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ABSTRACT 
 
Photonic crystal based structures have been considered for optical communication applications. A class of 
novel symmetric structures consisting of cavities and waveguides have been proposed to serve as optical 
add-drop multiplexers. Light transfer processes in these structures are analyzed briefly. The problem of 
deviating from the perfect accidental degeneracy is addressed for practical designs, and the backscattering 
intensities are shown low for the slight deviations. Anomalous light refraction at a surface of a photonic 
crystal has also been studied. The limitations of prior theoretical methods for the transmission problem are 
discussed. An outline of a new analytic theory that overcomes these limitations is presented. Photonic 
crystals are fabricated on polymer multi-layer films and integrated with conventional channel waveguides. 
 
Keywords: photonic crystal, optical add-drop multiplexer, wavelength-division-multiplexing, 
backscattering, superprism effect, polymer waveguide 
 

1. INTRODUCTION 
 
Photonics research has prospered in the last decade, owing to the rise of wavelength-division-
multiplexing(WDM) technology in fiber-optic communications.  In recent years, more and more photonics 
research has shifted toward the direction of nano-structure design and fabrication, with photonic crystals1,2 
regarded as one of the promising approaches in a broad range of applications.  Photonic crystals are a new 
class of artificial optical materials with periodic dielectric structures, which result in unusual optical 
properties3-5 that can provide a revolutionary solution for many problems. 
 
This paper covers a range of photonic crystal research activities in the Optical Interconnect group at the 
University of Texas at Austin.  In addition, this paper will explore or explain, in certain detail, some 
important issues in a number of topics of photonic crystal study.  These issues are left out in the literature, 
yet the complete understanding of these issues, as we shall see, is necessary for furthering the research in 
these topics. 
 

2. OPTICAL ADD-DROP MULTIPLEXERS BASED ON PHOTONIC CRYSTAL 
WAVEGUIDES AND CAVITIES 

 
2.1 Photonic crystal based cavities and waveguides 
Photonic crystals are a class of novel materials that offer new opportunities for the control and 
manipulation of light.  These materials are composed of a periodic array of microscopic low-dielectric-
constant scatterers in a homogeneous high-dielectric-constant background, or high-dielectric-constant 
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scatterers in a homogeneous low-dielectric-constant background.  For example, a single slab of 
semiconductor (high dielectric constant) that hosts a periodic array of air-holes (low dielectric constant).  
The underlying concept of photonic crystals originates from two seminal papers by Yablonovitch1 and 
John2, respectively. The basic idea is to engineer a structure so that it manipulates the properties of photons 
in essentially same way that regular crystals affect the properties of electrons.  Electrons in a regular crystal 
see a periodic array of atoms, the coherent scattering felt by the electrons of this array will prevent an 
electron from traveling in the solid if the energy of the electron unfortunately falls into certain ranges. Each 
separate energy range of such property is called an energy gap.  By the same token, a photonic band gap 
exists for photons in a photonic crystal in a range of frequencies where light is forbidden to travel within 
the photonic crystal regardless of its direction of propagation.  Such a bandgap renders a photonic crystal 
an omni-directional mirror that reflects incident light in any direction.  
 
If a point defect is nevertheless formed in a photonic crystal, the omni-directional mirroring effect will 
confine light around the defect to a small volume that is comparable to wavelength2, resulting in an optical 
cavity of high optical energy density and high quality factor.  Employing such novel photonic crystal 
cavities, significant advances have been achieved in semiconductor quantum-well lasers3 and quantum-dot 
lasers4. Meanwhile, photonic crystal waveguides have been extensively studied recently. Photonic crystal 
waveguides are essentially one-dimensional defects created inside a photonic crystal by removing a row of 
“atoms.”  Photonic crystal waveguides first aroused a significant interest of research community after the 
theoretical5 and experimental6 demonstration of a sharp 90o waveguide bend with almost zero bending loss. 
However, recent progress of photonic crystal waveguides more and more focuses on the extremely high 
dispersion capability of photonic crystal waveguides, which has a wider range of applications in light 
amplification, wavelength conversion,7 and dispersion compensation.8 By certain special design of photonic 
crystal waveguides, the dispersion D(delay difference of optical pulses per unit wavelength deviation per 
propagation distance) can reach up to 105 times larger than the value of regular dispersion compensation 
fibers.7 The high dispersion of the photonic crystal waveguides have been carefully demonstrated and 
characterized experimentally. Excellent agreement between theoretical prediction and experiment 
dispersion curve has been confirmed and made-to-order dispersion are shown achievable with careful 
design and fabrication.7  
 
