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Abstract

We study the extent to which cooperative behavior can be sustained in large, anony-
mous, evolving social networks. Individuals strategically form relationships under a so-
cial matching protocol and engage in prisoner’s dilemma interactions with their part-
ners. We characterize a class of equilibria that support cooperation as a stationary
outcome. When cooperation is possible, its level is uniquely determined. While nei-
ther community enforcement nor contagion mechanisms have force in our setting, the
endogenous dynamics of the social network imply that cooperation allows an individ-
ual to gradually accumulate a large network of profitable interactions, while defection
results in social marginalization. Even as players become perfectly patient, equilibrium
allows for full cooperation, only autarky, or the coexistence of cooperation and defec-
tion, depending on payoffs. Smaller levels of cooperation can be sustained by a form
of exclusivity among cooperators.
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1 Introduction

In the modern world, many social interactions and economic transactions are mediated

through large evolving networks of agents. The size of these systems along with the transient

nature of both individual membership and the relationships amongst them often confer a

measure of anonymity to participants. In online contexts, there are technological aspects

that reinforce anonymity, in that it is typically possible to create a new identity at any

point in time and thereby mimic a new entrant. In these settings, the scope for punishing

uncooperative behavior and, hence, for sustaining efficient outcomes, is potentially limited.

Nevertheless, many systems that are largely anonymous and in which agents change partners

over time are characterized by a high, though often less than universal, level of cooperation.

We find that such an outcome can be explained as equilibrium behavior under a simple

network formation model.

One important aspect of social and economic networks is that an agent’s strategic behav-

ior within the context of a particular relationship is influenced by the behavior from other

relationships. This could in fact be taken as a defining characteristic of any interesting net-

work, as in the absence of some form of strategic interdependence, one is essentially engaged

in a set of separable relationships and the network, per se, has no influence on behavior.

We consider a strong form of this dependence in which at any given time each agent

takes the same action with each of his neighbors. There are two reasons for adopting this

approach. First, there are applications in which technological constraints limit an agent’s

ability to behave differently with different partners, or in which the chosen action represents

a general characteristic of an agent that is not relationship-specific. This is the case if, for

example, an agent must invest in a quality for each period and use that quality for each

transaction. Second, if there is even a small amount of local information flow in the network,

such that a defection with one partner would be observed by the agent’s other partners,

then there will exist equilibria with the behavior that we describe here even if there are no

restrictions at all on the profile of actions an individual chooses at a given moment in time.1

We now describe the main elements of our framework. Agents enter the system over

1One could view this as an implementation of “local community enforcement” along network connections,
in the spirit of [12, 6], which we discuss in more detail below.
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time and have finite lives. All strategic interactions are bilateral and described by a pris-

oners’ dilemma. A random matching process presents agents with opportunities to form

new relationships. In every period, each agent chooses a behavior, cooperation or defection,

and receives the sum of payoffs from the corresponding stage games with each of its current

partners. After every period, each agent has the opportunity to sever any of its relationships.

Consider, for example, an online community in which agents seek partners with whom

to profitably interact, such as for trading goods or engaging in joint production. At any

point in time agents can choose to conduct honest business (cooperate) or to cheat their

partners for a gain (defect). The discretion to sever a relationship has an important impact

on behavior. In the model it plays a key role by providing a mechanism with which to

threaten punishment for uncooperative behavior. In fact, because of anonymity, this is the

only effective mechanism for punishment since there is no scope for future partners to punish

a defecting agent.2 In addition to severing a link to a defecting agent, one might wish to

broadcast the agent’s defection so as to enable further punishment. But the agent who

defected does not have an identity that can be tracked by future partners, and so bears no

negative consequence of his defection beyond the potential loss of his current relationships.3

Interestingly, [18] provide empirical evidence based on laboratory experiments that the

ability to endogenously determine one’s partners increases observed cooperation levels in

repeated prisoner’s dilmmea interactions, while [1] show that cheaters in an online game are

punished by an increased rate of losing partners. These effects constitue crucial elements of

the model we study.

There are two essential properties of the matching process that drive our results. The first

is that it takes (valuable) time to search for partners with whom to form profitable relation-

ships. In an environment characterized by anonymity and the ability to sever relationships,

this is generally a necessary feature to provide any possibility of cooperative behavior. The

intuition is that, because defection can be punished only by the severance of relationships,

2[11] define and study social games that changes equilibrium outcomes by permitting players to choose
with whom they interact. This produces very different insights than our work, since here players are matched
through a random process. [4] identify collaborative equilibria as a function of the social network that
describes interactions.

3Because the defecting agent also has the option of severing the relationship, one can not threaten
contigent play that reduces the defecting agent’s continuation payoff from the relationship below its outside
option.
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in order for this punishment to bite, it must be that future relationships are sacrificed as a

result of defecting.

In light of this observation, our mechanism for sustaining cooperation can be interpreted

as a particular implementation of the notion of social capital, here taken to mean an agent’s

accumulated network of cooperative partners with whom he is connected.4 Indeed, the notion

that cooperative behavior is determined in large part by social pressures has been studied

at length in the sociology literature, including, for example, [13]. In our setting, the reason

to cooperate comes from the fact that, through cooperation, one can gradually build up a

large social network consisting of other cooperating agents.

The second property is that there is a limit to the number of relationships that an agent

can maintain. In combination with the first property, this dictates that the maginal returns

to cooperating to be decreasing in the aggregate level of cooperation in the system. This con-

cavity is important because it allows for the possibility that cooperating and defecting agents

will co-exist in equilibrium. The coexistence result obtains for a wide range of parameters

and we view it as having descriptive value.

Moreover, the constraint on the number of relationships has strategic importance in that

it forces an agent to trade off the continuation value of each relationship against the outside

option of initiating a new relationship. The value of the outside option is dictated by the

aggregate system dynamics, and so provides a link between overall behavior in society and

the incentives that govern behavior in a particular relationship.

Because of this strategic effect, our work is related to a branch of literature that studies

repeated bilateral interactions when relationships can be endogenously terminated. The

central idea in this literature is that the threat of severance disciplines behavior because

being re-matched entails a cost. The cost can come in many forms, such as being cast into

a matching market with frictions, as in the pioneering work of [19], having to start a new

relationship that requires a specific investment [17], or having to start with small stakes

in a new relationship [23, 24].5 New relationships may also entail a phase of gradual trust

4See [21] for an overview of the large literature regarding the concept of social capital. With a related
motivation, but very different analysis, Vega-Redondo [22] studies social capital in a stochastically evolving
network.

5[16] and [3] contribute to the search literature in the context of relational contracts.
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building, as in [8] and [5], or the payment of a bond, as in [14].6

A crucial element common to all of this research is that an agent is involved in at most

one relationship at any given time. All of the equilibria that are studied by this literature

use strategies with the property that actions evolve in a non-trivial way throughout the

course of a given relationship. In a networked society in which an agent continues to form

new relationships while maintaining older relationships, these constructions have no natural

analogue.7 We focus instead on a particularly simple and intuitive kind of behavior that we

refer to as consistent. A consistent agent chooses to either perpetually defect or to perpetually

cooperate.8 We exhibit equilibria in which all agents take consistent actions. In light of this

behavior, optimal decisions regarding the formation and severance of relationships become

easy to describe, which allows us to precisely pin down the nature of the co-evolution of the

network and the behavior in repeated interactions occurring on the network. In particular,

a relationship is severed when, and only when, a defection is observed. Such a social norm

is very natural: defection is not tolerated, and cooperation is met with the opportunity for

future interactions.

Assuming first that agents use consistent strategies, we provide a characterization of sta-

ble stationary equilibria (SSE). The first message is that the payoffs of the prisoner’s dilemma

have an important impact on the sustainable level of cooperations. Under adverse conditions,

no cooperation can be sustained, even as players become perfectly patient. Otherwise, when

agents are patient enough, there is a unique SSE that supports cooperation, and it is such

that either there is universal cooperation, or cooperators and defectors co-exist at a specific

ratio.9 In this sense our model provides an explanation of which societies permit universal

cooperation, and which societies will necessarily be subject to a fringe of cheating behavior.

The model allows for simple comparative statics on the equilibrium level of defection. This

provides a first step towards assessing which kinds of policies can most effectively improve

6[20] provides an earlier analysis of a related game.
7In a very different framework, [9] also leverage the idea that cooperation can be enforced through the

use of multiple relationships, and so make a related connection to social capital. [15] and [2] investigate
relational contracts between a principle and many agents engaged in a repeated game.

8In a model where agents have only one partner at a time [7] examines strategy profiles that involve
agents taking different strategies, similar to our roles of cooperation and defection, and partially characterize
equilibria with trust building via an evolutionary approach.

9The autarky equilibrium always exists and is stable. When there is a positive SSE, there also exist either
one or three unstable stationary equilibria.
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the welfare of the system.

The way in which cooperators manage their relationships takes one of two forms. First,

it may be that they always accept new relationships when the opportunity arises. This case

obtains when the pool of agents searching for a match is sufficiently cooperative. Otherwise,

they accept new relationships only with some probability p < 1, thereby imposing a barrier

on society to obtaining connections with cooperators, resulting in a form of exclusivity. This

exclusivity implies that some agents will fail to find partners when given the opportunity

to match. It can thus be interpreted in terms of an endogenous friction operating on the

matching process. This friction is necessary to achieve cooperation under some parameters.

While exclusivity is costly to all agents, it is effective because, under the right circumstanced,

it decreases the expected returns to defection by more than it decreases the returns to

cooperation.

Having characterized SSE under consistent behavior, our seecond main result shows that

under an appropriate condition on parameters, the outcomes we have identified describe play

along an equilibrium path without imposing consistency on action choices. The condition,

which requires that the temptation payoff to defect be small enough relative to the loss from

being defected on, ensures that perpetual cooperation is sequentially rational at any possible

history. This demonstrates that consistent behavior can be thought of as self-enforcing when

paired with the social norm of severing a link when, and only when, a defection is observed.

Finally, we examine behavior when this condition is not met. The only kind of profitable

deviation from the consistent strategy profile involves a cooperator defecting under a par-

ticular circumstance: when he has very little social capital, and therefore little to sacrifice

in terms of future links with cooperators. We show that as the network becomes dense, this

circumstance becomes increasingly rare due to a law of large numbers argument, and as a

result these strategies form an epsilon equilibrium that generate essentially the same level of

cooperation that we characterize under consistent strategies. In this sense, the description

of consistent equilibria remains a valid description of outcomes for the model.

The remainder of the paper is organized as follows. The model is described in Section 2.

Section 3 characterizes stationary equilibrium outcomes under consistent strategies. Sec-

tion 4 shows that consistency is a self-enforcing norm under the appropriate condition, while

Section 5 describes outcomes that involve a minimal failure of consistency. We conclude
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and provide comments for further research in Section 6. An Appendix contains a formal

development of the model and proofs.

2 A model of strategic interactions in a social network

For ease of exposition, we describe the main elements of the model in this section, relegating

the full development of some technical aspects to the Appendix.

