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Abstract— In continuously operating robotic systems, effi-
cient representation of the previously seen camera feed is
crucial. Using a highly efficient compression coreset method,
we formulate a new method for hierarchical retrieval of frames
from large video streams collected online by a moving robot. We
demonstrate how to utilize the resulting structure for efficient
loop-closure by a novel sampling approach that is adaptive to
the structure of the video. The same structure also allows us
to create a highly-effective search tool for large-scale videos,
which we demonstrate in this paper. We show the efficiency of
proposed approaches for retrieval and loop closure on standard
datasets, and on a large-scale video from a mobile camera.

I. INTRODUCTION

Life-long video streams are a crucial information source
for robotics. Many uses of visual sensors involve retrieval
tasks on the collected video with various contexts. Robots
operating in a persistent manner are faced with several diffi-
culties due to the variety of tasks and scenes, and the com-
plexity of the data arriving from the sensors. While for some
tasks we can define simplified world representations that
form approximate sufficient statistics, real-world scenarios
challange these approximations. For example, one important
task is loop-closure detection for robotic navigation and
localization. Under the assumption of a static environment,
a location-based loop-closure can be defined in terms of
locations and their visual appearance model. Clearly such
a model would not be sufficient for a user operator trying to
find a specific observed event in the robot’s history.

Scene assumptions are also critical — breaking the as-
sumption of a static environment would turn the relatively
easily defined location-based mapping problem into the full
life-long localization and reconstruction problems that are
still open lines of research. On the other hand, keeping the
full visual history of the robot in random access memory is
also suboptimal and often is impossible. A more condensed
form, summarizing the video and allowing various tasks to
be performed is an important tool for persistent operation.

In this paper we demostrate how a method for high-
dimensional stream compression based on the k-segment
mean coreset [22] can be leveraged into efficient summariza-
tion, loop-closure detection and retrieval for arbitrary large
videos. Informally, coresets are approximation algorithms for
specific problems that offer linear construction complexity,
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and sublinear memory requirements. Running an algorithm
for a specific type of coreset (such as segmentation or cluster-
ing) approximates the cost obtained by that algorithm on the
original data, with a provably small error. More rigorously,
coresets are described in Section II, where we also refer to
extensive literature. Our proposed method trades off video
complexity and length as as well accuracy and robustness
requirements. We define a data-adaptive structure to retrieve
and access keyframes from the video, and demonstrate how
this structure can be used to probe for loop-closures over
a video history of arbitrarily large size, while providing
guarantees for the retrieval given enough computation time.
The collection of the data requires a linear-size memory, and
allows logarithmic-time retrieval, providing, in some sense,
an approximate sufficient statistic for a large variety of tasks
involving the visual history. The tasks we demonstrate in
this paper can be considered representatives of the full range
of possible tasks for a robotic system involving its visual
history.

Contribution We develop an efficient feature-based core-
set algorithm for summarizing video data with significantly
lower memory requirements than existing methods. Addi-
tionally, we demonstrate a system implementation of the
described algorithm that generates a visual summarization
tree. We present a variety of experimental results that char-
acterizes the efficiency and utility of the resulting system for
place identification and loop closure.

We define and describe the relevant coresets, structures,
and algorithms in Section II. In Section III we define the
require notations for localization. This is followed by the
details of the proposed closure detection and retrieval algo-
rithms in Section IV. In Section V we demonstrate empirical
results of our algorithm, both on existing and new datasets,
followed by conclusions in Section VI.

A. Related Work

Large-scale place recognition in online robotic systems
relates to several active fields of research. Studied intensely
between the vision [26], [25], [15], [24] and the robotics
[11], [4], [16] communities, attempts have been made to
allow faster loop-closure processing of larger datasets [5]
and to utilize 3D information in order to increase specificity
[21]. Maddern et al. [18] propose a way of minimizing
the effects of life-long collection of images in the mapping
phase, especially with respect to location model creation.

