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Abstract: This paper deals with the influence of slip condition on a thin film flow of a third order fluid. We
investigate the thin film flow of non-Newtonian fluid (i) when moves down an inclined plane and (ii) when
moves on a moving belt with slip condition using the traditional perturbation technique and HPM. The results
obtained using both techniques are compared. The expressions for volume flux and average film velocity are
also expressed.
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1 Introduction
In recent years, especially with the emergence of polymer industry, petroleum industries and other types of pulp industries,
the non Newtonian fluids have became very much important. Due to complexity of non Newtonian fluids, it becomes
difficult to suggest a single model which exhibits all properties of non Newtonian fluids, therefore various empirical
and semi empirical models have been proposed. Non Newtonian fluids can mainly be classified into two classes such
as differential type fluids and rate type fluids. Among these two classes, the differential type fluids have received great
attention from scientists and engineers. A second order fluid is one of the most acceptable fluid in this subclass of non
Newtonian fluids. This is because of its mathematical simplicity in comparison to third order and fourth order fluids.
However, there are studies available in literature in which the authors have successfully treated the challenging nonlinear
equations governing the flow of a third order fluid [1-5].

A survey of literature indicates that much attention is given to slip effect, especially from polymer industry(polymer
melts), which exhibits a macroscopic wall slip. It ranges from technological application to medical application, especially
in polishing artificial heart valves. Being inspired from such practical applications, several authors discussed the slip
effect on fluid flow. T. Hayat [6] and Asghar [7] discuss the effects of slip condition on third order fluid. Ellahi [8] discuss
the slip condition of an Oldroyd 8- constant fluid and M. Sajid [9] investigate the effect of slip condition on thin film
flow. Being inspired from applications of slip conditions and authors, we have determined the effects of slip condition on
viscous flow of third order fluid:

(i) When fluid moves down and inclined plane
(ii) When fluid moves on a belt
This problem was first studied by M. Sajid [10], in which they studied the thin film flow of third order fluid [11].
While dealing with the non Newtonian fluids are of the great challenge in the solution of governing nonlinear differen-

tial equations. Number of the numerical and analytical techniques have been proposed by various researchers. However,
an efficient analytic solution still finds great appreciations. Keeping this fact in mind, we have solved the governing
nonlinear equations of present problem using the two powerful analytic techniques namely, the traditional perturbation
method [12] and homotopy perturbation method [13,14]. It is important to mention here that the two solutions are in a
complete agreement and the previous results of M. Sajid [10] can easily be recovered by substituting the slip parameter
equal to zero. In this study, it is also observe that the homotopy perturbation method is a powerful analytical technique
that is simple and straightforward and does not require the existence of any small or large parameter as does traditional
perturbation method. Homotopy perturbation method has successfully been applied to a number of nonlinear problems
arising in the science and engineering by various researchers [15-17]. This proves the validity and acceptability of HPM
as a useful solution technique.
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The distribution of this paper is in five sections. In Section 2, we formulate the problem of thin film flow down an
inclined plane with slip conditions, and also includes solution of problem by perturbation method and HPM. In Section 3,
we formulate the problem of thin film flow on moving belt with slip conditions, , and also includes solution of problem by
perturbation method and HPM. Results and discussion are presented in Section 4 and Some concluding remarks are given
in Section 5.

2 Influence of slip condition on a thin film flow down an inclined plane

2.1 Formulation of problem
The governing equations of third order unidirectional thin film flow down an inclined plane of inclination α ̸= 0 consist
of incompressibility condition are

∇ · V = 0, (1)

ρ
DV
Dt

= −∇p+ ρB + divT, (2)

where ρ is fluid density, V is velocity vector, p is pressure, B is body force, T is Cauchy stress tensor and D
Dt denoting the

material time derivative. The Cauchy stress tensor in a third order fluid is given by

T = −pI + µA1 + a1A2 + a2A
2
1 + S,

where I is the identity tensor , µ is coefficient of viscosity and αi(i = 1, 2) are material coefficients. The kinematical
tensors Ak(k = 1, 2, 3) are Rivlin-Ericksen tensors and S is extra stress tensor. The Rivlin-Ericksen tensors Ak(k =
1, 2, 3) and extra stress tensor S for third order fluid is given by

S = β1A3 + β2 (A2A1 +A1A2) + β3

(
trA2

1

)
A1,

where

A0 = I, A1 = L+ LT ,

An =
dAn−1

dt
+An−1L+ LTAn−1, n = 2, 3, · · ·,

L = ∇V,

where ∇ is the gradient operator and d
dt is the material time derivative defined by

d

dt
=

∂

∂t
+ (V.∇) .