All strategic interactions are governed by a prisoner’s dilemma with the following payoff

matrix.

C D
C 1,1 -b,1+a
D 1+a,-b 0,0

We take a, b > 0 and a − b < 1 so that, while mutual cooperation is the uniquely efficient

outcome, defection is strictly dominant.

There is a continuum of agents, which we associate with points from the unit interval

N = [0, 1].10 Agents interact repeatedly on an evolving directed network. Time is discrete.

At each date each agent independently dies with a given probability 1 − δ, in which case

it is replaced by a new agent.11 We speak of the age of an agent i, t(i), as the number of

dates since its birth, so that t(i) = 0 in the periods when i is born. Each agent i chooses an

action α
t(i)
i ∈ {C,D} at each date t(i) of its life. Agents commonly observe the aggregate

proportion, q, of C behavior in the population after each date, and the aggregate proportion

p of proposed inlinks that were accepted by cooperators12.

Every agent is able to sponsor a number K ≥ 1 of connections to other agents. Thus an

agent is generally involved both in relationships that it sponsors (outlinks) and also in rela-

tionships sponsored by others (inlinks), resulting in a directed graph of interactions. When

a connection is proposed, the partner is chosen uniformly at random from the population,

10We work with a continuum of agents so that players are “atomless”, i.e., no individual can unilaterally
affect aggregate behavior. This is a good approximation for large societies, as one then expects a player to
ignore the marginal effect of her behavior aggregate play.

11The conclusion that at each date, a proportion δ of the population survives with probability one relies
on an exact law of large numbers for a continuum of random variables. See, e.g., Judd (1985).

12Common knowledge of these summary statistics is useful for our notion of equilibrium stability, in which
agents respond to an exogenous shock to the state, as discussed in Section 3.3. In particular, this information
is not necessary to support equilibria.

7



and the connection is then accepted or rejected by the chosen partner. Once accepted, each

connection persists to the subsequent date unless one of the partners dies or chooses to sever

the connection. When a connection is broken, the agent who sponsored it, provided he

survives, is able to re-match with another agent, chosen uniformly at random, at the next

date.

Notice that there is an implicit bound on the expected number of inlinks an agent will

ever receive over the course of his life, due to the fact that every inlink corresponds to the

outlink of some other agent. The fact that we explicitly bound the number of outlinks, while

leaving the bound on inlinks implicit does not drive the results. Similar results would obtain

if one instead bounds the total number of (in- and out-) links an agent is able to maintin.

At each date an agent receives a payoff equal to the sum of the outcomes of the stage

game played with each of his (in and out) partners, according to the chosen actions of the

two agents and the payoff matrix given above. Agents seek to maximize the present value of

expected lifetime payoffs.

To summarize, each time period proceeds according to the following order of events:

1. New agents are born.

2. (p, q) from the previous data is publicly observed

3. Actions are chosen.

4. Outlinks are proposed to other agents.

5. Potential inlinks are accepted or rejected.

6. The stage game is played and payoffs are realized.

7. Agents sever any links that they choose to.

8. Death occurs.

3 Consistent Behavior and stationary outcomes

An agent’s strategy specifies at each date, as a function of everything the agent has observed,

whether to cooperate or defect, how many links to propose, which proposed inlinks to accept,

and which existing links to sever. A formal development is contained in the Appendix.

Throughout, we maintain two assumptions on strategies. First, at the individual level, we

assume a weak form of stationarity, in that agents do not condition their plan of action on
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a common labeling of time. In other words, while each agent is aware of his age and the

history he has observed, he does not use any universal description of time. Second, at the

collective level, we assume that strategy profiles are symmetric.13 However, as we will see,

agents will indeed take heterogeneous roles along a given path of play.

Even with these two assumptions in place, the analysis involves many agents, birth and

death, an endogenously evolving network of relationships, and histories that are to large

extent privately observed. In order to gain traction on studying equiibrium outcomes, we

begin the analysis by considering a setting in which agents adopt a particularly simple

behavioral rule. Namely, agents are assumed to be consistent in their choice of action,

cooperation or defection, over the course of their lives.

Property 1 Consistency: An action from {C,D} is chosen at birth (possibly mixing). At

all future dates, the agent takes same the action it played at the previous date. That is, a

strategy for i is consistent if for every t(i) ≥ 0, a
t(i)+1
i = a

t(i)
i .

Consistency allows us to speak of society as consisting of “cooperators” and “defectors”.

This behavior is plausible as well as simple. Moreover, cooperation will not require the use

of elaborate punishment phases in equilibrium construction.

Certainly, though, consistency limits the complexity of strategic interactions in an im-

portant way. In particular, it prohibits strategies that allow an agent to cooperate until a

history with a certain property is reached, and then defect. Even though consistency rules

out many of the standard constructions that permit cooperation, it turns out to be a sig-

nificantly milder condition than it may first appear. We formalize this assertion in Section

4, but the intuition is as follows. If cooperation at a given round is part of an optimal

strategy, then it is because the increased access to it provides to relationships tomorrow is

enough to forgo the temptation payoff. But if that is true today, then tomorrow the same

comparison is likely to hold true again. To the extent that connection is valid, optimality of

consistent cooperation is not a much stronger requirement than the optimality of the initial

act of cooperation.

13Notice that we thus are not concerned with measurability assumptions on strategy profiles with a con-
tinuum of agents.
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We will first demonstrate that interesting aggregate outcomes obtain under consistent

strategies. Second, and more importantly, the analysis of consistent strategies is a pre-

liminary step to studying equilibrium outcomes more generally. We will argue below that

consistent strategies are, to large extent, self-enforcing, and describe much about equilibrium

behavior in our framework even when inconsistent behavior is permitted.

Under consistent strategies, it is straightforward to describe the optimal management of

links. First, if a defection is ever observed, the best response of the defector’s partner is

to sever the link. We refer to this as unforgiving behavior. Second, when cooperation is

observed, the best response is to maintain the link (provided both agents survive), which

we refer to as trusting behavior. Third, it remains to be shown under which conditions a

cooperator should accept a proposed inlink.14 This will be determined by the probability

that a proposed link comes from a cooperator. Notice that this probability is less than q

in equilibrium since, as just argued, defectors lose their links at every period, and have a

dominant strategy to propose all possible links, while cooperators generally maintain some

links from previous periods, and so search less. Because of anonymity, all proposed inlinks

are ex ante equivalent from the perspective of the agent receiving the proposal. It is therefore

essentially without loss to assume that a cooperator accepts each proposed inlink indepen-

dently with a certain probability p. Finally, for any choice of p and q, we must confirm that

it is indeed rational for cooperators to send outlinks. When p = 1, the chance of finding

a cooperator is q, and so this condition is implied by the willingness to accept inlinks, but

otherwise the condition is independent.

In light of these observations, behavior can be completely described by a function ϕ :

[0, 1]2 → [0, 1]2 with the interpretation that ϕ(p, q) specifies the probability that an agent

chooses C at its birth and the probability with which each inlink is accepted in the event

the agent becomes a cooperator, upon observing the state (p, q).

3.1 Simple stationary equilibria

We are interested in determining when a particular level of cooperation q can be sustained as

a stationary outcome of the system under consistent strategies. Note, however, that a given

pair (p, q) does not, by itself, capture all of the payoff-relevant aspects of the system, even

14Defectors, of course, have a dominant strategy to accept every inlink
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in expectation. Other factors, such as the amount of search by cooperators and defectors,

which depends on the age distribution of those behaviors, impact expected payoffs. This

motivates us to describe the state of the system under stationary behavior.

Definition 1 The steady-state at (p, q), L(p,q), is the limiting distribution over graphs that

obtains when all agents have been applying the consistent, unforgiving, and trusting strategy

described by (p, q) for t periods, as t → ∞.

From the steady-state we can extract all payoff-relevant quantities for expected utilities,

such as the age distribution of cooperators and defectors, along with the expected amount

of search agents of either type are conducting at each age.

For a steady-state to be supported as an equilibrium outcome, it is necessary and sufficient

that the strategy ϕ(p, q) = (p, q) be optimal when the system is in state L(p,q). In this case,

the fact that all agents apply ϕ implies that the system remains in steady-state L(p,q). This

is extremely useful for the analysis, since it is only under the steady-state assumption that

we are able to derive expressions for expected utilities. We can now define equilibrium under

consistent strategies.

Definition 2 A pair (p, q) is a simple stationary equilibrium (SSE) if, given that the system

is in L(p,q) at all times, the application of a strategy that chooses cooperation with probability q

at birth, and where cooperators accept each inlink independently with probability p, is optimal

in the space of consistent strategies.

3.2 Expected Utilities

We now derive the expected utilities associated with the (consistent) choices of cooperation

and defection at an agent’s birth. These utilities depend on the model’s parameters, (a, b, δ).

They depend as well on the proportion of cooperative agents in society, q, and the rate of

inlink acceptance, p. Since we are interested in simple stationary equilibria, we work under

the assumption that the system is in state L(p,q) and remains so over the agent’s lifetime.

If (p, q) is to be a simple stationary equilibrium it is rational for agents to compute their

utilities under the expectation that the system remains in L(p,q).
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The main task in computing expected utilities is to keep track of the expected number

of inlinks and outlinks between agents of different behaviors, C and D, as a function of age.

Define nOut
XY (s) as the expected number of outlinks from an agent of type X at age s to agents

of type Y , X, Y ∈ {C,D}. The expected number of links from a cooperator of age s to other

cooperators can be computed recursively according to

nOut
CC (s) = δnOut

CC (s− 1) + pq(K − δnOut
CC (s− 1)).

The first term retains the existing links with cooperators who remain alive, while the second

term takes all links from the previous period that were broken (due to death or defection)

and re-matches them, obtaining a fraction q of new cooperators, p of whom accept the link.

Setting nOut
CC (−1) = 0 and solving produces

nOut
CC (s) = pqK

(
1− (δ(1− pq))s+1

1− δ(1− pq)

)
.

The number of links from a cooperator of age s to defectors can then be computed according

to nOut
CD (s) = (1−q)(K−δnOut

CC (s−1)), since each link that is proposed at age s matches with

a defector with probability 1 − qs. For defectors the case is much simpler, as the property

of unforgiving behavior implies that age dependency is trivial. We have nOut
DC (s) = pqK and

nOut
DD(s) = (1− q)K.

We turn now to the expected number of inlinks from both types of nodes as a function of

age. To do so, we first compute the number of inlinks an agent expects to receive from agents

of either behavior at each date. These are time-independent rates in steady-state, and from

them the evolution of inlinks is easy to derive. The probability that a randomly selected

node is age s is f(s) = (1 − δ)δs. In steady-state, f(s) also defines the age distribution of

cooperators and the age distribution of defectors. Then, the expected number of inlinks an

agent will receive from cooperators and defectors at each date are, respectively,

rC = q
∞∑
s=0

f(s)
(
K − δnOut

CC (s− 1)
)
= qK

(1− δ2)

1− δ2(1− pq)
,

rD = (1− q)K.