We note that a key assumption of such algorithms is
that loop-closure and location pruning are achieved at full
video frame rate, thereby inducing both high computational
costs and the need for significant retrieval efficiencies. When
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3D information is unreliable (e.g. indoor localization), when
there is significant location uncertainty, or when loop-closure
information is scarce, the number of locations may grow
with the size of the video stream. In this sense, dealing with
the inherent complexity of life-long videos in the area of
localization is still quite limited.

Several works in the robotics community (see for example
[4],[13],[1]) attempt to define the problem as large scale
inference problem over a graphical model of observations
conditioned on locations. One advantage of such methods is
their natural integration with local filtering approaches for
localization [7] and handling of outlier matches.

In the vision community, localization is highly related to
place recognition works such as [15]. However in large scale
location recognition, 2D-to-3D matching approaches (such as
[17],[23]) attempt to address the retrieval problem associated
with collections of large images and multiple locations. The
main emphasis in these approaches is on obtaining high
specificity and reducing false alarm rate – this is partially
due to the fact that such systems are inherently looking for
maximum probability solutions and hence attempt to prune
multiple alternatives to the correct location. Several of these
works obtain high efficiency by 3D-aided pruning, since they
utilize the reconstructed map as well.

The use of coresets of data approximation has been con-
sidered previously with the work of [20] and [22] being the
most closely related. While [20] considers the use of coresets
for appearance-based mapping, navigation, and localization
they do not exploit temporal consistency across frames as
we do here. Additionally, the computational complexity and
associated memory requirements of the proposed approach
represent an exponential improvement when compared to
that work. Lastly, the proposed coreset formulation allows
for an unbounded set of locations while supporting loca-
tion retrieval and loop-closure. While in [22] we adopt a
descriptor vector representation of frames and demonstrate
segmentation using a derived coreset, we do not consider
localization or loop-closure. Furthermore, in contrast to the
current formulation, the number of segments is assumed to
be known a priori.

II. CORESETS AND STREAM COMPRESSION

We now turn to describe the coreset used in this paper and
the specific properties that make it useful for video retrieval
and summarization. In the problem statement we query an
observed image from a static set of observed locations.
However, in practice we are given a possible unbounded
video stream of multiple frames per second (50/60 is the
HD standard). To this end, we select a representative over-
segmentation of the video stream (along with a compact
representation of each segment) called a coreset. The coreset
approximates the original data in a provable way, that guar-
antees a good trade-off between the size of the coreset and
the approximation of each scene in the video stream. More
precisely, we embed images into Rd based on a naive Bayes
approximation, representing n images as a set n points in
Rd . The algorithm outputs a set, called ε-coreset, of roughly

k/ε weighted segments approximating the data, such that
the sum of squared distances over the original points and
approximating segments to every k piecewise linear function
is the same, up to a factor of 1± ε . The existence and
construction of coresets has been investigated for a number
of problems in computational geometry and machine learning
in many recent papers (cf. surveys in [8]). The assumption
in this model is that similar images corresponds to points on
approximately the same time segment.

In this work we leverage our most recent results for high-
dimensional data segmentation [22] and present algorithms
to perform efficient loop-closure detection and retrieval for
arbitrary large videos. The core of our system is the k-
segment coreset, which provides flexibility with respect to
varying dimensionalities, multiple sensors, and different cost
functions. For a single segment (k = 1) no segmentation
is necessary, and the data is represented using SVD. For
multiple segments we want to know how many segments are
in the partition, how to divide them, and how to approximate
each segment. We present a two-part coreset construction:
first we estimate the complexity of the data using a bicriteria
algorithm; second we define a fine partition of the data
into coreset segments using a balanced partition algorithm,
and we approximate each segment by SVD. The algorithm
guarantees a segmentation that is close to k-segments with a
cost that is close to the optimal cost.

