, O.H. Miyagaki, Multiple solutions for a problem with resonance involving the p-Laplacian, Abstracts Appl. Anal. 3 (1-2) (1998) 119-120.
[2] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381.
[3] P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal. 7 (1983) 981-1012.
[4] V. Benci, P.H. Rabinowitz, Critical point theorems for indefinite functional, Invent. Math. 52 (1979) 241-273.
[5] T. Bhattacharya, Some observations on the first eigenvalue of the p-Laplacian and its connetions with asymmetry, Elect. J. Differential Equations 2001 (35) (2001) 1-15.
[6] G. Cerami, Un criterio de esistenza per i punti critici su varieta ilimitate, Rc. Ist. Lomb. Sci. Lett. 112 (1978) 332-336.
[7] K.C. Chang, Critical Point Theory and Applications, Shanghai Science and Technology Press, Shanghai, 1986 (in Chinese).
[8] D.G. Costa, C.A. Magalhaes, Existence results for perturbations of the p-Laplacian, Nonlinear Anal. TMA 24 (3) (1995) 409-418.
[9] M. Cuesta, Eigenvalue problems for the p-Laplacian with indefinite weights, Electron. J. Differential Equations 2001 (33) (2001) 1-9.
[10] X.-L. Fan, Z.-C. Li, Linking and existence results for perturbations of the p-Laplacian, Nonlinear Anal. 42 (2000) 1413-1420.
[11] T. Idogawa, M. Otani, The first eigenvalue of some abstract elliptic operators, Funkcial. Ekvac. 38 (1995) 1-9.
[12] G.-B. Li, H.-S. Zhou, Multiple solutions to p-Laplacian problems with asymptotic non-linearity as u^{p-1} at infinity, J. London Math. Soc. 65 (2002) 123-138.
[13] S.-B. Liu, Existence of solutions to a superlinear p-Laplacian equation, Electron. J. Differential Equations 2001 (66) (2001) 1-6.
[14] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 2nd Edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 34, Springer, Berlin, Heidelberg, New York, 1996.
[15] A. Szulkin, M. Willem, Eigenvalue problems with indefinite weight, Stud. Math. 135 (2) (1999) 199-211.

[^0]: ${ }^{2}$ Supported by Grant 10071080 and 10101024 from the NNSF of China.

 * Corresponding author. Department of Mathematics and Statistics, National University of Colombia, Bogota, Colombia.

 E-mail address: wenyuanxbj@yahoo.com (B. Xuan).