Notice that the calculation of rC requires the assumption that the system is in a steady-state,

since it presumes that for every age s, the proportion of age-s agents that cooperate is q.
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(The calculation for rD, on the other hand, is valid for any state consistent with q since the

number of outlinks sent by a defector is independent of age.)

Define nIn
XY (s) as the expected number of inlinks an agent of type X at age s has from

agents of type Y , X, Y ∈ {C,D}. For CC links, we have the recursive relationship

nIn
CC(s) = δnIn

CC(s− 1) + rC .

Setting nIn
CC(−1) = 0 and solving produces

nIn
CC(s) = rC

1− δs+1

1− δ
.

The remaining calculations are straightforward since they all involve defectors whose links

are re-set every period. We have nIn
CD(s) = nIn

DD(s) = rD and nIn
DC(s) = rC .

Finally, we can now define the expected lifetime utility of consistently cooperating and

consistently defecting. To that end we compute the expected payoff at a particular age s by

summing the payoffs over the expected set of connections. We have

πC(s) =
(
nOut
CC (s) + nIn

CC(s)
)
− b

(
nOut
CD (s) + nIn

CD(s)
)
,

πD(s) = (1 + a) ·
(
nOut
DC (s) + nIn

DC(s)
)
.

Expected normalized lifetime utilities are then simply uX = (1 − δ)
∑∞

s=0 δ
sπX(s), X ∈

{C,D}. Simplifying the expressions and scaling by the factor 1/K delivers

uC =
2pq − b(1− q)(1 + p− δ2(1 + p(1− pq)))

1− δ2(1− pq)
, (1)

uD = (1 + a)

(
pq + q

1− δ2

1− δ2(1− pq)

)
. (2)

We remark that δ plays two distinct roles in the model. First, it determines the turnover

rate at which agents enter and leave the system. Because of this, δ has a direct effect on

the evolution of the system, holding fixed the behavior of all agents. It is in this role only

that δ appears in our analysis until we come to the computation of uC and uD. Second, δ

affects the preferences of agents because it represents the effective discount factor. Thus for

any given system dynamics, δ influences optimal behavior.
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3.3 Characterization of simple stationary equilibria

Each agent chooses at birth C or D so as to maximize his expected utility. In order to

characterize optimal choices under consistent strategies, we are interested in comparing uC

and uD as a function of q and p under various parameterizations of the model. It is convenient

to define V (q, p; a, b, δ) = uC − uD.

For any given steady-state L(p,q), the expected value to a cooperator of a relationship

from a new inlink is proportional to

v =
rC

1− δ2
− brD.

Using the expressions above, we conclude that v is non-negative if and only if

b ≤
(

q

1− q

)(
1

1− δ2(1− pq)

)
. (3)

The following observations describe the various possibilities for SSE. First, notice that

for any choice of parameters, there will exist an SSE with q = 0. This is true because when

all agents in the system defect, defection is strictly optimal, i.e., V (0, p; a, b, δ) < 0. For some

parameters, this will in fact be the unique SSE, in which case it is not possible to sustain

any level of cooperation.

Next, notice that at any SSE (p, q) where q > 0 (there exist cooperators) it must be that

p > 0 (cooperators accept some inlinks) so that equation (3) must hold. If the SSE is such

that p < 1, then equation (3) must hold with equality, leaving cooperators indifferent to the

acceptance of inlinks.

If the SSE is such that q = 1 (there is universal cooperation), then it must be that p = 1

(accepting inlinks is dominant). If the SSE involves an interior solution for q, then it must

be that V = 0, as entering agents must be indifferent between cooperation and defection. In

this case, the SSE might or might not involve an interior solution for p; this depends on the

parameters.

We are particularly interested in those SSE that are stable.

Definition 3 A simple stationary equilibrium (p, q) is stable if there exists ϵ > 0 such that

(i) if q < 1, then for all q′ ∈ (q, q + ϵ), uC(p, q
′) < uD(p, q

′), and
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(ii) if q > 0, then for all q′ ∈ (q − ϵ, q), uC(p, q
′) > uD(p, q

′).

Our main result of this section establishes uniqueness of stable SSE.15 The autarky out-

come (q = p = 0) constitues a stable SSE for all parameters.

Theorem 1 If there exist SSE with q > 0, then there is in fact a unique such stable SSE.

Proof. See Appendix. �

The proof is involved but expresses an intuition that we summarize here. The set of

points (q, p) ∈ [0, 1]2 in which V ≥ 0 is a connected (but not convex) region which we call

Γ. The set of (q, p) at which v = 0 is defined by a strictly increasing function pt(q) that

is negative for q near zero and greater than one for q near one. Define thus its restriction

to the unit square by t(q) = min{max{pt(q), 0}, 1}. SSE occur (i) at the intersection of

t(q) with the boundary of Γ and (ii) at (q, p) = (1, 1) when (1, 1) ∈ Γ. When (1, 1) is an

SSE it is generically stable, but otherwise stability involves the extra requirement that the

intersection is on the right boundary of Γ and not the left boundary. The proof proceeds

by limiting the number and type of possible intersections between Γ and t through explicit

consideration of the utility functions.

We view stability as an important refinement in our setting. SSE that fail the stability

requirement are arguably unsatisfactory solutions, and in this sense the model predicts a

unique outcome. Nevertheless the structure of the set of all SSE is informative. In the

course of proving Theorem 1 we prove the following result.

Proposition 1 The following statements are true:

• All SSE are ordered, in the sense that if (p, q) and (p′, q′) are two SSE with q′ > q,

then p′ ≥ p, with strict inequality when p < 1.

• In addition to the autarky outcome, there are generically either 0, 2, or 4 SSE.

• If there are 4 additional SSE, the largest one is stable and involves p = 1.

15The stability notion is intentionally a weak requirement to emphasize that all other SSE fail even this
basic requirement. Stronger notions of stability either agree with our notion or fail existence. Every SSE
that is stable under our definition satisfies as well the analogous requirement for p.
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• If there are 2 additional SSE, the smaller one is unstable.

Proof. See Appendix. �

We outline here the main arguments relevant to Proposition 1. One can show explicitly

that the boundary of Γ intersects any given horizontal line of the form p = κ at most twice.

This means that, in particular, there can be at most two SSE with p = 1. In this case, it

is clear that the larger of the two SSE is stable, and the smaller is unstable. Through a

separate argument using a change of variables we show that pt(q) can intersect the boundary

of Γ at most twice, which in turn limits the number of interior equilibria to at most two.

The most difficult part of the proof involves showing that the point in Γ with the smallest

value of p lies below pt(q), which can then be used to show that all but the largest SSE are

necessarily unstable.

Note finally that in the case of two interior SSE, the larger one may be stable or unstable,

and it may involve p < 1 or p = 1; if it involves p = 1, then it must be stable. Importantly,

in all cases when a stable SSE exists, it is the maximal and, therefore best, among all SSE.

The model allows for an explicit determination of the set of SSE and the determination

of stability for any parameters (a, b, δ). It is therefore possible in principle to partition the

parameter space into regions that map into the different configurations of SSE described

by Proposition 1. However, such an analysis is cumbersome. Instead, we present results

for the limiting case in which players becoming perfectly patient (i.e., long lived), which

captures much, but not all, of the richness of the model. We then exhibit some examples

with intermediate values of δ.

Proposition 2 The following statements hold in the limit as δ approaches one.

If a < 1 then p = q = 1 is a stable SSE.

If a > 1, then

• all SSE have q < 1

• There exists a stable SSE if and only if b < 1 + a.

• If (1 + a)/a < b < 1 + a the stable SSE has p < 1.
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• If b < (1 + a)/a the stable SSE has p = 1.

Proof. See Appendix. �

Proposition 2 formalizes a number of our previous observations. Namely, there is a rich

set of qualitatively distinguished outcomes, even in the limit as players become completely

patient. Indeed, full cooperation can be achieved for perfectly patient players only if the

temptation payoff is a < 1.16 The intuition for this bound comes from considering a world

with full cooperation, q = 1, and a high discount factor. In this case, a defector earns 1 + a

per outlink per period. A cooperator earns 1 from each outlink per period, and also expects

to build an asymptotically complete neighborhood well before she dies, and in this case has

as many inlinks as outlinks, for a total of 2 per outlink per period. Thus if a > 1, full

cooperation cannot be sustained.

When full cooperation cannot be sustained, it is still possible that partial cooperation

can be sustained. In this case society consists of cooperators and defectors co-existing in a

specific ratio. This possibility allows for a novel description of some real-world communities

such as, perhaps, eBay, in which most transactions are conducted in good faith but where one

expects a fringe of cheaters. In our analysis, such an outcome obtains when the temptation

payoff is high; patience is not necessarily enough to overcome this effect. If b is small enough

that there is a stable SSE where all inlinks are accepted (p = 1), then the stable level of

cooperation is easily determined to be 2−b
1+a−b

.17

Finally, it may be the case that the stable SSE requires exclusivity (p < 1). We find this

possibility to be of particular interest, since the presence of cooperators is made possible

only when those cooperators limit their exposure to society. Clearly this is costly, since

some relationships are not materialized. The idea behind exclusivity is the following. If

cooperators accepted all proposed links, defection would be relatively attractive, and so to

balance the incentives between cooperating and defecting, the level of cooperation would

have to be relatively low. But at low levels of cooperation, the expected value of an inlink

to a cooperator is negative, and so cooperators would prefer to reject proposed links, leading

16This result stands in contrast to much of the work on repeated prisoner’s dilemma with random matching,
in which the goal is almost always to construct equilibria that always support full cooperation for patient
players.

17It is worth noting that because of the constraint a−b < 1, this possibility obtains only when a < 1+
√
2.
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to a breakdown of the network. The only equilibria therefore involve the rejection of some

proposed links. While this reduces the utility to all players, it can reduce the incentive

to defect, such that at strong enough levels of exclusivity, a positive level of cooperation

becomes consistent with players’ incentives.

4 Consistency as self-enforcing behavior

Simple stationary equilibria are defined in a setting that requires agents to apply strategies

that are consistent, with the immediate implication that agents are trusting and unforgiving.

This can be thought of as an equilibrium that arises under a very natural social norm, in

the spirit of [8]. The social norm specifies how to behave in one’s relationships as well as

how to manage these relationships.

In this section we dispense with the presumption of consistency and study optimal behav-

ior in the absence of social norms that restrict strategies. We find that, under an appropriate

parametric condition, the behavior described above is self-enforcing, in the sense that it con-

stitutes play on an equilibrium path.

Before stating the result, we present the condition that will be required. The condition

involves p and q as well as (a, b, δ). As it involves the endogenous values of p and q as well

as (a, b, δ), the condition should be interpreted as a requirement of a particular steady-state

(p, q) under consideration. The condition, which we call the consistency inequality, is the

following.