A. Streaming and Parallelization

One major advantage of coresets is that they can be con-
structed in parallel, as well as in a streaming setting where
data points arrive one by one. This is important in scenarios
where it is impossible to keep the entire data in random
access memory. The key insight is that coresets satisfy certain
composition properties, which have first been used by [10]
for streaming and parallel construction of coresets for k-
median and k-means clustering. These properties are:

1) The union of two ε-coresets is an ε-coreset.
2) An ε-coreset of such a union is an ε(1+ ε)-coreset.

We note that while the first property may seem trivial by con-
catenating the elements of the coresets, the second property
relates to the desired compactness of the representation, and
states that we can further compactness the unified coreset so
that it scales nicely as more data is added.

Streaming In the streaming setting, we assume that points
arrive one-by-one, but we do not have enough memory to
remember the entire data set. Thus, we wish to maintain
a coreset over time, while keeping only a small subset of
O(logn) coresets in memory. Since each coreset is small,
the overall memory consumption is also small. Using the
properties above, we can construct a coreset for every block
of consecutive points arriving in a stream. When we have
two coresets in memory, we can merge them (by property
1), and re-compress them (by property 2) to avoid increase in
the coreset size. An important subtlety arises: while merging
two coresets does not increase the approximation error,
compressing a coreset does increase the error. However,
using a binary tree as shown in Fig. 1, the final approximation



in the root is roughly O(ε logn) for an original stream of n
points, which can be reduced to ε by using a little smaller
value for ε (cf. [22] for a discussion of this point in the
context of k-segmentation).

We call the tree resulting from the coreset merges the
coreset streaming tree. We denote the coresets created di-
rectly from data as streaming leaves. An additional, useful
structure can be defined by looking at segment merges in
the balanced partition algorithm in [22]. This structure is the
coreset segment tree.

Parallelization Using the same ideas from the streaming
model, a (nonparallel) coreset construction can be trans-
formed into a parallel one. We partition the data into sets, and
compute coresets for each set, independently, on different
computers in a cluster. We then merge two coresets (by
property 1), and compute a single coreset for every pair of
such coresets (by property 2). Continuing in this manner
yields a process that takes O(logn) iterations of parallel
computation. This computation is also naturally suited for
map-reduce [6] style computations, where the map tasks
compute coresets for disjoint parts of the data, and the reduce
tasks perform the merge-and-compress operations. We note
that unlike coresets for clustering such as the one used in
[21], parallel computation requires us to keep track of the
time associated with the datapoints sent to each processor.

New Approaches We now discuss how our work differs
from, and builds on, existing state of the art in this respect.
Using the above techniques, existing coreset construction
algorithms allow us to handle streaming and parallel data
but not both. This is because the parallel approach assumes
that we can partition the data in advance and split it between
the machines. However, we cannot split an unbounded stream
in such a way when not all the data is available in advance.
In our problem we wish to process streaming video on the
cloud, i.e., computing it for streaming data and in parallel. In
other words, we want to compress the data in a distributive
manner while it is uploaded to the cloud.

There are two contexts in which our system allows simul-
taneous streaming and parallelization. The first is streaming
of buffered data. For example (a robotic scenario), in the
case of an autonomous exploration vehicle or UAV collecting
a high volume of video, it is still useful and sometimes
necessary to stream the data to a collection point at a
later time. Another example is a wearable device with an
intermittent connection to a data server that will buffer data
at times when it is unable to upload it in real time. In both
cases, the context will dictate a sufficient leaf size beyond
which temporal continuity is not expected, and continuous
data blocks of this size can be streamed in parallel.

Another context that is prevalent in robotics is a multi-
source video stream (such as the FAB-MAP dataset [4],
which is considered an industry standard). In this case, we
can parallelize the coreset construction by streaming each
view separately, multiplexing video streams where necessary.
Temporal continuity is naturally preserved.
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Fig. 1: Streaming coreset construction of a data stream. The bottom
figure illustrates the online construction and segmentation of a
block from an incoming data stream. Coreset segments are shown
with dashed blue lines. The top figure illustrates the continuous
compression of the data stream through progressive merge/reduce
computation of the coresets from lower level coresets.

