

CTArcade: Learning Computational
Thinking While Training Virtual
Characters Through Game Play

Abstract
In this paper we describe CTArcade, a web application
framework that seeks to engage users through game
play resulting in the improvement of computational
thinking (CT) skills. Our formative study indicates that
CT skills are employed when children are asked to
define strategies of common games such as Connect
Four. In CTArcade, users can train their own virtual
characters while playing games with it. Trained
characters then play matches against other virtual
characters. Based on reviewing the matches played,
users can improve their game character. A basic
usability evaluation was performed on the system,
which helped to define plans for improving CTArcade
and assessing its design goals.

Author Keywords
Computational Thinking; Learning and Games;

ACM Classification Keywords
H.5.m [Information Interfaces and Presentation (e.g.,
HCI)]: Miscellaneous. Copyright is held by the author/owner(s).

CHI’12, May 5–10, 2012, Austin, Texas, USA.

ACM 978-1-4503-1016-1/12/05.

Tak Yeon Lee
Human-Computer Interaction
Lab, Department of Computer
Science, University of Maryland,
College Park, MD 20742 USA
tylee@umd.edu

Matthew Louis Mauriello
Human-Computer Interaction
Lab, Department of Computer
Science, University of Maryland,
College Park, MD 20742 USA
mattm@cs.umd.edu

John Ingraham
Human-Computer Interaction
Lab, Department of Computer
Science, University of Maryland,
College Park, MD 20742 USA
john.ingraham71@gmail.com

Awalin Sopan
Human-Computer Interaction
Lab, Department of Computer
Science, University of Maryland,
College Park, MD 20742 USA
awalin@cs.umd.edu

June Ahn
Human-Computer Interaction
Lab, College of Information
Studies, University of Maryland,
College Park, MD 20742 USA
juneahn@umd.edu

Benjamin B. Bederson
Human-Computer Interaction
Lab, Department of Computer
Science, University of Maryland,
College Park, MD 20742 USA
bederson@cs.umd.edu

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2309

Introduction
One method of building the workforce of tomorrow is to
increase the number of students who pursue computer
science (CS) during their academic career, which is
currently a challenging goal in the United States.
Maintaining diversity among students entering CS
education remains a serious issue [3]. This has been a
trend, indicated by earlier studies that looked at
enrollment in secondary and post-secondary computing
courses, concluding that the numbers are at an all-time
low especially when viewing women and minority
populations [17]. Of those students that enroll in CS
between 2000 and 2006, 48% become disinterested
and end up dropping out due to the extreme difficulty
of programming and the students' lack of a proper
background from their previous education [12].

From a pedagogical standpoint, CS education is
evolving to stress computational thinking (CT) skills
earlier in a student's education. Wing [19] asserts that
CT is fundamentally about learning how to solve
problems through skills such as the abstraction of
problems, the definition of appropriate representations,
and the development of solutions. Google also
promotes a set of four CT skills that it feels are
fundamental to CS: Decomposition of problems, Pattern
Recognition, Abstraction, and Algorithmic Thinking [6].

In this paper, we present an approach to engage
learners into thinking about CT based on their existing
game-play strategies. We describe a formative user
study that confirmed and expanded our thinking, and
then describe CTArcade, a web application platform,
that provides scaffolding to help learners think about
their thinking while developing their own game
algorithms.

Related Work
There have been a number of strategies aimed at
making CT more engaging and easy to grasp. Initial
efforts focused on using programming such as Logo to
allow students to build simulations, robots, and other
projects [14]. Subsequent projects, Alice, Scratch, and
Agent Sheets [9, 15, 16], focus on creating visual
authoring environments for young learners to create
animations and video games. Another approach (i.e.
Codecademy1) is to make traditional syntax learning
more engaging with interactive tutorials.