2.2 Optical Add drop multiplexers 
Using photonic crystal based cavities and waveguides as building blocks, infinite opportunities in novel 
device configurations have emerged.  One of such devices is a channel drop filter that selectively drop one 
specific wavelength from a broadband incoming light in a waveguide. 9-10  Such devices are usually called 
Optical Add-Drop Multiplexers(OADM) in WDM optical communications.  The originally proposed 
structures have one or two pairs of cavities symmetrically placed between two parallel waveguides.  The 
working principle is that when the frequency of the light is close to the resonant frequencies of the cavities, 
light in one of the waveguides will be coupled to the cavity modes through evanescent tails in the 
waveguide cladding, and be further coupled into the other waveguide.  By careful design, 100% light 
transfer to the other waveguide is shown possible.   
 
In a recent letter, we have discussed the light drop processes in a more general situation, where n 
waveguides and n pairs of cavities are arranged in an n-fold symmetric structure.11  Such a structure is 
characterized by a group Cnv.  A structure for n=3 is shown in Fig. 1.  The analysis of these structure is 
considerably more difficult than that of the original structures, which correspond to a case of n=2.  Group 
theory indicates that for n>2, the group Cnv is generally not an abelian group.12,13  This means that the 
symmetry operations of the group Cnv do not commute with each other; therefore, irreducible 
representations of dimensions higher than unity appear. As a consequence, a fundamental difficulty in 
analysis arises in that there is not a set of basis functions that are eigenfunctions of all symmetry operations. 
Consider the Hamiltonian of such a system 
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where mk  is a propagating mode with wavevector k and frequency ωk in waveguide m, The mode mc  is 

a localized mode of the resonator pair next of  waveguide mode m, c=e, o for the even and odd modes, 
respectively; ωk is its frequency. The coefficients Vmc,m’c’ and Vmc,m’k represent the coupling between the 
corresponding modes. We have neglected the coupling between the propagating modes of different 
waveguides as discussed by Xu et. al.14  
 

 
Fig. 1  Schematic drawing of an n=3 symmetric OADM that consists of cavities and waveguides. 

 
If we follow the standard group theoretical approach and choose a basis function according irreducible 
representations, the problem becomes extremely difficult to analyze.  The hardest part lies in constructing a 
mode that has zero backscattering amplitude, which is required for an ideal OADM.  Our experiences with 
a number of basis functions have shown that the following choice offers the most convenience in the study 
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One easily sees this is an eigenfunction of the rotation operator Cn, although when the mirror operator 
applies to it, the resultant state will be indexed by α  rather than by α.  We can easily show that the 
Hamiltonian can be simplified to  
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And 1cα  and 2cα  will be different from eα  and oα  because the mirror operations are not 

commutable with Cn.  From this Hamiltonian, it is easy to calculate the forward and backward scattering 
amplitudes for kα .  The backward scattering amplitude is proportional to the following expression and 

must vanish 
0~

2111 ,, =− ccccback c
GGA αααα .        (4) 

Note kk −= , and the Green’s function is given by 

,~
1

,
cic

cc
i

G
ii

αα
αα ωω Γ+−

=    i=1, 2          (5) 

where icαω~  is the modified cavity mode frequency incorporating a shift due to coupling to the waveguides, 

and 
iii ccc ααα γσ +=Γ σαc represents loss intrinsic to the cavities, and γαc is attributed coupling to the 

waveguides.  A general condition has been given under which the backscattering amplitude exactly 
vanishes.11  Part of it still relies on the “accidental degeneracy”, 