B. Summarization and Retrieval

Roughly, in video summarization the goal is to get an
image representative from each scene in a given time interval,
for a partition that captures the structure of the video.
Using the right feature space, we assume that images in
the same scene are generated by a simple model. We use a
linear approximation to allow short-scale temporal variations.
Our goal is to select a representative image from each
such segment. However, the coreset for this problem only
guarantees that the k-segment of the coreset will approximate
the k-segment of the original data, which may not be a
fine enough segmentation. In addition, the assumption above
holds usually but not always – thein practice images that
are intuitively similar appear on different segments, due to
appearance of new objects or viewing of different scene areas
with a small FOV camera. In this paper we demonstrate
how the coresets streaming framework allows us to overcome
these difficulties with little effort.

In is paper we differentiate between several hierarchical
structures that are created during the stream processing.
The traditional two are the coreset streaming tree defined
by the merging of batches in the data stream, and the
coreset segment tree, which depicts the merging of coreset
segments during the streaming. The former has a fixed
topology regardless of the data, while the latter is adaptive to
transitions in the data, yet does not prioritize different aspects
of the data points themselves. We add on top of these a third
structure, which allows us to get this unary adaptivity.

Specifically, we add a layer that stores a carefully chosen
set of images along with each node of the coresets tree, called
key frames. Besides accomodating possible partitions of the
data, these key frames are expected to capture the variability



of the observed scenes in the video, and provide for various
applicative needs. We detail the selection of the key frames in
Section IV-A. These key frames are merged both according to
the images quality and their ability to represent other images
in the video, and according their representation of video
transitions, as captured by segment merges in the coreset
algorithm. We call the tree formed by selection of prominent
key frames the keyframe merge tree.

In the context of life-long processing and retrieval, the
coreset streaming tree is usually used to support the stream-
ing and parallel model as explained in Section II-A, where
only a small subset of the coresets in the tree exists at any
given moment.

III. LOOP-CLOSURE PROBLEM FORMULATION

We now describe the loop-closure problem following the
notation of [4]. Denoting the set of observations at time k,
usually extracted from an observed image by Zk, we wish
to associate it with a unique location Li. This is done by
evaluation of the set under a location-dependent probabilistic
model

p(Zk | Li) = p(z1, . . . ,z|v| | Li), (1)

where |v| denotes the number of features, and zi denotes the
indicator for appearance of feature i in the image k. While
some methods consider the variables zi as binary variables,
in many cases, counts of feature appearance may be multiple
(especially if the visual vocabulary used is small).

We are looking for the location that maximizes the con-
ditional probability

p(Li | Zk) =
p(Zk | Li)p(Li)

p(Zk)
, (2)

and for the purpose of this work, we ignore the temporal
dependency that is often sought [4]

p(Li | Zk,Zk−1) =
p(Zk | Li,Zk−1)p(Li,Zk−1)

p(Zk,Zk−1)
, (3)

where Zk−1 denotes the observation history up to time k.
Several approximation have been considered for comput-

ing p(Zk | Li). The simplest approximation is the naive Bayes
approximation

p(Zk | Li) =
|v|

∏
i=1

p(zi | Li), (4)

which leads to L2 distance measure between observations
and location distributions, while assuming

p(z j | Li) ∝ exp{−(z j−µ j(Li)
)2/σ

2} , (5)

where we do not assume a binary appearance vector. We note
that the log-probability of the observation given a location
naive Bayes model is the L2 distance in feature-space. This
distance is the distortion measure approximated by k-segment
mean coreset for k-segment models.

Another often used approximation is the Chow-Liu tree
[2]. As proposed in [4], the naive Bayes PDF model can be
improved upon by an optimal tree (in the KL-divergence

(a) Dissimilarity matrix

(b) Relevance score

Fig. 2: Examples showing the dissimilarity matrix d and relevance
score f ∗ associated with the two terms of (9). The dissimilarity
matrix (Fig. 2a) shows visually how different the candidate frames
are in descriptor space. The relevance score (Fig. 2b) given by (7)
is shown in black. The 9 out of 18 selected keyframes during a
merge of two nodes are shown with black dots.

sense) with respect to the empirical distribution of the
location in a way that is still tractable (i.e by solving a max-
weight spanning tree problem).