Definition 4 The consistency inequality is

(1 + b)(1− pq)− bq(1− p)

(1 + a)(1− pq)
≥ 1− δ2(1− pq). (4)

The result we provide is that every SSE (p, q) that satisfies the consistency condition

arises as an equilibrium outcome. On the equilibrium path, agents behave in a way that

conforms with the norms of being consistent, trusting, and unforgiving. Each agent applies

a strategy that, at every history, optimizes its continuation utility in expectation over future

randomness and his beliefs about the state of the system given his observations. In turn,

these beliefs are consistent with the strategy being employed (recall our focus on symmetric

equilibria). A formal development of the solution concept is provided in the Appendix.
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Theorem 2 Suppose that (p, q) ∈ [0, 1]2 is a simple stationary equilibrium at which the

consistency condition is satisfied. Then there is an equilibrium such that if the system is

in state L(p,q), all agents apply actions that are consistent, trusting, and unforgiving on the

equilibrium path. Moreover, under this strategy q is a stationary level of cooperation and p

is a stationary level of inlink acceptance.

Proof. Section 4.3 is dedicated to the proof. �

4.1 Maintenance of relationships

If agents apply consistent strategies, the beliefs of an individual regarding the future play of

his partners are easy to describe. If other agents behave consistently, it is optimal to always

maintain a relationship after observing cooperation, and it is optimal to sever a relationship

after observing defection. Indeed, these decisions are strictly optimal: maintaining a link

with a cooperator has positive expected utility, and maintaining a link with a defector has

negative expected utility (for a cooperator). A link between two defectors must be severed

because the sponsor of that link strictly prefers to re-match and obtain probability pq of

interacting with a cooperator at the next period. Importantly, this behavior is sequentially

rational and holds for off-path play in which an agent’s partner behaves inconsistently, since

consistency is defined in terms of taking the same behavior as was taken in the previous

period. Under the definition of equilibrium that is detailed in the Appendix, equilibrium

beliefs require an agent to assign probability one to consistent behavior of his partners

even after observing an off-path inconsistent choice, through use of a standard perfection

requirement. It is therefore the case that every best response to a consistent strategy has

the property that a link is broken if and only if a defection is observed on that link.

4.2 Consistent Behavior

The analysis in Section 3 was conducted under the assumption that individuals have available

to them only two (pure) strategies at their birth governing their choices of cooperation

and defection. Optimality, then, requires taking expectations over the implied outcomes of

these two actions and choosing appropriately. There is no consideration of deviations from

consistency; the choice is assumed to be made with commitment. We now want to show that
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if agents play consistent and unforgiving strategies, and the consistency condition is satisfied,

then consistent behavior is (part of) a best response. This requires showing that there is no

history at which an agent can profitably deviate through the use of an inconsistent action.

First notice that for a defector in a steady-state, the calculation is identical at every

round. This is so because, under unforgiving strategies, he loses all of his connections at

every period. Thus, if the continuation value of perpetual defection exceeds that of perpetual

cooperation at some period, the same conclusion is true at subsequent periods.

For a cooperator the situation is complicated by the fact that the number of relationships

with other cooperators changes over time. At an SSE with q > 0, a cooperator is at least

as happy with his choice, at birth, than he would be under the alternative plan of defection.

But, in principle, with positive probability there may arise histories at which a cooperator

prefers to deviate by defecting (after which its optimization problem is identical again to the

one at birth).

We now introduce notation to describe the state of an individual of age s. For a given

agent, let KI
s denote the number of in-links from cooperators at the beginning of round s,

and let KO
s denote the number of out-links to cooperators at the beginning of round s (i.e.,

those links that are maintained from the previous period).

The next result provides the key implication of the consistency condition that we will

use below to guarantee that cooperators never have a profitable deviation.

Lemma 1 Suppose (p, q) ∈ (0, 1]2 is a simple stationary equilibrium and the consistency

inequality holds at (p, q). Consider an agent that has KI
s inlinks and KO

s outlinks at the

beginning of round s, with KI
s + KO

s > 0. Then the expected utility of cooperating on all

rounds starting at s is strictly greater than the expected utility of defecting on round s and

then cooperating on all subsequent rounds when other agents play simple strategies.

Proof. We focus attention on a fixed agent i. Let ϕC denote the simple strategy in which

agent i cooperates each round and accepts inlinks with probability p, and let ϕD denote

the simple strategy in which agent i defects each round (and accepts all inlinks). Let ϕF

denote the strategy in which the agent defects for one round, then cooperates on every

subsequent round (and is unforgiving and trusting on every round, accepts all inlinks on

the first round, and accepts inlinks with probability p on all subsequent rounds). For an
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arbitrary age s and a given strategy ϕ, write u(ϕ, kI , kO) for the expected utility, evaluated

at the beginning of round s, of applying strategy ϕ when KI
s = kI and KO

s = kO, and other

players use simple strategies defined by (p, q). To prove the lemma, we must show that

u(ϕC , kI , kO) > u(ϕF , kI , kO) whenever kI + kO > 0.

We will first show that u(ϕC , 0, 0) ≥ u(ϕF , 0, 0). To see this, note that ϕD and ϕF are

identical on their first round of play, and at the end of that first round agent i will have no

links (since other agents apply unforgiving strategies). After that first round, ϕF proceeds

in the same way as ϕC . Moreover, since (p, q) is a simple stationary equilibrium with q > 0,

we know that u(ϕC , 0, 0) ≥ u(ϕD, 0, 0). Putting this together, we have

u(ϕF , 0, 0)− u(ϕD, 0, 0) = δ(u(ϕC , 0, 0)− u(ϕD, 0, 0)) ≤ u(ϕC , 0, 0)− u(ϕD, 0, 0)

from which we conclude u(ϕC , 0, 0) ≥ u(ϕF , 0, 0).

Write ∆u(ϕ, kI , kO) for u(ϕ, kI , kO)− u(ϕ, 0, 0), the utility gain due to adding kI in-links

and kO out-links to agent i before applying strategy ϕ. We next show that ∆u(ϕC , kI , kO) >

∆u(ϕF , kI , kO) for all kI + kO > 0, which will complete the proof. We note that these

utility gains are additively separable in kI and kO, so that ∆u(ϕC , kI , kO) = ∆u(ϕC , kI , 0) +

∆u(ϕC , 0, kO) and ∆u(ϕF , kI , kO) = ∆u(ϕF , kI , 0)+∆u(ϕF , 0, kO). We will therefore analyze

these gains separately.

Consider first the utility gain due to in-links. We have ∆u(ϕF , kI , 0) = (1 + a)kI , since

the agent gains (1 + a) from each link and loses them after his first defection. When

applying strategy ϕC , the gain is ∆u(ϕC , kI , 0) = kI
1−δ2

. This is so because the coop-

erator gets extra utility for each period of the life of the relationship. We have that

∆u(ϕC , kI , 0) > ∆u(ϕF , kI , 0) whenever 1
1−δ2

> 1 + a, which is necessary to sustain co-

operation in a simple stationary equilibrium anyway.

We turn now to out-links, where a fraction kO of the agent’s out-links are already matched

to cooperators, and the remaining out-links will be matched to the population at random.

For strategy ϕF , ∆u(ϕF , 0, kO) = (1 + a)(1 − pq)kO. To see this, note that the increase in

the number of out-links to cooperators is kO + (1− kO)pq − pq = (1− pq)kO, and this gain

is realized for exactly one period.

For cooperators, ∆u(ϕC , 0, kO) =
(1−pq+(1−q)b)kO

1−(1−pq)δ2
. To see this, consider the expected loss

experienced by a cooperator who does not have a link pre-formed to a cooperator. If he is
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unable to form a new link to a cooperator, then he suffers a loss of 1 (relative to a cooperator

who would derive a utility of 1 from a pre-existing link to another cooperator). Moreover,

if he forms a link to a defector instead, he loses an additional b due to the interaction with

the defector. The total loss is therefore (1 − pq) + (1 − q)b, per link. Finally, for a given

outlink this gain is maintained as long as the node survives (probability δ), its cooperating

partner survives (probability δ), and the outlink of the node in the scenario without the

initial kO cooperate outlinks is not to a cooperator (probability (1 − pq)). These events

happen independently and hence have a total probability of δ2(1 − pq) yielding the above

formula. Thus ∆u(ϕC , 0, kO) > ∆u(ϕF , 0, kO) precisely when the consistency inequality

holds, completing the proof. �

By virtue of Lemma 1, under the consistency condition, as an agent accumulates re-

lationships with cooperators, the marginal gain from those relationships is maximized by

long-term cooperation, and not by defecting. Thus, if it is optimal to cooperate at birth it

is necessarily optimal to cooperate at any future point in its lifetime.

4.3 SSE as equilibrium outcomes: Proof of Theorem 2

We shall construct a symmetric equilibrium with the required properties. Recall that a

formal definition of equilibrium appears in Appendix A but, informally, what we require is a

strategy ϕ∗ and a system of beliefs β∗ about the state of the network, such that ϕ∗ maximizes

expected utility at all histories given beliefs β∗, and β∗ is consistent with observations under

the assumption that other players apply strategy ϕ∗.

The strategy ϕ∗ is as follows. First, if on any round an agent observes a fraction of

cooperation other than q, or an aggregate inlink acceptance other than p, the agent accepts

all proposed links, defects that round, and breaks all links with observed defectors at the

end of the round. Note that this behavior is optimal given that (p, q) is publicly observed

and other agents also play according to ϕ∗, since these behaviors are optimal given the belief

that all other agents will defect. Otherwise, if the agent observes (p, q), the agent takes

consistent, trusting, and unforgiving actions defined by (p, q). At birth, upon observing the

state (p, q), he cooperates with probability q, and in that case accepts inlinks independently

with probability p; otherwise he chooses to defect (and accept all inlinks).
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The associated belief system β∗ is straightforward. At birth, the agent believes that the

system begins in state L(p,q). The agent continues to believe that the system is in steady-

state L(p,q) as long as he observes (p, q) at the end of each period. If a fraction of cooperation

other than q is observed, or an aggregate inlinnk acceptance other than p, the agent believes

that every other agent will defect on subsequent rounds, since (p, q) is public. Even though

we have not provided a full description of an agent’s belief about the state of the network,

the properties discussed are sufficient to determine whether or not ϕ∗ is an optimal strategy.

Under ϕ∗ agents are consistent, unforgiving, and trusting provided the system remains

in state L(p,q), so that (p, q) is indeed stationary under ϕ∗. It remains to show that applying

strategy ϕ∗ is optimal given the observation of (p, q) and the belief that other agents play

according to ϕ∗. Note first that, under the belief that the system begins in L(p,q) and other

agents use ϕ∗, it is rational to believe that the system remains in L(p,q) as long as agents

observe (p, q). It is therefore sufficient to demonstrate that ϕ∗ is optimal under the belief

that the state of the system is described by L(p,q) at all times.

We focus attention on a particular agent i. Write u(ϕ) for the expected lifetime utility of

agent i when applying strategy ϕ. Let ϕopt denote a strategy that maximizes expected utility

against the profile of all agents playing ϕ∗ in state L(p,q), and suppose for a contradiction that

u(ϕopt) > u(ϕ∗). Let ϕC denote the trusting, unforgiving and consistent strategy in which

the agent chooses cooperation at birth, and accepts each incoming link independently with

probability p, and let ϕD denote the similar strategy in which the agent chooses defection

and accepts each incoming link.