We observe a shared pedagogical trajectory in these
programming/authoring environments. Users first learn
the primitive syntax of the language as a means to
build simple programs that they are interested in. While
these approaches are successful at introducing
programming to new learners, recent thought in CT
suggests that one could start with natural human
pursuits and then connect CT to these activities in situ.
For example, CT skills such as debugging and
distributed computation occur naturally while playing
collaborative board games, dominoes or racing games
such as Mario Kart [2, 8, 11].

In order to embed CT within natural activities, a
significant problem is encountered concerning the
design of tools that help individuals become cognizant
of their intrinsic CT skills – and then translating their
natural thinking patterns to a related computational
syntax or vocabulary. Researchers find that individuals
frequently describe computational ideas such as if-then
logic, looping, and iteration in their everyday lives;
however, they have extreme trouble translating this

1 codecademy.org

Figure 1 Image of a child’s
representation of two rules. (Red:
computer, Blue: human, and yellow
dots: empty cells) The top rule
shows that the human can be
blocked from winning by playing in
an empty cell when the human
would otherwise get four in a row.
The bottom rule shows how the
computer can win the game by
completing 4 diagonal cells in a row.

Figure 2 Image of 4 rules created by
a child. The computer player had to
follow these rules. The top two rules
show how to win by completing 4
horizontal cells. The bottom two rules
show how to make progress by
placing a second cell on a diagonal.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2310

tacit knowledge into a generalized CS vocabulary or
programming conventions [7, 13].

Social factors have been proven to be important in
education; however, not many CT educational systems
involve social interaction as a main characteristic.
Scratch is one example of a basic social environment
where children and adult users share their code and
improve together. Robocode [12], on the other hand,
provides competitive environments where each user
programs the behaviors of tank objects to engage other
users in an online competition, which forces them to
learn and adapt their code to deal with the various
scenarios they encounter.

Formative User Study
A formative study of game play of Connect Four was
conducted with a team of 7 children, ages 7 - 11, who
are part of a participatory design program at the
University of Maryland's Human Computer Interaction

Lab (HCIL)2, using methods of Cooperative Inquiry [4].
We asked the children to create game-play strategies
using a paper-based representation of the game (Figure
1). After the completion of the previous phase, each
pair of children played as human and computer player
respectively – computer players were restricted to only
play particular rules in the ordered list of the rules
(Figure 2).

The study found that the children could easily grasp the
rules of the game and were able to verbalize game play
strategies. However, when asked to decompose their
innate thinking into abstract representations, the
children showed great difficulty and confusion. We
believe that this inflection point, where tacit
knowledge is abstracted and generalized, may be
a critical place to design game interfaces that help
learners to explicitly link their game actions to the
abstracted representations and algorithms that describe
them.

The next design consideration we learned is moving
from concrete to abstract computational thinking,
as traditional learning theory suggests that children
progress from thinking concretely first and then to
abstract principles [18]. Following that design
consideration, the idea of concreteness fading [5]
should be applied. Interfaces designed in this way
increasingly highlight broader algorithmic strategies
while gradually reducing the salience of the specific
game situation. Finally, the game design should
minimize the split attention effect [1] where asking
learners to pay attention to, and integrate, separate

2 http://www.cs.umd.edu/hcil/

Figure 3 Trainer mode. (Left) An ordered list of rules that user’s character currently knows. Rules can be
moved up & down to re-prioritize. (Center) Tic-Tac-Toe board where users can play with their own
character. (Right) Console showing rules that have been applied to the last move made. In this example,
user’s latest move (middle tile in the upper row) matches with TAKE RANDOM and TAKE ANY SIDE rules.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2311

elements of information leads to increased cognitive
load.

CTARCADE
CTArcade has three main components: Trainer and
Match Reviewer. The user's goal is to train his/her own
character in Trainer, and then win matches against
other characters.