For simplicity, some assumptions are made
(i) The ambient air is stationary
(ii) Surface tension is negligible
(iii) Thin film is of uniform thickness δ
(iv) Thermal effects are negligible
(v) Pressure gradient is absent.
We have a velocity field of the form

V = (u(y), 0, 0).

By using the above assumptions and substituting the values of V and T in eqs.
(1) and (2), we get the following non-linear second order ordinary differential eqution

µ
∂2u

∂y2
+ 6 (β2 + β3)

(
∂u

∂y

)2 (
∂2u

∂y2

)
+ ρg sinα = 0 (3)

The boundary conditions on u are

u− γ

[
µ

(
∂u

∂y

)
+ 2 (β2 + β3)

(
∂u

∂y

)3
]

= 0 at y = 0, (4)

du

dy
= 0 at y = δ. (5)
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Eq. (4) is slip condition, where γ is coefficient of slip and eq. (5) comes from τyx = 0 at y = δ. In order to carry out the
non-dimensional analysis, we define the following variables{

u = u∗ν
δ , y = δy∗,

β∗ = (β2+β3)ν
2

δ4µ , m∗ = δ3gsinα
ν2 .

(6)

Using Eq. (6) in Eqs. (3)-(5), we get

d2u∗

dy∗2
+ 6β∗

(
du∗

dy∗

)2
d2u∗

dy∗2
+m∗ = 0,

u∗ − γ

[
µ

δ

(
∂u∗

∂y∗

)
+ 2 (β∗µ)

(
∂u∗

∂y∗

)3
]

= 0 at y∗ = 0,

du∗

dy∗
= 0 at y∗ = 1.

For simplicity, we drop the asterisks

d2u

dy2
+ 6β

(
du

dy

)2
d2u

dy2
+m = 0, (7)

u− γ

[
µ

δ

(
∂u

∂y

)
+ 2βµ

(
∂u

∂y

)3
]

= 0 at y = 0, (8)

du

dy
= 0 at y = 1. (9)

We take ϵ = β and solve the system of equations (7)-(9) by traditional perturbation method and also by homotopy
perturbation method.

2.2 Solution of the problem by perturbation method
We assume ϵ to be a small parameter and expand u(y, ϵ) in the Poincare-type series of the form

u (y, ϵ) = u0(y) + ϵu1(y) + ϵ2u2(y) + · · ·. (10)

Substituting (10) into (7)-(9) and equating coefficients of like powers of ϵ, we get the following problems of different
orders.

Zeroth order problem and its solution
The differential equation of zeroth order problem is

O
(
ϵ0
)
:

d2u0

dy2
= −m, (11)

with boundary conditions

u0 −
γµ

δ

(
∂u0

∂y

)
= 0 at y = 0, (12)(

∂u0

∂y

)
= 0 at y = 1. (13)

The solution of system of equations (11)-(13) is given by

u0 =

(
−my2

2
+my

)
+

γµm

δ
. (14)

First order problem and its solution
The differential equation of first order problem is

O
(
ϵ1
)
:

d2u1

dy2
+ 6

(
du0

dy

)2 (
d2u0

dy2

)
= 0, (15)
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with boundary conditions

u1 −
γµ

δ

(
∂u1

∂y

)
− 2γµ

(
∂u0

∂y

)3

= 0 at y = 0, (16)(
∂u1

∂y

)
= 0 at y = 1. (17)

The solution of system of equations (15)-(17) is given by

u1 = 6m3

[
y2

2
− y3

3
+

y4

12
− y

3
+
(γµ

3

)(
1− m3

δ

)]
(18)

Second order problem and its solution
The second order problem together with boundary conditions is