Note first that if q = 0, then no strategy obtains positive expected utility; thus strategy

ϕ∗ = ϕD is optimal, since in this case u(ϕD) = 0. We therefore assume q > 0 for the

remainder of the proof.

As discussed in Section 4.1, we know that every optimal strategy breaks a link if and only

if a defection is observed on that link. In particular, ϕopt must satisfy this property. Moreover,

every optimal strategy accepts all inlinks on a round in which it prescribes defection so, in

particular, ϕopt must satisfy this property.

For all r ≥ 1, define the random variable Tr as the age at which ϕopt prescribes that

agent i defect for the r’th time. We then define strategy ϕr
D as the strategy in which agent i

follows ϕopt up to and including round Tr, after which point he behaves according to ϕC . We
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also define strategy ϕr
C as the strategy in which agent i follows ϕopt up until round Tr, but

on round Tr and all subsequent rounds he behaves according to ϕC . Thus ϕ
r
C and ϕr

D differ

only on their actions on round Tr, in which ϕr
C specifies cooperation (and accepting inlinks

with probability p) and ϕr
D specifies defection (and accepting all inlinks). For notational

convenience we define ϕ0
D = ϕ0

C = ϕC .

We first claim that u(ϕr
C) ≥ u(ϕr

D) for all r ≥ 1. Strategies ϕr
C and ϕr

D are identical until

round Tr, at which point ϕr
C proceeds to cooperate on every subsequent round, whereas ϕr

D

defects for a single round and then cooperates thereafter. Therefore, Lemma 1 directly im-

plies that u(ϕr
C) ≥ u(ϕr

D), as agent i maximizes utility by cooperating on round Tr regardless

of the number of maintained links with cooperators on round Tr.

We next claim that u(ϕr−1
D ) ≥ u(ϕr

C) for all r ≥ 1. Strategies ϕr−1
D and ϕr

C are identical

through round Tr−1, after which both strategies prescribe cooperation on each turn, but

ϕr
C does not necessarily accept every proposed inlink independently with probability p from

round Tr−1 + 1 to round Tr. However, by virtue of the assumption that (p, q) is an SSE, it

must be optimal to accept proposed links independently with probability p when perpetually

cooperating, and thus u(ϕr−1
D ) ≥ u(ϕr

C).

Combining these two claims, we have that u(ϕr−1
D ) ≥ u(ϕr

D) for all r ≥ 1. But ϕ0
D = ϕC ,

and limr→∞ u(ϕr
D) = u(ϕopt) (noting that the limit must exist since utilities are time-

discounted). We therefore conclude u(ϕ∗) ≥ u(ϕC) ≥ u(ϕopt), which is the desired con-

tradiction.

4.4 Application of the consistency condition to SSE outcomes

We now discuss the consistency condition in more detail. Of course, direct application of

the consistency condition will verify whether or not any given set of parameters (a, b, δ)

and a given steady-state (p, q) permits consistency of cooperation in equilibrium. But the

condition is complex enough that it is not transparent to immediately assess how stringent

the condition is. The following result quantifies our assertion that the optimality of consistent

cooperation is not a dramatically more demanding requirement then the optimality of any

cooperation at all.

24



Proposition 3 The following statements are each (individually) sufficient for the consis-

tency condition to hold.

• p = q = 1

• b ≥ a and p = 1

• b ≥ a, (p, q) is a stable SSE for (a, b, δ), and δ → 1

Proof. The first two items are easily verified by direct inspection of the consistency

condition. The last item is proved in several cases. Consider the stable SSE described in

Proposition 2 which characterize the limit case of interest, δ → 1. If a < 1 then the stable

SSE is (1, 1) and covered by the first case. So assume a > 1. By Psroposition 2 there exists a

stable SSE only if b < 1+a. If (1+a)/a < b < 1+a then the limiting stable SSE is interior,

and one can easily solve for it explicitly to obtain (p, q) = (1+a+b
(1+a)b

, b
1+a−b

). It is obvious that

the consistency condition becomes tighter as b decreases, and so it is enough to verify that

it holds at the presumed lower bound of b = a, in which case (p, q) reduces to ( 1+2a
a(1+a)

, a).

Making these substitutions for (p, q) into the consistency condition produces an inequality

that is trivially satisfied. Finally, when b < (1 + a)/a the limiting stable SSE has p = 1

and q = 2−b
1+a−b

. Thus it is covered by the second item, but is also easy to verify directly.

Substituting into the consistency condition and evaluating as δ → 1 yields b ≥ a+ 1−
√
4a2−3
2

,

which is implied by b ≥ a whenever a ≥ 1, as desired. �

Notice in particular that if the stage game is supermodular (b ≥ a) then at least in

the limiting case as players become perfectly patient, all stable SSE satisfy the consistency

condition. In particular, this verifies that under supermodularity, all of the stable SSE

described by Proposition 2 survive as equilibria in which consistent, trusting, and unforgiving

behavior is self-enforcing.

5 Inconsistent behavior

We have argued that when the consistency condition is satisfied, SSE outcomes are supported

as on path behavior of an equilibrium without any presumption of consistency (Theorem 2).

Further, we have argued that the consistency condition is not an overly stringent requirement
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(Proposition 3). We now take up the task of analyzing behavior when the consistency

condition fails. The main result of this section asserts that if players are patient and if

the network is sufficiently dense, then for every SSE there exists an ϵ-equilibrium with

approximately the same levels of cooperation and inlink acceptances.

Towards this end, notice that an agent faces a potential tension in his incentives across

different links. In particular, the incentive to defect is stronger along outlinks than inlinks,

by virtue of the fact that following a defection and the loss of all relationships, the outlink

can be immediately rematched (albeit with probablity only pq of connecting to another

cooperator), whereas the inlink is lost permanently with no chance of replacement. Lemma

1 shows that the consistency inequality implies that an agent gains more utility from an

outlink to a cooperator by cooperating than by defecting and forming a new relationship,

thereby guaranteeing that incentives are aligned towards consistent cooperation. But if the

consistency condition is violated, this no longer holds, and exploiting outlinks to cooperators

would be profitable.

We conclude that the incentive to defect is strongest when the number of outlinks to

cooperators is high relative to the number of inlinks from cooperators. We formalize this

conclusion as follows.

Proposition 4 Consider an SSE (p, q) with q > 0. A cooperator has a profitable inconsistent

deviation if and only if

κO

[
(1 + a)(1− pq)− 1− pq + (1− q)b

1− δ2(1− pq)

]
> κI

[
1

1− δ2
− (1 + a)

]
. (5)

Proof. From the expressions in the proof of Lemma 1 it is easily seen that (5) captures

the set of pairs (κO, κI) at which the incentive to defect is stronger than at birth, when

(κO, κI) = (0, 0). There are two cases to consider. First consider the SSE that has (p, q) =

(1, 1), in which case the right hand side of (5) is non-negative (this is true for any SSE with

q > 0) while the left hand side is zero. Thus (5) never holds in this case and by Proposition 3

a cooperator never has a profitable deviation. Second, consider an SSE with q < 1 in which

case uC = uD at birth. This indifference means that (5) captures exactly the situations in

which defection becomes strictly profitable, completing the proof. �

Note that Proposition 4 shows that the consistency condition is tight, in the sense that

at an SSE where the consistency condition fails, a cooperator reaches a history at which
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he has a profitable deviation with positive probability. To see this, note that with positive

probability κI = 0 and κO > 0, in which case the failure of the consistency condition means

that the left hand side of (5) is strictly positive.

Consider now an SSE (p, q) at which the consistency condition is violated, and where

all agents play the simple strategy (p, q). By Proposition 4, a best response is the follow-

ing “threshold” strategy: behave exactly like a simple cooperator, with the exception that

whenever κO/κI exceeds the threshold defined by (5) the agent should defect for one round

and then restart the strategy exactly as if he was a newborn agent. Now, as δ becomes

large, the right hand side of (5) increases without bound, so that for high enough δ the only

circumstance under which a cooperate would defect is when κI = 0. Due to a law of large

numbers, as K, the number of outlinks per agent, grows the probability of κI = 0 vanishes

exponentially fast.

Combining these observations, for patient players and dense networks we can construct an

ϵ-equilibrium with actions and payoffs arbitrarily close to those of a given SSE. We formalize

this conclusion as follows.

Proposition 5 Fix (a, b) such that there exists a stable SSE for sufficiently large δ. For any

ϵ > 0, there exist a δ̄ and a K̄ such that for all δ > δ̄ and for all K > K̄, there exists an

ϵ-equilibrium with a stationary level of (p′, q′) that is within ϵ of the associated stable SSE,

(p, q), i.e., |p− p′| < ϵ and |q − q′| < ϵ.

Proof. For a given δ let (p, q) denote the stable SSE. The strategy we use is the following.

Every agent mixes at birth and plays cooperate with probability q and defect with probability

1 − q. In the latter case the agent plays exactly like a consistent defector. In the former

case the agent accepts inlinks with probability p while cooperating and plays the threshold

strategy defined by (5) relative to (p, q). Set δ̄ so that if δ > δ̄ the only solution to (5)

is κI = 0. As K becomes large, the probability that κI = 0 in steady-state vanishes

exponentially, so that K̄ can be chosen to make the probability of a cooperator deviating at

any age as small as desired.

This directly implies several facts. First, because deviations from simple strategies are

rare, the implied steady-state is near (p, q). Second, because the threshold strategy differs

only rarely from the simple cooperating strategy, its expected utility is very near that of
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the simple cooperator at the steady-state, which is in turn very near the expected utility

of a simple cooperator at (p, q). Third, the expected utility of a defector is near that of a

defector in a world where everyone plays simple (p, q) strategies, because of the fact that the

steady-state is very near (p, q) and because the inconsistent behavior of cooperators has no

effect on a defector beyond its effect on steady-state level of cooperation.

Therefore, for sufficiently large δ and K, agents applying the proposed strategy, condi-

tional on whether they become defectors or threshold-cooperators, have expected utilities

that are arbitrarily near the expected utilities of players using simple strategies at the (p, q)

SSE. And because of the observation that the threshold strategy defined by (5) at the (p, q)

steady-state is in fact a best response, this strategy has utility as close as desired to an

optimal strategy. �

This result establishes that, even in the case where the consistency condition fails, our

description of SSE survives as a reasonable description of equilibrium behavior.

6 Conclusion

We have developed a model of interactions for a large anonymous community with turnover,

in which agents are interconnected via an endogenously evolving network. The class of

simple strategies that involve consistency of choices over time provides the foundation for

our analysis. With consistent behavior, the social norm of ostracism is required in equilib-

rium, whereby links to an agent who defects are always severed immediately. We view this

form of ostracism as capturing an empirically relevant phenomenon that is used to support

cooperative behavior.