IV. RETRIEVAL ALGORITHMS

We now detail the construction required for the summa-
rization and retrieval tasks described above, in terms of the
augmentation of the coreset structures, and the algorithms
running on top of the coresets.

A. Incorporating Keyframes into a Coresets Tree

We first describe the incorporation of keyframes into
the coreset streaming tree construction. This allows us to
demonstrate the use of keyframes stored in the coreset tree
in localization, keeping only a fraction of the frames for
localization, At each streaming leaf SL we keep a set of
K keyframes, for some fixed K. With each node merge in
the tree, we select the new set of keyframes from the ones
existing in the children nodes by running a modified farthest-
point-sampling (FPS) algorithm [12], [9] on the feature
vectors. The FPS chooses the frame with feature vector x
from the data, that is farthest from the existing set S j−1

x j = argmax
x

d(x,S j−1), (6)



with S j−1 marking the set of previously chosen frames, in
terms of their feature vectors, and d(xi,x j) is the L2 distance
between keyframes xi,x j in the feature space. Here, we
modify the FPS selection rule by adding an image relevance
score term that can include image quality (sharpness and
saliency), temporal information (time span and number of
represented segments), and other quality and importance
measures. The relevance score is defined as

f ∗(x) = αT fT (x)+αS fS(x)+αB fB(x) (7)

where positive fi(x j) indicates higher relevance. The rele-
vance score fB(x j) is the the blur measure for image j based
on [3] (negated for consistency with our positive relevance
convention). The relevance scores fT (x j), fS(x j) denote video
time and number of coreset segments associated with the
keyframe x j, respectively. More generally

f ∗(x j) = ∑
N
i=1 αi fi(x j) (8)

for any set of metrics 1 . . .N, such as the example in Fig. 2b.
The weights α allow us to fine-tune the system, for example
to give more weight to image quality vs temporal span.
This allows us to get a rich set of representative keyframes
that are meaningful in the video in terms of time span and
complexity, Given a starting point x0 we modify the FPS
algorithm to include the relevance score. The new point is
then given by

x j = argmax
x

{
d̂(x,S j−1)

}
= argmax

x

{
d(x,S j−1)+ f ∗(x)

}
. (9)

It can be shown that the resulting selected set is close to
the optimal set if the values of the score function are bounded
and sufficiently close to 0, converging in the limit to the 2-
optimality guarantee of FPS. Let S be the set chosen by the
modified FPS, and let

ρ(S) = max
x

d̂(x,S). (10)

Lemma 1 Let S∗ be an optimal representative set given by
S∗ = argminS′ ρ(S

′). Then

ρ(S)≤ 2ρ(S∗)−min
x

f ∗(x) (11)

Proof: The proof for a specific k and Sk is done similar
to the FPS proof [19], by looking at xmax, the maximizer of
d̂(x,Sk), along with Sk. By comparing this set to S∗k using

d̂(x,y), x ∈ {xmax}∪Sk, y ∈ S∗k (12)

we have two elements x1,x2 with d̂ minimal to the same ele-
ment s∗ ∈ S∗k , by the pigeonhole principle. Let us assume x1
to be the latest of the two. It can be shown that d̂(xmax,Sk)≤
d̂(x1,x2), due to the order of selection of xmax,x1,x2,

d̂(x1,x2)≤ d̂(x1,s∗)+ d̂(x2,s∗)− f (x2)

≤ 2ρ(S∗k)−min
x
( f ∗(x)), (13)

by triangle inequality over d and the definition of d̂.

(a) The interactive UI described in Section IV-B showing the coreset
tree for the Boston Trolley Tour (left). The image collage shows
9 keyframes captured from this data (right). Observe that the
keyframes with the red/green margins propagated from the left/right
child nodes; the corresponding represented time interval is shown
at the bottom of the tree.