O
(
ϵ2
)
:

d2u2

dy2
+ 6

(
du0

dy

)2 (
d2u0

dy2

)
+ 12

(
du0

dy

)(
du1

dy

)(
d2u0

dy2

)
= 0, (19)

u2 −
γµ

δ

(
∂u2

∂y

)
− 6γµ

(
∂u0

∂y

)2 (
∂u1

∂y

)
= 0 at y = 0, (20)(

∂u2

∂y

)
= 0 at y = 1. (21)

The solution of system of equations (19)-(21) is given by

u2 = 36m5

[
−y6

18
+

y5

3
− 5

y4

6
+ 10

y3

9
− 5

y2

6
+

y

3
− γµ

(
1

δ
− 1

3

)]
, (22)

By using eqs.(14), (18) and (22) in eq.(10), we obtain

u(y) =

(
−my2

2
+my

)
+

γµm

δ
+ 6ϵm3

[
y2

2
− y3

3
+

y4

12
− y

3
+
(γµ

3

)(
1− m3

δ

)]
+36ϵ2m5

[
−y6

18
+

y5

3
− 5

y4

6
+ 10

y3

9
− 5

y2

6
+

y

3
− γµ

(
1

δ
− 1

3

)]

2.3 Solution of the problem by homotopy perturbation method
The problem under consideration i.e. eqs. (7)-(9) can be written as

L(V )− L (u0) + qL (u0) + q

[
6β

(
dv

dy

)2 (
d2v

dy2
+m

)]
= 0, (23)

where L = d2

dy2 and u0 =
(

−my2

2 +my
)

is initial guess approximation. Substitute

V (y) = v0 + qv1 + q2v2 + · · ·. in eq. (23), we have

Zeroth order problem and its solution
The zeroth order problem is given by

L (v0)− L (u0) = 0, (24)

subject to the boundary conditions

v0 −
γµ

δ

(
∂v0
∂y

)
= 0 at y = 0, (25)(

∂v0
∂y

)
= 0 at y = 1. (26)
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The solution of system of equations (24)-(26) is given by

v0 =

(
−my2

2
+my

)
+

γµm

δ
. (27)

First order problem and its solution
The differential equation of first order problem is given by

L (v1)− L (v0) + 6β

(
du0

dy

)2 (
d2u0

dy2

)
+m = 0 (28)

with boundary conditions

v1 −
γµ

δ

(
∂v1
∂y

)
− 2γµ

(
∂v1
∂y

)3

= 0 at y = 0, (29)(
∂v1
∂y

)
= 0 at y = 1. (30)

The solution of system of equations (28)-(30) is given by

v1 = 6m3β

[
y4

12
− y3

3
+

y2

2
− y

3
+

(γµ
3

)(
1− m3

δ

)]
(31)

Second order problem and its solution
The second order problem is given by

L (v2) + 6

(
du0

dy

)2 (
d2u0

dy2

)
+ 12

(
du0

dy

)(
du1

dy

)(
d2u0

dy2

)
= 0, (32)

with the boundary conditions

v2 −
γµ

δ

(
∂v2
∂y

)
− 6γµ

(
∂u0

∂y

)2 (
∂v1
∂y

)
= 0 at y = 0, (33)(

∂v2
∂y

)
= 0 at y = 1. (34)

The solution of system of equations (32)-(34) is given by

v2 = 36m5β2

[
−y6

18
+

y5

3
− 5

y4

6
+ 10

y3

9
− 5

y2

6
+

y

3
− γµ

(
1

δ
− 1

3

)]
, (35)

The velocity field obtained by the homotopy perturbation method is

u(y) = lim
p→1

V = v0 + v1 + v2 + · · ·.

By substituting the values of v0, v1 and v2 from eqs.(27), (31) and (35) in the above expression, we get the solution up to
second order as

u(y) =

(
−my2

2
+my

)
+

γµm

δ
+ 6m3β

[
y4

12
− y3

3
+

y2

2
− y

3
+
(γµ

3

)(
1− m3

δ

)]
+36m5β2

[
−y6

18
+

y5

3
− 5

y4

6
+ 10

y3

9
− 5

y2

6
+

y

3
− γµ

(
1

δ
− 1

3

)]
. (36)

2.4 Volume flux and average velocity
The flow rate per unit width is given by

Q

W
=

∫ δ

0

u(y)dy,
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By substituting the values of u(y) from eq. (36) in above equation, we get

Q

W
=

(
−mδ3

6
+

mδ2

2

)
+ γµm+ 6m3β

[
δ5

60
− δ4

12
+

δ3

6
− δ2

6
+

(
γµδ

3

)(
1− m3

δ

)]
+36m5β2

[
− δ7

126
+

δ6

18
− δ5

6
+ 5

δ4

18
− 5

δ3

18
+

δ2

6
− γµδ

(
1

δ
− 1

3

)]
.