Under consistent strategies, we fully characterize stationary equilibria. Universal coop-

eration is sustainable for a non-trivial range of parameters, but not always. In particular,

it requires not only that players are sufficiently long-lived (i.e., patient), but also that the

temptation payoff for defecting not be too large. When these conditions are not both met,

the presence of some level of non-cooperative behavior in a large anonymous system is un-

avoidable.

We believe this captures an important feature of a number of applications for which a

fringe of exploitative behavior is observed. Our analysis offers new insights into thinking

28



about how much cooperation can be sustained as a function of the underlying parameters

of the system. When some level of defecetion persists, we can address through comparative

statics what kinds of policies could be expected to improve the level of cooperation, and the

total welfare of the system. Nearly all other related work falls either into the category of

constructing equilibria for which full cooperation is sustainable, or else analyses models in

which some form of inefficiency is inevtiable. In a sense, our framework allows for a more

balanced description of the acheivable level of cooperation in a society. This characterization

is specifically due to the novel tradeoff in our model: that between immediate gains to

defection and the gain to accumulating social capital in the form of additional links with

cooperators over one’s life.

When full cooperation does not obtain, the presence of defectors causes relationships

among cooperators to be viewed as a scarce and valuable resource, which we identify as

a form of social capital. In this case, the model provides for the possibility of a form

of exclusivity to arise endogenously, in which cooperative players only occasionally agree

to form new relationships with strangers. This exclusivity comes at a net welfare loss to

society, but is necessary to incentivize cooperative behavior, as it slows down the rate at

which cooperating partners can be found, thereby strengthening the penalty of ostracism

due to defecting.

As it turns out, the characterization of equilibria under consistent strategies says a lot

about equilibrium outcomes in which the possibility of inconsistent behavior is allowed.

This demonstrates that the simple behavior we focus on can be self-enforcing, a finding

that is not obvious a priori. In particular, under the appropriate condition, every simple

stationery equilibrium has a corresponding equilibrium that supports consistent behavior on

the equilibrium path with the same steady-state level of cooperation. The condition, which

is satisfied for many parameter values, requires that the returns to links with cooperators

are higher for cooperators than for defectors, thus implying that persistent cooperation is

sequentially rational. Finally, we show that when this consistency condition is violated, a

“rob the bank” strategy, in which a cooperator deviates when he has a sufficiently low level

of social capital, forms an epsilon equiibrium when players are patient and can maintain

many links. We view these results as establishing a robust class of equilibria in a co-evolving

network that generates a high degree of cooperation.
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We have made some of the modeling choices to emphasize the point that it is possible to

maintain cooperation even under unfavorable conditions. In thise sense, our results could be

viewed as identifying a lower bound on what might be expected to obtain in related models.

For example, one could imagine that new partners are found both at random, as we have

modeled, and by searching the neighbors of current partners, as in [10]. This would allow

cooperators to preferentially find other cooperators more quickly, and would tilt incentives

in favor of cooperation. It would also bring the degree distribution closer in line with the

empirical observation that social networks tend to exhibit heavy tails. One could also imagine

that agents have less than perfect access to anonymity. This generally has the consequence

of making punishments for defection stronger, thereby increasing the scope for cooperation.

Similarly, it might be reasonable to assume that cooperators have longer average lives, which

again makes cooperation easier to sustain.

We conclude with a remark about welfare. While we have not provided a complete char-

acterization of equilibria in our framework, there is reason to be optimistic that the simple

consistent equilibria that we identify generate a high level of average utility relative to other

potential equilibria. The reason is that any strategy that incentivizes cooperation through

inconsistent strategies has the difficulty that defecting with one partner requires defecting on

all partners simultaneously. As such, the incentives of how to behave in the context different

relationships are potentially in conflict, resulting in either diminshed incentives for cooper-

ation or the inefficient loss of relationships. Consistent strategies have the unique property

that an agent is never called on to change his behavior over the course of a relationship. We

conjecture that the welfare associated with the stable SSE is maximal among all equilibria.

A Appendix A: formal development of the model

The model described in this paper is somewhat complex, incorporating a changing set of

players, a large state space that is almost entirely unobserved by each individual player, and

various sources of randomness. In the main text, we approached this model by handling

the notions of strategies, equilibria, and beliefs in an informal manner. In this appendix

we redescribe these concepts more formally, which will allow us to state the results more

precisely.
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A.1 Histories and Actions

The strategy of an agent is a mapping from its (private) history to (a probability distribution

over) actions. The history encodes all the information the node has acquired during its life.

In particular, the history of an agent contains its observation of (p, q) at each point during

its life, all of its past actions, and the actions of each of its partners over time, together with

how and when those relationships were initiated and ended. The action space at any history

is a choice of C or D, together with whether or not to sever any existing relationships and

accept any new proposed links. We now develop these elements more formally.

The set of agents is the unit interval N = [0, 1]. Whenever an agent dies, it is replaced

by an agent who takes the same name. We focus on an arbitrary agent i. Denote the age of

i by s. In the period when i is born, s = 0; s increments by one in each subsequent round in

which i remains alive. At each point in time, i observes the value of (p, q) determined by the

choices at the previous round. Define (ps, qs) to be the proportion of cooperators and rate

of inlink acceptance that i observes in the round when i is age s. At each s, i chooses an

αi ∈ {C,D}. For each partner j that i has at age s, the vector βs
j = {αs

j , d
s
j , e

s
ji, e

s
ij} defines

the action that j takes, and whether and, if so, how the link was terminated in that round.

The variable dsj equals 1 if j dies (0 otherwise), and the variables esji and esij record whether

j or i respectively chooses to sever the link (a value of 1 corresponds to severing, 0 to not

severing).

The collection of i’s partners is recorded in two lists. The outlinks of agent i at age s

are stored in a vector Outsi of length K. If i’s k’th outlink at age s is to agent j, then

the k’th element of this array is βs
j . Due to anonymity, though, i does not know the value

of j, but only the values of the elements in βs
j . The inlinks of agent i require a bit more

notation since there is not a fixed number of them. To account for this, we define a vector Ins
i

representing the state of all current and past inlinks of agent i at age s. The k’th component

of this list records information pertaining to the k’th inlink proposed to agent i over his life.

Initially, Ins
i is empty. When agent i at age s receives a proposal for an inlink from agent j,

it updates Ins
i as follows: if the link is accepted it appends βs

j to Ins
i ; if the proposed inlink

is rejected outright, then we append a special symbol REJECT to Ins
i . After actions are

realized, agent i updates each βs
j in Ins

i appropriately. We define the size of list Ins
i , denoted
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by |Ins
i | to be the number of active links contained in the list, i.e., the number of components

of Ins
i for which dsj = esji = esij = 0.18 Again, it is important that i not know the values of

j corresponding to the various inlinks in Ins
i . Finally, denote by Ls

i the number of inlinks

proposed to i in round s.

The information that i collects from the round in which he is age s is

hs
i = {ps, qs, αs

i , L
s
i ,Outsi , In

s
i}.

The (private) history of i at age s is the vector Hs
i = {h0

i , . . . , h
s
i}. In a valid history it must

be the case that the length of the list Ins
i grows monotonically with s and that if the k’th

component of Ins
i is either REJECT or a βs

j indicating a link termination (i.e., either dsj , e
s
ji,

or esij equals 1), then this component remains constant for the remainder of i’s lifetime (i.e.,

for all t > s, the k’th component of Int
i equals the k’th component of Ins

i ). Denote the space

of feasible age-s histories for i by Hs
i . The set of all histories for i is then Hi = ∪sHs

i .

At each round, i takes three separate actions: (i) the choice of αi, (ii) the acceptance or

rejection of proposed inlinks, and (iii) the severance or continuation of each active link. The

(history dependent) action set of i at age s is As
i (H

s
i ) = [0, 1] × [0, 1]L

s
i × [0, 1]K+|Insi |, with

the interpretation that the first element specifies the probability that i chooses C at age s,

the second element specifies the probability of accepting each proposed inlink, and the final

element specifies the probability that i severs a link to each of his partners.

Let As
i = ∪Hs

i ∈Hs
i
As

i (H
s
i ) denote the set of all age-s action sets, and let Ai denote the

space of all action sets for i.

A strategy for i is a mapping ϕi : Hi → Ai, with the restriction that ϕi(H
s
i ) ∈ As

i (H
s
i )

for all Hs
i ∈ Hi. When i makes the choice of αs

i , he has all the information in Hs−1
i as

well as (ps, qs), but he has not observed the remainder of hs
i . Similarly, when i makes his

choice of accepting inlinks, he observes hs−1
i and (ps, qs, αs

i , L
s
i ), but nothing else from round

s. Last, when i makes the choice of severing active links, he has observed, additionally, the

actions {αs
j} in round s of each of his active partners. We place the associated restrictions

on strategies, so that actions depend only on the information observed at each of these times

within a round.

18Note that one can analogously define the size of Outsi ; however as agents always replace outlink partners
instantaneously, |Outsi | = K for all i and s.
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Notice that, implicit in the construction of strategies is the Markovian property that,

while actions generally depend on the age of an agent, they cannot be conditioned explicitly

on time.

A.2 Equilibria

Recall that, in our definition of histories and actions, a single round involves a sequence of

action choices to be resolved by an agent, where incremental observations are made between

each choice. We then ensured that a strategy can use only the “currently available” informa-

tion from the latest round of a history when defining action choices. While consistent with

our informal game description, this point of view is notationally cumbersome. A change of

variables would allow us to consider each step of a round as a separate information set, in

which case a strategy is a mapping from histories to actions without restrictions. We will

proceed with our discussion under this change, with the understanding that our notion of a

history, strategy, etc. are fully equivalent to those developed in the previous section. Notice

that Hi = H∗ and Ai = A∗ for all i ∈ N .

A state of the world ω is a directed graph with (labeled) vertex set N = [0, 1], plus a

history for each vertex. A state represents the links between players in a given round, along

with each of their past observations. We write Ω for the set of all possible states of the

world. In general, given any set S, we will write ∆(S) for the set of probability distributions

over S.

A belief for agent i is a function βi : H∗ → ∆(Ω) that maps each observed history to

a distribution over possible world states. We interpret βi(Hi) as capturing agent i’s beliefs

about the state of the world given a sequence of observations.

We focus on strategy and belief profiles that are symmetric across agents, i.e., there is

some strategy ϕ and belief β such that ϕi = ϕ and βi = β for all i ∈ N .