(b) An image retrieval example from the Boston dataset, using the
tree-sampling method in Algorithms 1,2. The green frame marks
the query image corresponding to xre f in Algorithm 2. The other
images are the maximum-probability match found by sampling.

Fig. 3: Boston tour loop-closure results

The function f ∗ makes the coreset tree more adapted to
the data. By storing this relevance score for each node in the
coreset tree, the relative importance of individual keyframes
is propagated along the binary tree structure, allowing us
to query the tree for this information at each level. In
general, our coreset tree system facilitates the addition of
other metrics, such as object detection, optic flow, etc. that
allow us to emphasize the semantic content that is most
appropriate to the problem.

B. User-Interface for Retrieval

The proposed key-frames allow easy and useful search and
retrieval for a human user. We now describe user interface
that allows the user to browse through the video stream and
see the summarization and representative images from each
interval using a visual tree, as shown for example in Fig. 3a.
We note that our user interface, summarization and time
search approach can be useful for any other type of coresets
on images, such as k-means clustering, or for trajectories
summarization. The interface demonstrate a non-standard
retrieval task and could be relevant for robotic tasks, such
as searching for people and objects in a subsequence of the
video, change detections, and so forth.

In the proposed UI, the user can browse through the binary
tree on the left. The node with the white circle corresponds
to the selected time interval. Its left child is always marked
by a red circle, and its right child by a green one. The red
and green rectangulars on the bottom of Fig. 3a mark the
relevant leaves of the red and green nodes respectively. In



Algorithm 1 v = SAMPLEOLDNODE(vend) –
Sample node v from the tree recorded before vend

1: v← vend
2: tmax← ∞

3: started descent← 0
4: α < 1 is a fixed parameter
5: while started descent 6= 1 do
6: sample p uniformly at random from [0,1]
7: if v is not the root node and p < α then
8: tmax← tstart(v)
9: v← PARENT(v)

10: else
11: started descent← 1
12: end if
13: end while
14: while v is not a leaf node do
15: v← OLDCHILD(v, tmax, KEYFRAMES(v))
16: started descent← 1
17: end while
18: return v

the right side of the figure we show the selected key frames
in the white nodes. The key frames that were chosen from
the red note are marked by a red border, and similarly the
other key frames are marked by a green border.

Additionally, the user can specify a time span that he or
she is interested in summarizing. The user interface computes
the minimum subtree that summarizes the activity in that
time region. The relevant images are extracted from the hard
drive according to the user clicks. Theoretically, the retrieval
time of the relevant coreset is poly-logarithmic in the size of
the related video stream using the properties and structures
of the coreset tree.

C. Life-long Loop-Closure

We now proceed to describe how life-long loop-closure
can be performed based on the coreset streaming segment
tree. While the segments in the coreset streaming tree
provide an adaptive tradeoff between temporal resolution
and efficiency, different nodes in the coreset streaming tree
are still of equal time span. However, we expect the data-
adaptivity of the coreset to allow efficient retrieval for
arbitrarily long videos. To this end, we define a method
for random caching of frames for loop-closure detection,
based on the graph distance in the streaming segment tree.
Similar to RTAB-MAP [14], we assume the system to include
a working memory (WM in the notation of [14]) and an
index based on the coreset streaming tree in memory. The
coreset streaming tree nodes point to a database of frames
(or their corresponding locations, in the case of a location-
based retrieval), we denote as long-term memory (or LTM),
where each leaf is a page of frames to be swapped in
and out. We define retrieval and discard rules for pages
containing previous frames, between a working memory and
the database of the robot’s visual history. We note that a
similar approach could be incorporated with location-based

Algorithm 2 X = UPDATECLOSURECACHE(xre f ) –
Find matching candidates X for image descriptor xre f

1: WM = /0
2: while 1 do
3: v← SAMPLEOLDNODE(vend)
4: if v /∈WM and FULL(WM) then
5: select node vrem from WM at random
6: WM←WM \{vrem}
7: end if
8: WM←WM∪{v}.
9: compute loop-closure probabilities for xre f using WM

10: compute matching candidates X
11: end while
12: return X

mapping by replacing the frames descriptors with pointers
to locations observation models.