In Trainer mode, users can extract new rules through
game play and teach their characters. How to teach
new rules is one of our research questions, and we
came up with several ways. First, a user can select one
of the predefined rules3 that match the user’s latest
move (Figure 3). This feature addresses the first design
consideration – help users link their tacit knowledge to
the abstracted representations and algorithms.

3 Six predefined rules are provided. WIN, BLOCK WIN, TAKE

CENTER, TAKE ANY SIDE, TAKE ANY CORNER, TAKE OPPOSITE
CORNER and TAKE RANDOM.

If the user wants to create a new rule from scratch, the
custom rule creator (Figure 4) provides the two-step
method – defining a base pattern on the board and
then generalizing the pattern with various transforming
operations. The method is an example of concreteness
fading, a design consideration found during the
formative study.

After training their own character, users can test it with
other characters in Match Reviewer mode. Due to the
randomness of the Tic-Tac-Toe game just one match is
not enough for assessing how well the character is
trained. Therefore the Match Reviewer mode runs a
predefined number of matches (currently 20) with
another character selected by the user from a list and
presents the summary of results. To see the effect of
minimizing split attention, we tried four types of
visualizations; 1) List view (Figure 5) simply shows all
the games in full detail; 2) Group by winner (Figure 6)
is useful for focusing on winning/losing games; 3)
Stepwise animation (Figure 7) is suitable to see
temporal trends of all the games; and 4) Game tree
graph (Figure 8) compresses similar board states into a
graph node and connects them with accumulative
edges whose thickness represents how often the
transition occurred.

DISCUSSION
Four graduate students in computer science
participated in preliminary usability testing. This testing
consisted of two pairs of students that were asked to
participate in a series of exercises. In the first set of
exercises, each student was asked to interact with
CTArcade on their own. Following the solo activities,
participants were then asked to interact with their
partner using the Trainer and Match Reviewer

Figure 4 Custom Rule Creator. Defining a basic pattern and generalizing it with various transforming
operations can create a new rule.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2312

components. Following these interactions, the
participants re-trained their characters. This brief
evaluation provided feedback that was immediately
used in a general redesign of the application. We
believe that CTArcade’s Tic-Tac-Toe components are
ready for formal assessment concerning its viability as
a learning tool.

As part of this formal assessment, we plan to use an
interactive survey that is part of the account creation
process. The user’s system usage will be tracked as a
baseline for understanding how they are interacting
with CTArcade and to provide a weight for their CT skill
improvement level. The formal assessment will also
include a post assessment at the end of a specified
assessment period. As new components and features
are introduced into CTArcade, we plan to continue
receiving data and evaluation from previous users and
we will also conduct similar pre/post assessments of
new users to gauge the impact of our updates.

One of our aspirational research questions is whether
social interaction between users can strengthen the
effectiveness of learning. We do not yet have our
desired level of support for this, so the next step is to
add features promoting social interaction such as
synchronous game play in which two players can play
against each other at the same time or sharing one’s
custom rules with other players.

Another direction of the project is selecting more
games for CTArcade. Although Tic-Tac-Toe was a
reasonable choice as the first game, it has several
limitations. First, its simplicity and the low ceiling that
can be expressed allow matchups between two
reasonably good characters to continually end in a

draw. Second, its competitive focus is likely to alienate
some learners. Thus, we are investigating the creation
of much more collaborative games.

CONCLUSION
In this paper we introduced the first implementation of
the CTArcade platform. CTArcade has a unique goal:
engaging users to learn computational thinking skills
while training his/her virtual characters that play
with/against other characters. CTArcade also seeks to
implement innovative approaches such as training by
demonstration and debugging with visualization. Future
work falls in three categories: to promote social
interaction, increase the variety of games with differing
characteristics, and studying its pedagogical
effectiveness.

REFERENCES
[1] Ayres, P., and Sweller, J. The split-attention
principle in multimedia learning. In The Cambridge
Handbook of Multimedia Learning, R. E. Mayer, Ed.
Cambridge University Press, New York, NY, 135-146.