11

~~
cc αα ωω = , and 

21 cc αα Γ=Γ . However, 

usually it is difficult to satisfy these conditions exactly in simulation or design, even for an n=2 case. 
Nonetheless, simulations have shown that close to 100% forward transfer and almost zero backscattering is 
still achievable.9  A special analysis is necessary in regard to how good the forward and backward transfer 
spectra are as a realistic system deviates from the ideal accidental degeneracy.  Let 
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It is straightforward to show that  
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where for simplicity we let 
ici αωω ~= , 

ici αΓ=Γ , 12 ωωω −=∆ , and 12 Γ−Γ=∆Γ . The normalized 

backscattering intensity is proportional to 

.)(
22

1 ωγ GIback ∆≈  

Here we have neglected the difference between 
11 cαγγ =  and 

22 cαγγ = . In a passive system(i.e. no any 

electrical or optical power input other than the incoming wave in the input waveguide), the damping 
constants σi, γi, and Γi must be non-negative. Now it is straightforward to show that the maximum 
backscattering intensity, or strictly speaking an upper bound of the intensity, is given by 
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With a bit more work, we shall be able to derive a more accurate bound, which will involve quite 
complicated terms like max(Γ1, Γ2) or min(Γ1, Γ2) and will also have more complicated dependence on ∆ω.  
However, it is usually sufficient to use Eq. (8) to estimate the backscattering intensity.  Evidently, the upper 
bound given in Eq. (8) is relatively tolerant to the deviation from the accidental degeneracy. Even if both 
the frequency degeneracy and the linewidth degeneracy is violated by an amount as much as 10% of the 
value of the ideal linewidth, i.e. ∆ω=∆Γ=0.1 Γ, the normalized backscattering intensity cannot exceeding 
1.7%. The actually number is usually even lower.  Figure 2 illustrates such a case with 10% deviation in 
both center frequency and linewidth. The actual peak intensity of the backscattering spectrum is about 
1.3%, lower than the predicted value. In calculating the intensity in Fig. 2(b), we have assume σi=0, 
otherwise, the peak of backscattering intensity will usually be even lower.  
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(a) 

 

(b) 
Fig. 2   Backscattering amplitude for imperfect accidental degeneracy: ω2- ω1=Γ2 -Γ1=0.1 Γ1.  (a) Resonant spectra of the 
two cavity mode, (b) Normalized backscattering amplitude, the actual peak intensity of the backscattering spectrum 
is about 1.3%, lower than the predicted value 1.7% 

 
In conclusion, we have shown that even the accidental degeneracy is not perfectly satisfied, a low 
backscattering intensity can still be maintained.  This applies to a system with any n(including n=2). Apart 
from this, the full analysis of the channel drop processes in such a n-fold symmetric system can be found in 
Ref. [11]. 
 

3. LIGHT REFRACTION AT A SURFACE OF A PHOTONIC CRYSTAL 
 
3.1. Anomalous refraction: superprism effect 
Light refraction at an interface between a photonic crystal and a homogeneous medium has been subject to 
extensive study recently.15  The refraction angle is found to depend on incident angle and wavelength 
sensitively(“superprism” effect), which may be utilized for wavelength-division-multiplexing(WDM) 
applications.  Furthermore, in some cases, the light beam refracts to the opposite side of the surface normal, 
which generally is expected only when the refractive index of one medium happens to be negative. This 
"negative refraction" phenomenon has been further studied in the context of building superlenses with 
photonic crystals.16-17  
 