The retrieval rule we employ randomly selects pages
based according to the procedure SAMPLEOLDNODE pre-
sented in Algorithm 1. The procedure uses the func-
tion OLDCHILD(v, t,key f rames), that returns a child of v
recorded at tend older than t at random. We adapt the
sampling so that each child has a weight proportional to the
number of keyframes the parent node drew from it, plus 1 (to
ensure a non-zero sampling probability). This allows us to
take into account quality metrics based on the coreset as well
as image quality/saliency, as described in Subsection IV-A.
The effect of the weighted traversal can be seen in Fig. 4b.

It can be seen that the probability of reaching leaf `, by
traversing from the last leaf in the tree vend , is non-zero.
Since reaching each leaf from vend has exactly one path, and
this corresponds to a single set of choices in the conditionals
we can bound this probability from below by looking at the
direct route from vend to the node `,

p(SAMPLEOLDNODE(vend) = `)

≥ α
dU (vend ,`)

(
1

dmax

)dD(vend ,`)

≥
(

min
(

α,
1

dmax

))d(vend ,`)

, (14)

where dD(vend , `) denotes the path length from the com-
mon root of vend and ` to `, and dU (vend , `) denotes the path
length from the common root to vend . It is easy to see that

p(SAMPLEOLDNODE(vend)) = `)≤ α
dU (vend ,`). (15)

Let us mark by tstart and tend the beginning and end of the
time span associated with each node or leaf of the tree. It is
furthermore easy to see that going up to the parent node, tstart
is non-increasing and tend is non-decreasing. Going down to
an earlier child, tstart is non-increasing. This can be summed
up in the following lemma:



(a) Sampling paths along the coreset tree (b) Comparison of tree-based sampling (c) Seek time histogram

Fig. 4: Loop-closure sampling results. Fig. 4a shows the sampling paths (blue) starting from the query node vend (black) along the coreset
streaming tree of the Boston data in Fig. 3a. Fig. 4b shows the comparison of leaf sample frequency without usage of keyframes computed
on the data in Fig. 3a for 500k trials (red) against sampled nodes using keyframes (blue). Intuitively, high-probability nodes correspond
to segments in the video that had salient and clear sections in the video. Fig. 4c shows the seek time histogram for the example shown
in Fig. 3b, using the tree-sampling method in Algorithms 1,2. As expected, the tree-sampling seek times drop as the number of sampled
leaves increases.

Lemma 2 SAMPLEOLDNODE(v) samples a leaf whose
span ends before tend(v), and all previous leaves have
a non-zero probability of being sampled, as described in
equation (14).

Based on this sampling procedure we present the loop-
closure detection algorithm described in Algorithm 2, which
operates according to a maximum time allotted per turn, in
order to fit a real-time regime. We define FULL(WM) to be a
function indicating whether the working memory is full. The
sampling probability of leaves according to Algorithm 1 can
be seen in Fig. 4a, showing the adaptiveness of the method.

It can be shown that the pages in WM are distributed
exponentially decreasing with respect to the tree distance
from start node vend , assuming pages are kept in a FIFO
order in the cache. The probability of a leaf to be added to
WM is bounded from zero, thus ensuring that every leaf (and
the locations pointed by it) has a chance of being sampled.

V. RESULTS

The primary dataset used in this study is a recording of a
Boston Trolley Tour. The video was captured using Google
Glass and spans 3 hours. Doing away with an obvious redun-
dancy for these application [5], we conservatively subsample
by a factor of 5, to around 75k frames. Fig. 3a (left) shows
the coreset tree generated by processing the entire tour.