[2] Berland, M., and Lee, V. R. Collaborative strategic
board games as a site for distributed computational
thinking. International Journal of Game-Based Learning
1, 2 (2011), 65-81.

[3] Chen, X. Students Who Study Science, Technology,
Engineering, and Mathematics (STEM) in Postsecondary
Education. Technical report, National Center for
Education Statistics, Institute for Education Sciences,
Washington DC, USA 2009, 2009.

[4] Druin, A. Cooperative inquiry: Developing new
technologies for children with children. In Proc. CHI
1999, ACM Press (1999), 592-599.

[5] Goldstone, R. L., and Son, J. Y. The transfer of
scientific principles using concrete and idealized

Figure 6 Stepwise Animation provides
a control to play all the games
forward/backward.

Figure 7 Group by Winner summarizes
winning/losing games separately.

Figure 8 Game tree graph shows
patterns of how winning/losing matches
branched out.

Figure 5 List view simply shows all the
states of each game.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2313

simulations. The Journal of the Learning Sciences 14, 1,
(2005), 69-110

[6] Google. Exploring Computational Thinking.
http://www.google.com/edu/computational-thinking/

[7] Gudzial, M. Education paving the way for
computational thinking. Communications of the ACM
51, 8 (2008), 25-27.

[8] Holbert, N. R., and Wilensky, U. Racing games for
exploring kinematics: A computational thinking
approach. Paper presented at AERA 2011, New Orleans,
LA, USA, 2011.

[9] Kelleher, C., Pausch, R., and Kiesler, S. Storytelling
alice motivates middle school girls to learn computer
programming. In Proc. CHI 2007, ACM Press (2007),
1455-1464

[10] Moland, K. J., Decline of U.S. student enrollment in
computer science programs, Southeastcon, 2011
Proceedings of IEEE , vol., no., pp.297-299, 17-20
March 2011, doi: 10.1109/SECON.2011.5752953

[11] Nasir, N. S. Individual cognitive restructuring and
the sociocultural context: Strategy shifts in the game of
dominoes. The Journal of the Learning Sciences 14, 1
(2005), 5-34.

[12] O’Kelly, J., and Gibson, J. P., RoboCode & problem-
based learning. ACM SIGCSE Bulletin, 38(3):217, June
2006.

[13] Pane, J. F., Ratanamahatana, A., and Myers, B. A.
Studying the language and structure in non-
programmers’ solutions to programming problems.
International Journal of Human-Computer Studies 54
(2001), 237-264.

[14] Papert, S. Mindstorms: Children, computers, and
powerful ideas. Basic Books, New York, NY, USA, 1993.

[15] Repenning, A., Webb, D., and Ioannidou, A.
Scalable game design and the development of a
checklist for getting computational thinking into public
schools. In Proc. SIGCSE 2010, ACM Press (2010), 265-
269

[16] Resnick, M., Maloney, J., Monroy-Hernandez, A.,
Rusk, N., Eastmond, E., Brennan, K., et al. Scratch:
Programming for all. Communications of the ACM 52,
11 (2009), 60-67

[17] Stephenson, C., Gal-Ezer, J., Haberman, B., &
Verno, A., The New Educational Imperative : Improving
High School Computer Science Education The New
Educational Imperative. (C. Stephenson, Ed.)
Computer, 90. Association for Computing Machinery,
2005

[18] Uttal, D. H., Liu, L. L., and DeLoache, J. S. Taking a
hard look at concreteness: Do concrete objects help
young children learn symbolic relations? In Child
Psychology: A Handbook of Contemporary Issues,
Lawrence Balter, Catherine Tamis-Lemonda, Eds.,
Psychology Press, New York, NY, 177-192. Psychology
Press, New York, NY, 2000.

[19] Wing, J. M. Computational thinking. Comm. of the
ACM 49, 3 (2006), 33-35.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2314