Our goal is to define a notion of a symmetric equilibrium, which will be a pair (ϕ, β)

that satisfies certain properties. Informally, we wish for the following: at all valid histories

ϕ maximizes expected utility given β when other agents apply ϕ; β is consistent with an

agent’s observations and with the belief that all agents apply strategy ϕ; and, when faced

with an unexpected history, β maps to a limit point of beliefs under a vanishing tremble

probability. We now describe each of these desiderata in more detail.
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We write ui(h̄i) for the expected continuation utility obtained by agent i, where h̄i denotes

a distribution over future histories that i will observe. Note that h̄i captures any dependency

on the strategy employed by agent i, as it is a distribution over future observations. Given

strategies ϕ, ϕ′
i and state ω, we write hϕ

i (ϕ
′
i, ω) ∈ ∆(H∗) for the distribution over all future

histories that will be observed by agent i when agent i applies strategy ϕ′
i and all other

agents apply strategy ϕ, starting from state ω. We extend hϕ
i to accept a distribution over

states in the natural way. We then say that ϕ is optimal under belief β if, for all Hi ∈ H∗,

ϕ ∈ argmax
ϕ′
i

{ui(h
ϕ
i (ϕ

′
i, β(Hi)))}.

That is, for every historyHi, ϕmaximizes the expected utility of agent i given the distribution

β(Hi) over states, under the assumption that other agents apply strategy ϕ. We also say

that ϕ is δ-approximately optimal if for all Hi ∈ H∗, ui(h
ϕ
i (ϕ, β(Hi))) ≥ ui(h

ϕ
i (ϕ

′
i, β(Hi)))−δ

for all alternative strategies ϕ′
i.

Given ϕ, we now define the progression function P ϕ : ∆(Ω) → ∆(Ω). Given σ ∈ ∆(Ω),

P ϕ(σ) is the distribution over states that results when all agents apply strategy ϕ for one

round, starting from a state drawn from σ. Note that the resulting distribution is taken

over randomness in strategy ϕ and the randomness inherent in the model, i.e. the death and

matching processes. We next add the effects of an agent’s observations to this distribution:

given a distribution σ ∈ ∆(Ω) over states, an agent i, and an observation hi from a single

round, we define P ϕ(σ, hi) to be the distribution over states that results after resolving a

single round of play under ϕ, starting at a state drawn from σ, given that agent i observes hi

in that round. Note that this distribution is well-defined: one can consider the probability

of observing hi given each possible state and apply Bayes’ rule.

We say that β is consistent with strategy ϕ if, for all i, s, Hs−1
i and hs

i ,

β(Hs
i ) = P ϕ(β(Hs−1

i ), hs
i ).

Observe that the requirement that β be consistent with strategy ϕ does not impose any

restrictions on beliefs upon observation of a history that is inconsistent with ϕ. Thus, if this

condition is taken to be sufficient for characterizing permissible equilibrium of beliefs, we have

the undesirable feature that beliefs and, hence, behavior, is not appropriately restricted off

the equilibrium path. This motivates us to require a form of perfection. Given an unexpected
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history Hi that has zero probability under ϕ, we would like (informally speaking) for agents

to place belief in a minimal number of deviations from ϕ that yield a state consistent with

Hi. To achieve this property formally, we will require not only that β be consistent with the

application of strategy ϕ by all agents, but also that it maps to a limit point of beliefs under

a vanishing trembling probability on actions.

We now formalize the intuition described above. Given any strategy ϕ and any ϵ ≥ 0,

the ϵ-perturbation of ϕ is the strategy ϕϵ that, independently for each action, follows ϕ with

probability 1−ϵ, and with the remaining probability chooses an action uniformly at random.

We say that β is robustly consistent with ϕ if

• β is consistent with ϕ,

• for all ϵ > 0, there exists belief βϵ such that βϵ is consistent with ϕϵ, and

• limϵ→0 ||βϵ − β||TV = 0 where || · ||TV denotes total variation distance.

Note that if ϕ is optimal given β, and β is robustly consistent with ϕ, then (taking βϵ as

in the definition of robust consistency) ϕϵ must be δ-approximately optimal for βϵ, where

δ → 0 as ϵ → 0.

We are now ready to define our equilibrium concept. We say that (ϕ, β) is an equilibrium

if ϕ is optimal given β, and β is robustly consistent with ϕ. Note that such an equilibrium

always exists. For example, the ϕ that maps every history to “always defect” (formally, using

the notation from the previous section, for all Hs
i ∈ Hs

i , ϕ(H
s
i ) = 0× [1]L

s
i × [1]K+|Insi |), is a

trivial equilibrium.

B Appendix B: Proofs of results for Section 3

We drive towards proving uniqueness of stable SSE with q > 0. The auxiliary results of

Propositions 1 and 2 are proven in the course, and duly noted. We use d = δ2 for convenience.

B.1 Acceptance of inlinks

For a cooperator, indifference between accepting and rejecting a given inlink requires that

rC
1−d

− brD = 0. Solving this condition for p yields
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pt(q) =
q − b(1− q)(1− d)

bq(1− q)d
.

By inspection, this function is negative for small q (it approaches −∞ as q → 0), greater

than one for large q (it approaches ∞ as q → 1), and strictly increasing in q on the unit

interval. Define, thus,

t(q) = min{max{0, pt(q)}, 1}

as the constrained solution to the threshold for accepting inlinks. t(q) is increasing.

Note that steady-states (p, q) for which p < t(q) have the property that accepting inlinks is

dominant for cooperators. SSE (p, q) require that p = t(q).

This observation implies the first item of Proposition 1.

B.2 Cooperation and Defection

Indifference between cooperation and defection requires that uC = uD.

Define V = uC − uD and Γ = {(q, p) ∈ [0, 1]2|V ≥ 0} as the set of steady states in which

cooperation is optimal.

We claim that V = is strictly increasing in d for all (p, q) ∈ [0, 1]2. To see this, differentiate

V with respect to d to obtain

(q(1 + a) + b(1− q) + 2(1− pq))
pq

(1− d(1− pq))2
, (6)

which is strictly positive for (p, q) ∈ [0, 1]2. This implies that Γ is strictly increasing (in the

sense of set inclusion) in d.

To describe the boundary of Γ, solve V = 0 for p to obtain:

p =
A±

√
B

C
,

where

A = q(1 + d)− [aq + b(1− q)](1− d),

B = [b(1− q)(1− d) + q(a− 1− (a+ 1)d)]2 − 4q(b+ q(1 + a− b))2d(1− d),

C = 2q(b+ q(1 + a− b))d.
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Let us call these solutions p1(q) and p2(q) so that we have p1(q) ≥ p2(q) in the unit square

when the solutions are real.

The solutions are real when B ≥ 0. Notice that B is cubic in q with a leading coefficient of

−4(1+a−b)2d(1−d) < 0. Thus, ignoring the constraint that 0 ≤ q ≤ 1, B ≥ 0 for sufficiently

small q and possibly also for a finite interval of q. We have that B(q = 0) = b2(1− d)2 > 0

and that B′(q = 0) = 2b(1 − d)[a(1 − d) − (1 + b)(1 + d)] < 0 whenever a − b < 1, as we

assume. But for q near zero, the solutions to p1 and p2 are not in the unit interval, which can

be verified directly, and so these are not valid solutions to uC = uD; in this case uD > uC .

In fact, it is the values of q that lie between the second and third roots of B that define

the boundary of Γ. To see this, note that as d → 1, p1(q) → 2
b+q(1+a−b)

and p2(q) → 0. Thus

as d → 1, Γ → {(q, p) ∈ [0, 1]2|p ≤ 2
b+q(1+a−b)

}, and it converges in a way that the leftmost

point approaches q = 0 from the right, while the first root of B is strictly between 0 and the

second root. Thus, for any (q, p) with small q, there is a d such that q is equal to the second

root of d, and for slightly smaller d, q falls between the two roots, so that uD > uC for that

value of q and d, independent of p. Then, because Γ is increasing in d, it must be that Γ

excludes all such values of q for all smaller d. So valid solutions occur between the second

and third roots of B, after taking the intersection with the unit interval.

Ignoring the constraint to the unit square in (q, p) space, we then see that p1(q) and p2(q)

form the boundary of a connected region. Points inside that region correspond to (q, p) for

which uC ≥ uD.

B.3 Number of equilibria

We already described Γ as d → 1. Notice that this directly implies the first claim in

Proposition 2.

Consider the system of equations V = 0 and p = κ, for an arbitrary constant κ. It is

easy to explicitly solve these equations and see that they have at most two solutions in q;

they are of the form q = A′±
√
B′

C′ . This means that the boundary of Γ intersects any given

horizontal line at most twice. In particular, this implies that there are at most two equilibria

involving p = 1. It also implies that p1(q) and p2(q) are single-peaked on the unit square.

We now show that, in addition to the p = 1 equilibria, there exist at most two interior

equilibria. To accomplish this we use a change of variables from (q, p) to (x, y) where x = q
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and y = pq. Interior equilibria must satisfy both V = 0 and p = pt(q). This system can be

written as

2y − (1− d)f(x)

g(y)
− f(x)y/x = 0 (7)

x

g(y)
− b(1− x) = 0, (8)

where f(z) = b+ (1 + a− b)z and g(z) = 1− d(1− z).

Substituting (8) into (7) and simplifying produces

2y − (1− d)f(x)− (1 + a)yg(y)− y = 0, (9)

Interior equilibria are thus described by simultaneous solutions to (8) and (9). Equation (9)

is a parabola in (y, x)-space with second derivative with respect to y equal to (2(1+a)d)/((1+

a− b)(−1+ d)). Equation (8) has second derivative equal to −2(bd)2/(1 + b(1− d(1− y)))3.

To complete the claim, we show that the second derivatives are never equal, so that the

difference between the curves is strictly convex or concave, and thus has at most two roots.

Equating the second derivatives and solving for a produces a solution a = h(b, y, d) that

is easily verified to be continuous and equal to -1 when, e.g., d = 0 and d = 1. Solving

h(b, y, d) = 0 for y, it is easy to see that there is no solution for y > 0. Thus there are no

values of a > 0 and y > 0 such that (8) and (9) have equal second derivatives.

We have now proved item 2 of Proposition 1.

As d → 1, there are at least 2 equilibria. This can be verified from the limiting shape of Γ,

given above, in particular the fact that the limiting upper boundary of Γ is 2/(b+q(1+a−b)),

along with the fact that the limiting shape of pt(q) satisfies pt(0) = 1/b < 2/b.

B.4 Uniqueness of stable equilibrium

It is obvious from the above that for any (a, b, d), (q, p) = (0, 0) is an SSE.19 We want to

show that, if there exists another stable equilibrium with q > 0, there is a unique such one.

Stationary equilibria occur when (i) the boundary of Γ intersects t(q) or (ii) (q, p) =

(1, 1) ∈ Γ.

19If there is an SSE with q = 0, then it must be that p = 0, and if there is an SSE with p = 0, it must be
that q = 0.
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Stability is captured more easily by solving V = 0 for q. This produces two solutions for

q, call them q2(p) ≤ q1(p), that are an equivalent representation of the boundary of Γ. An

SSE is a stationary equilibrium such that q1(p) intersects t(q) or (ii) (q, p) = (1, 1) lies in the

interior of Γ.

Define q0 as the solution to pt(q) = 1. Define (qβ, pβ) by qβ = argminq p2(q) and pβ =

p2(qβ), i.e., (qβ, pβ) is the lowest point of the boundary of Γ in (q, p)-space. Uniqueness of

SSE is thus guaranteed by the following

Lemma 2 qβ > q0.