A preliminary set of experiments serve as a hard ground-
truth demonstration of the correctness of the coreset tree for
the purposes of video segmentation. For this demonstration
we select 15 still frames capturing scenes of interest during
the tour. The stills were duplicated for random periods
of time into a synthetic video file. The purpose of these
experiments is to demonstrate (a) the coreset tree’s utility in
successfully segmenting data, and (b) the capability of the
coreset tree to adaptively propagate important keyframes to
the higher nodes without repetition. Fig. 3a (right) shows
the results of these experiments. We observe that the coreset
tree has successfully segmented the data and captured all

representative frames, and that each video still was captured
by a keyframe, regardless of how long the original video
segment was. This demonstrates the coreset’s capacity to cap-
ture information. Secondly, we observe that as the keyframes
propagate up to the node of the tree, the modified FPS
algorithm described by equation (9) favors few repetitions
of similar keyframes, by definition of the FPS algorithm.
This highlights our coreset tree’s capacity to summarize
information in an adaptive manner that can be tailored to
the problem domain.

A. Loop-Closure Experiments

Loop-closure experiments were conducted on a short video
of 6000 frames with 2 known ground-truth loops. A coreset
tree was created using a set of 5000 VQ representatives
trained on 100k SURF descriptors. In general, the choice
of leaf size depends on the problem domain, and will reflect
the typical temporal resolution of the sequence. We used
leaf sizes of 100,150,200. With 9 keyframes per leaf, a leaf
size of 200 represents a subsampling of the input data by a
factor of more than 22. With larger leaf sizes, results were
too sparse for this short video sequence, however for larger
videos such as the Boston data, a leaf size that is an order of
magnitude on par with the size of the test data is appropriate.
An L2 distance map was calculated based on the descriptors
of the leaf-node keyframes, and thresholded to produce a
loop-closure map.

The loop-closure map produced by our coreset was com-
pared against an equivalent loop-closure using uniform sam-
pling of frames from the test video. Keyframe descriptors
were primed for a number of thresholds that give meaningful
loop-closure patterns. Results were evaluated objectively by
computing the precision/recall trends for our coreset tree
against uniform sampling (Fig. 5). We see a typical trend
of precision decreasing with recall, as the true positives get
outweighed by false negatives with increasing threshold. For
all values of recall, we achieve a higher precision by using



Fig. 5: Precision/recall plot comparing keyframes from the coreset
tree (solid lines) against uniformly sampled keyframes from the
video (dashed lines), as inputs for L2 loop-closure. The ground-truth
line represents the asymptotic precision score, i.e. T P/(P+N) for
a P = 1,N = 0 classifier.

descriptors from the keyframes of the coreset tree compared
against uniform sampling. These results demonstrate the
ability the coreset tree to capture information that is useful
for state of the art loop-closure algorithms such as [5].

B. Retrieval Experiments

We now demonstrate a retrieval application based on the
keyframes defined in Subsection IV-A. For a larger scale
retrieval experiement, we demonstrate retrieval for a given
query image in Fig. 3b. Given a query image, we show the
results of 3 runs of the a search for a match (with some
threshold on the L2 distance) that includes the query image
and similar results. We resample tree leaves until a match is
found, and in each leaf retrieved, we look for the minimum
L2 distance match, starting with an empty WM.

We note that processing the overall video of 75k frames
can be done at 3 frames per second on an i7 CPU. The
histogram of leaf retrievals until match is shown in Fig. 4c.
The seek access attempts average of 70.5 is significantly
lower that the uniform expected number of attempts of 108.5
because we expect caching according to recent hits and more
adaptive keyframe-based sampling to further improve results.

VI. CONCLUSIONS

In the paper we demonstrate how coresets for the k-
segment means can form a basis for summarization of visual
histories, for retrieval and localization tasks. We show how
the coreset streaming tree can be used for visual loop-closure
and image retrieval from a video sequence over large videos,
essentially summarizing the video at real-time speeds. In
future work we expect to extend the use of coresets into
additional retrieval and understanding tasks, explore the use
of additional coresets, and consider the more challenging
case of indexing dynamic environments.
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