3.2.   Difficulties of prior theories and simulation methods 
The physics behind the abnormal refraction is related to the coupling of the incident light with the 
propagating modes of the photonic crystal. Although the light beam direction inside the PHOTONIC 
CRYSTAL can be fairly easily determined from the dispersion surface of the PHOTONIC CRYSTAL, the 
coupling amplitude of each excited mode has not been adequately studied.  This is a critical issue that 
prevents any realistic design of a WDM demultiplexer from being accomplished.  A variety of theoretical 
methods are available to calculate the light propagation in photonic crystals, including transfer matrices,18 
the scattering theory of dielectric sphere lattice,19 and the internal field expansion method.20  However, in 
these theories, the problem is formulated as calculating the transmission and reflection coefficients, R and T 
for a parallel surface slab, rather than for each surface. These calculations always include the effect of 
multiple reflections within the slab. The transmitted and reflected waves are a superposition of all internal 
reflection orders.  Therefore, the coefficients R and T for the slab are an infinite sum of the products of 
single-interface transmission and reflection coefficients.  This is adequate for the case of a wide beam and a 
thin slab, where the secondary beams generated by multiple reflections in the photonic crystal has a 
significant overlap in space, particularly on the exiting surface of the slab, as shown in Fig. 3(a).  However, 
this is not adequate for the case that the beam width is relatively narrow, the refraction angle is large, and 
the slab is relatively thick.  Even after a single round-trip reflection, the secondary beam may not overlap 
with the direct-through beam, as illustrated in Fig. 3(b). Therefore, one has to know the single interface 
transmission and reflection amplitudes.  A more complicated case is illustrated in Fig. 3(c), where a number 
of single-interface refraction problems must be solved sequentially to obtain the final exiting beam.  The 
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knowledge of R, T for single-interface refractions will be crucial to optimize device performance in many 
other cases.  For instance, the solutions to the single interface refractions are needed to explore the 
proposed WDM demultiplexers with non-parallel front and back surfaces.21  Note although the prior 
theoretical methods can calculate the effects due to internal reflections.  They can only deal with the case of 
infinite times of reflections in a parallel surface slab, which is an automatic result of solving Maxwell’s 
equation for the slab.  Solving the single-interface refraction problem gives us more freedom to deal with 
non-parallel surface geometry, and any times of internal reflections. 
 
Finite Difference Time Domain (FDTD) simulations are generally performed to study the non-parallel 
surface cases quantitatively.  But such simulations are time consuming, and may become prohibitive for the 
cases of high wavelength and angular sensitivities. High wavelength sensitivity demands fine grids; high 
angular sensitivity requires a very wide incident beam so that the angular spread of the incident beam is 
small, and the wide beam leads to a large simulation region. 
 

 

(a) 
 

(b) 

 
(c) 

 
Fig. 3  (a) Beams inside photonic crystal (and exiting beams) overlap significantly in space after a round-trip internal 
reflection inside a photonic crystal slab.  A negative refraction case is presented, although the beam overlap/separation 
appears regardless of negative refraction.  For simplicity, only one round-trip internal reflection is drawn.  (b) Beams 
separate after one-round trip reflection.  The single-interface refraction problem must be solved to obtain the intensity each 
of exiting beam.  (c) Multiple internal reflections for non-parallel surfaces.  Our theory can address all three cases.  
Conventional theory can only address case (a). 
 
3.3. Theory for single-interface refraction problem 
We have developed an analytic theory that not only solves the single-interface refraction problem, but also 
gives a physical picture of light refraction at the interfaces between photonic crystal and homogeneous 
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media.  In addition, it provides an efficient way of calculating the relevant parameters of beam refraction, 
propagation in minimum time. 
 