The average velocity ū(y) over the cross section of the film is given by

ū (y) =
Q

Wδ
.

ū(y) =

(
−mδ2

6
+

mδ

2

)
+

γµm

δ
+ 6βm3

[
δ4

60
− δ3

12
+

δ2

6
− δ

6
+

(γµ
3

)(
1− m3

δ

)]
+36β2m5

[
− δ6

126
+

δ5

18
− δ4

6
+ 5

δ3

18
− 5

δ2

18
+

δ

6
− γµ

(
1

δ
− 1

3

)]
.

3 Influence of slip condition on a thin film flow on a moving belt

3.1 Problem formulation
The governing equations of third order, unidirectional thin film flow on a moving belt, consists of incompressibility
condition are

µ
∂2v

∂x2
+ 6 (β2 + β3)

(
∂v

∂x

)2 (
∂2v

∂x2

)
+ ρg = 0, (37)

v − γ

[
µδ

(
∂v

∂x

)
+ 2 (β2 + β3)

(
∂v

∂x

)3
]

= 0 at x = 0, (38)

dv

dx
= 0 at x = δ. (39)

Eq.(38) is slip condition, where γ is coefficient of slip and eq. (39) comes from τyx = 0 at y = δ, where v is fluid
velocity, µ is dynamic viscosity, ρ the density, β2 and β3 are material moduli of third order fluid, g the acceleration due to
gravity and δ is thickness of the thin film flow. In order to carry out the non-dimensional analysis, we define the following
variables

v∗ =
v

U0
, x∗ =

x

δ
. (40)

The flow problem consisting of eqs. (37)-(39) becomes

d2v

dx2
+ ϵ

(
dv

dx

)2
d2v

dx2
− λ = 0, (41)

v − γ

[
µ

δ

(
∂v

∂x

)
+ (

µ

3 ∗ δ
)

(
∂v

∂x

)3
]

= 1 at x = 0, (42)

dv

dx
= 0 at x = 1. (43)

where

ϵ =
6 (β2 + β3)U

2
0

µδ2
, k =

ρgδ2

µU2
0

.

Note: For simplicity, we droped the asterisks.
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3.2 Solution of the problem by perturbation method
We assume ϵ to be a small parameter and expand v(x, ϵ) in the Poincare-type series of the form

v (x, ϵ) = v0(x) + ϵv1(x) + ϵ2v2(x) + · · ·. (44)

Zeroth order problem and its solution
The differential equation of zeroth order problem is

O
(
ϵ0
)
:

d2v0
dx2

= k, (45)

with boundary conditions

v0 −
γµ

δ

(
∂v0
∂x

)
= 1 at x = 0, (46)(

∂v0
∂x

)
= 0 at x = 1. (47)

The solution of system of equations (45)-(47) is given by

v0 = kx
(x
2
− 1

)
+

(
1− γµk

δ

)
, (48)

First order problem and its solution
The first order problem is given by

O
(
ϵ1
)
:

d2v1
dx2

+ 6

(
dv0
dx

)2 (
d2v0
dx2

)
= 0, (49)

with boundary conditions

v1 −
γµ

δ

(
∂v1
∂x

)
− (

γµ

3 ∗ δ
)

(
∂v0
∂x

)3

= 0 at x = 0, (50)(
∂v1
∂x

)
= 0 at x = 1. (51)

The solution of system of equations (49)-(51) is given by

v1 = −k3
(
x4

12
− x3

3
+

x2

2
− x

3

)
. (52)

Second order problem and its solution
The differential equation of second order problem is