Proof.

Notice that Γ is null for sufficiently small δ and that, given (a, b) there is a smallest δ

such that Γ is non-null. We show two facts. First, as Γ increases with d, it intersects the

line q = q0 from the right, so that qβ > q0 at that d. Second, as Γ increases further, it does

so in a way such that qβ > q0 remains true for all d < 1.

Because p2 is single-peaked, in order to prove these facts we show that p2(q) is decreasing

in q at q = q0 whenever d is large enough that p2(q0) is defined. It is sufficient to show that

the same properties hold for some q∗ > q0, again because of the fact that p2(q) is single-

peaked. In what follows, using such an argument, we construct a set of exhaustive cases that

prove p2(q) is decreasing at q0 whenever it is defined.

From equation (3), note that q0 < b/(1 + b).

Define s(a, b, d) = ∂p2
∂q

|q= b
1+b

. It is easy but very messy to write s explicitly.

We want to show that s is negative whenever it is defined.

It is easy to check that s(a, b, 1) = 0 and ∂s
∂δ
|δ=1 = (1+ b)2/(2b) > 0. Thus s < 0 for large

δ.

By inspection, s has a vertical asymptote when

4a(1 + 5b)(−1 + d)d+ 4d(d+ b(−4 + 5d)) + a2(−1 + d)(−1 + d+ b(−1 + 5d)) = 0.

This equation is quadratic in d with both roots in the unit interval. It is the larger root

that is of interest, since it is at that value of d above which Γ intersects the line q = b/(1+b).

Denoting by d̂ the larger root, we want to know that as d → d̂ from above, s(a, b, d) →
−∞. Once that is proven, we know that, in fact, s is always negative for d̂ < d < 1. The
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reason is the following: one can write s in the form s = F ∗
√
G−H, where F is linear in d and

G and H are both quadratic in d. The roots of s must satisfy F 2G = H2, which is a degree-4

polynomial in d. Call this polynomial s2. The leading coefficient of s2 is −(2 + a)6b2 < 0.

It is easy to verify that s2(a, b, 0) = s2(a, b, 1) = 0, and that s2 is decreasing in d at d = 0.

Thus, s2 must have a root that is less than 0, and so it has at most one root strictly between

0 and 1. In particular, as d decreases from 1, it is impossible that s becomes first negative,

then positive, and then asymptotes to −∞.

We return now to determining the sign of s(a, b, d) as d approaches the critical value from

above. Simplifying, this reduces to the sign of

5
(
a2 − 4

)
b3−(a+2)b

(
a2(X − 1)− 3a+ 2X + 2

)
+(a+2)b2

(
a3 + 3a2 + 12a− 5X − 4

)
−(a+2)X,

(10)

where

X =
√

b (a2b+ 6ab+ 2a+ 4b).

We want to show that expression (10) is negative. We use the fact that expression (10)

is decreasing in X.

Case 1: b < 2
5
a. We have X2 = b (a2b+ 6ab+ 2a+ 4b) > b2(a+3)2, using the assumption

that b < 2
5
a. Substituting, therefore, b(a+3) forX in expression (10), and dividing by (a+2)b,

we obtain

S1 = a2 + 2a(5b+ 1)− 5
(
5b2 + 2b+ 1

)
. (11)

Differentiating S1 with respect to b produces 10(a−b−1)−40b < 0 provided a−b < 1, as we

assume throughout. Thus S1 is maximized when b takes its smallest value of max{0, a− 1}.
Case 1 (i): a < 1 and we evaluate S1 at b = 0, obtaining a2 + 2a − 5 which is negative

for a < 1, as desired.

Case 1 (ii): a > 1 and we evaluate S1 at b = a− 1, obtaining −14a2 + 32a− 20 which is

negative for a > 1, as desired.

Case 2: b > 2
5
a.

Given only that a, b > 0, we have that X > (a+2)b. Substituting, therefore, (a+2)b for

X into (10) yields an upper bound of

S2 = a2(b+ 1) + 2a(5b+ 1)− 4(5b2 + 2b+ 1). (12)
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Clearly S2 is increasing in a, so it can be bounded above by taking maximal values of a.

Case 2 (i): b < 0.62.

We use the fact that a < 5
2
b to substitue into S2, yielding

25
4
b3 + 45

4
b2 − 3b − 4 which is

negative in the claimed range.

Case 2 (ii): 1 < b < 5.82.

We use the fact that a < b + 1 (assumed throughout) to substitue into S2, yielding

b3 − 7b2 + 7b− 1 which is easily verified to be negative in the claimed range.

Case 2 (iii): 5.82 < b. We now use the fact that b/(b + 1) < 1 and repeat the argument

above, evaluating the slope of p2 at q = 1. Define s̄(a, b, d) = ∂p2
∂q

|q=1. We compute 2(a +

1)2ds̄(a, b, d) as

(a+ 1)

(
a2 (−7d2 + 8d− 1) + a(d− 1)(5bd− b− 14d− 2) + b (5d2 − 4d− 1)− 7d2 + 4d− 1√

4(a+ 1)2(d− 1)d+ (a(d− 1) + d+ 1)2
+ ad− a− bd+ b+ d+ 1

)
−(2a− b+ 2)

(
ad−

√
4(a+ 1)2(d− 1)d+ (a(d− 1) + d+ 1)2 − a+ d+ 1

)
It is easy to verify, parallel to the case with s, that s̄(a, b, 1) = 0 and that ∂s̄

∂d
= b/2 > 0.

The critical value of d for s̄ is d∗ = 1+4a+3a2+2
√
−1+2a+8a2+6a3+a4

5(1+2a+a2)
. The sign of s̄(a, b, d∗) as

d → d∗ from above is determined by

4 + a3 + 3
√
−1 + 4a+ a2 − a2

√
−1 + 4a+ a2 − 5

(
3 +

√
−1 + 4a+ a2

)
b

+a
(
3 + 2

√
−1 + 4a+ a2 + 5b

)
. (13)

Expression (13) is linear and decreasing in b, and so is negative for sufficiently large b,

given a value of a. In particular, (13) is negative whenever

b >
(1 + a)

(
4 + a2 + 3

√
−1 + 4a+ a2 − a

(
1 +

√
−1 + 4a+ a2

))
5
(
3− a+

√
−1 + 4a+ a2

) ≡ b̄(a). (14)

It is readily verified that b̄ is increasing. To complete this part, we must show that (14)

is satisfied for all b > 5.82 and a < b+ 1 (the constraint that a < 5
2
b is not binding for large

b). Since b̄ is increasing, a sufficient condition is that b > b̄(b + 1) for all b > 5.82. It is

straightforward to verify that, in fact, this condition is met for all b >
√
21− 3 ≈ 1.58.
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Case 2 (iv): .62 < b < 1. We proceed in two steps. Step 1 completes the case for an

upper bound on a. Step 2 shows that the bound is increasing in a, so that Step 1 is in fact

the worst case scenario.

Step 1: We show the desired result, that the derivate of p2(q) diverges to −∞ at the

critical δ, under an upper bound on a. Since b < 1, q0 < b/(1 + b) < 1/2. Thus it is

enough to examine s̄′(a, b, d) = ∂p2
∂q

|q=1/2 as d approaches the critical value. Simplifying

yields 9(1 + a+ b)s̄′(a, b, d) equal to

3+a3−33b+13b2+b3+a2(1+3b)+a
(
3 + 14b+ 3b2

)
−
(
−3 + a2 + 2a(−1 + b) + 10b+ b2

)
X ′,

(15)

where

X ′ =
√
−3 + a2 + 6b+ b2 + 2a(3 + b).

The above expression is decreasing in X ′ in the relevant parameter range and so is

bounded above by taking a lower bound forX ′. X ′ is clearly increasing in b and so is bounded

below by setting b = 2
5
a. The resulting expression is (X ′)2 = −3 + 42a

5
+ 49a2

25
. We are here

concerned with a maximal value of a, which, in this case, falls in [5/2 ∗ .62, 2 ∗ 1] = [1.55, 2].

It is easily verified that, in this range, a lower bound for that expression of (X ′)2 is (7
5
a+ 5

3
)2.

Substituting this last expression for X ′ gives us an upper bound for the expression of interest:

−6a3 + a2(32 + 3b) + 2a
(
79− 25b+ 12b2

)
+ 5

(
24− 149b+ 34b2 + 3b3

)
. (16)

Now, when b < 2/3 we have a < 5
2
b and when b > 2/3 we have a < b+ 1. Making those

two substitutions into the above yields 5 (24− 70b+ 49b2) and 4 (76− 147b+ 41b2 + 9b3),

respectively, each of which is easily verified to be negative for the relevant range of b.

Step 2: We show that the maximal value of a is the worst case scenario by proving that

(15) is increasing in a.

Taking the derivative with respect to a and simplifying, we get:
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− 12b(3 + a+ b) + 4(1 + a+ b)(3 + a+ b)− (1 + a+ b)2(3 + a+ b)+

4(−3 + a2 + 2a(3 + b) + b(6 + b))− 2(1 + a+ b)(−3 + a2 + 2a(3 + b) + b(6 + b))+

(3 + 3a2 + b(14 + 3b) + a(2 + 6b))
√

−3 + a2 + 2a(3 + b) + b(6 + b).

Call this y(a, b). Note that the coefficient of the radical is positive. To show that y(a, b)

is always positive, we will substitute a lower bound for this radical and show the resulting

polynomial is always positive.

Write Y = −3+ a2 +2a(3+ b)+ b(6+ b). We claim that Y > (a+1.69b)2 over the range

b ∈ [0.62, 1] and a ∈ [0, 2]. This inequality is equivalent to

−(1.692 − 1)b2 + 6a− (1.38)ab+ 6b− 3 > 0.

Noting that the LHS is increasing in a (as 1.38b < 6); it is minimized at a = 0. We are left

with a quadratic equation in b, and one can easily verify that the range [0.62, 1] lies between

the two roots of this quadratic, and hence the LHS is positive over that range (since the

coefficient of b2 is negative).

We can therefore substitute (a + 1.69b) for
√
Y in y(a, b). Simplifying then gives the

polynomial

3.− 3.93b+ 0.66b2 + 2.07b3 + a2(−9.+ 2.07b) + a(30.− 16.62b+ 4.14b2).

One can then easily verify that this polynomial is positive over the range b ∈ [0.62, 1] and

a ∈ [0, 2]. We conclude that y(a, b) is positive in this range, as we required. �

B.5 Final pieces

Theorem 1 is now proved.

To complete the proof of Proposition 1, we remark that the second and fourth items are

clear from the shapes of t(q) and Γ already discussed. Next, notice that if there are four

SSE, then the largest two involve p = 1, since at most two can be interior. In this case it

must be that exactly one of them involves q1 and is stable.

Using the characterization of stable SSE in the proof above, Proposition 2 follows easily.

It uses only the limiting shape of Γ already derived and the fact that as d → 1, q0 →
max{ b−1

b
, 0}.
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