Our theory starts from the most widely used Bloch form of the photonic crystal modes and leads to a simple 
route of understanding the whole picture.  It deals with a surface of photonic crystal with arbitrary 
orientation, which may be represented by an integer (or rational number) Miller index or by an irrational 
number Miller index. The latter actually implies that the surface is a quasi-periodic section of the 3D 
lattice.22  Such a quasi-periodic surface structure usually demands more calculation resources. For the 
periodic surface structure, it will lead certain degeneracy of the photonic crystal modes when the reciprocal 
lattice is sectioned by the constant (kx,ky) line(kx and ky are wave vector components parallel to the 
surface).  Rich intricacy has shown for this case, although we have found a way to sort out the degeneracy 
to identify the unique modes.  The degeneracy is not solely due to the 3D periodicity in the Brillouin Zones 
replicated throughout the reciprocal space.  In fact, 3D periodicity always exists, but the appearance of the 
degeneracy and the degree of the degeneracy depend on whether the Miller index of the surface are integers 
or irrational numbers, which will change for a same lattice as the surface orientation changes.  Without 
understanding this degeneracy, the boundary condition can not be solved. 
 
Another critical problem for the single interface problem is to separate the forward going refracted 
waves(i.e. the photonic crystal modes) and backward going refracted waves.  Note the backward going 
refracted waves must be excluded in a single-interface problem when solving the boundary conditions.  It is 
rather difficult to identify these two types of modes from the original set of linear equations for the Fourier 
coefficients of electric and magnetic fields.  Nonetheless, by considering the topology23 of the dispersion 
surface, a simple partition scheme is available. We proved the relation between the numbers of forward and 
backward refracted waves. Furthermore, we can address the beam width transformation and insertion loss 
for a Gaussian beam with sufficient accuracy.  And we have applied this to design a polygon-shaped low-
loss demultiplexer with many dense WDM channels.  
 

4. NANO-FABRICATION OF PHOTONIC CRYSTALS 
 
4.1.  Electron beam lithography for nano-fabrication of photonic crystals 
Photonic crystals are periodic structures with feature sizes comparable to the wavelength of light.  For 
communication wavelengths around 1.55 µm, the feature sizes lie in the submicron range, which presents a 
challenge to the conventional photolithography techniques.  Electron beam lithography is usually employed 
to pattern photonic crystals for visible and infrared wavelengths.  We have used electron beam lithography 
to pattern structures on polymer films to fabricate two-dimensional(2D) photonic crystals. Several suits of 
electron beam lithography tools are available at the University of Texas at Austin. Some nano-lithography 
facilities at the University of Texas at Austin are shown in Fig. 4.  
 

  
(a) 

 
(b) 

Fig. 4  (a)  Electron beam nanolithography facility at (a) Center for Nano- and Molecular Science Technology, 
(b)  Microelectronics Research Center, both part of the University of Texas at Austin. 
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We have integrated photonic crystals and conventional channel waveguides on a multi-layer polymer film.  
First, the bottom cladding layer and core layer of the waveguides are spin-coated on a silicon wafer.  
Conventional photolithography is employed to pattern the waveguide core layer, followed by reactive ion 
etching(RIE).  Subsequently, the top cladding layer is applied. By careful design and fabrication, the top 
surface of the polymer film stack can usually be planarized easily despite the undulating core layer 
underneath.  The planarization of the top surface is important for the successful patterning by electron beam 
lithography that follows because the depth of focus of the electron beam is usually fairly small.  A segment 
of photonic crystal fabricated on a polymer multi-layer film is shown in Fig. 5. We are able to achieve 
holes of very high aspect ratios around 7:1 with hole radii in the submicron range. Optical tests show that 
the out-of-plane radiation loss24-25 for the short segment of holes shown in Fig. 5 is low. We compare a 
straight waveguide and a waveguide with this short segment of photonic crystal inserted in the middle of its 
length, the difference in insertion loss is on average below 1dB, with a variation from 0 to 3 dB.  The loss 
and loss variation are attributed to a number of factors, including the roughness of holes’ walls, hole size 
uniformity, out-of-plane loss, and polymer curing conditions. Further improvement is underway. Detailed 
analysis of the origin of the loss will be presented elsewhere. 
 

 
 

Fig. 5  A segment of photonic crystal fabricated on a multi-layer polymer film. 
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