O
(
ϵ2
)
:
d2v2
dx2

+ 6

(
dv0
dx

)2 (
d2v0
dx2

)
+ 12

(
dv0
dx

)(
dv1
dx

)(
d2v0
dx2

)
= 0, (53)

with boundary conditions

v2 −
γµ

δ

(
∂v2
∂x

)
− γµ

δ

(
∂v0
∂x

)2 (
∂v1
∂x

)
= 0 at x = 0, (54)(

∂v2
∂x

)
= 0 at x = 1. (55)

The solution of system of equations (53)-(55) is given by

v2 = k5
[
x6

18
− x5

3
+ 5

x4

6
− 10

x3

9
+ 5

x2

6
− x

3

]
. (56)
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Substituting the values of v0, v1 and v2 from eqs.(48), (52) and (56) in eq.(44), we get the homotopy perturbation solution
up to second order as

v (x, ϵ) = kx
(x
2
− 1

)
+

(
1− γµk

δ

)
− ϵk3

(
x4

12
− x3

3
+

x2

2
− x

3

)
+ϵ2k5

[
x6

18
− x5

3
+ 5

x4

6
− 10

x3

9
+ 5

x2

6
− x

3

]
. (57)

3.3 Solution of the problem by homotopy perturbation method
The problem under consideration i.e. eqs. (41)-(43) can be written as

L(w)− L (v0) + qL (v0) + q

[
β

(
dw

dx

)2 (
d2w

d2x

)
− k

]
= 0, (58)

where L = d2

dx2 and v0 = k
2

(
x2 − 2x

)
+ 1 is initial guess approximation. Substitute w = w0 + qw1 + q2w2 + · · · in eq.

(58), we have

Zeroth order problem and its solution
The zeroth order problem is given by

L (w0)− L (v0) = 0, (59)

subject to the boundary conditions

w0 −
γµ

δ

(
∂w0

∂x

)
= 1 at x = 0, (60)(

∂w0

∂x

)
= 0 at x = 1. (61)

The solution of system of equations (59)-(61) is given by

w0 = kx
(x
2
− 1

)
+

(
1− γµk

δ

)
. (62)

First order problem and its solution
The first order problem is given by

L (w1) + L (v0) + β

[(
dw0

dx

)2 (
d2w0

dx2

)
− k

]
= 0, (63)

with boundary conditions

w1 −
γµ

δ

(
∂w1

∂x

)
− 2γµ

(
∂w1

∂x

)3

= 0 at x = 0, (64)(
∂w1

∂x

)
= 0 at x = 1. (65)

The solution of system of equations (63)-(65) is given by

w1 = −k3β

(
x4

12
− x3

3
+

x2

2
− x

3

)
. (66)

Second order problem and its solution
The second order problem is given by

L (w2) + β

[(
dw0

dx

)2 (
d2w1

dx2

)
+ 2

(
dw0

dx

)(
dw1

dx

)(
d2w0

dx2

)]
= 0, (67)
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with boundary conditions

w2 −
γµ

δ

(
∂w2

∂x

)
− 6γµ

(
∂v0
∂x

)2 (
∂w1

∂x

)
= 0 at x = 0, (68)(

∂w2

∂x

)
= 0 at x = 1. (69)

The solution of system of equations (67)-(69) is given by

w2 = k5β2

[
x6

18
− x5

3
+ 5

x4

6
− 10

x3

9
+ 5

x2

6
− x

3

]
. (70)

The velocity field obtained by the homotopy perturbation method is

v(x) = lim
q→1

w = lim
q→1

(
w0 + qw1 + q2w2 + · · ·

)
.

By substituting the values of w0, w1 and w2 from eqs.(62),(66) and (70) in the above equation, we get the solution up to
second order as

v(x) = kx
(x
2
− 1

)
+

(
1− γµk

δ

)
− k3β

(
x4

12
− x3

3
+

x2

2
− x

3

)
+k5β2

[
x6

18
− x5

3
+ 5

x4

6
− 10

x3

9
+ 5

x2

6
− x

3

]
. (71)

3.4 Volume flux and average velocity
The flow rate per unit width is given by

Q

W
=

∫ δ

0

v(x)dx,

Q

W
= k

δ2

2

(
δ

3
− 1

)
− k3β

(
δ5

60
− δ4

12
+

δ3

6
− δ2

6

)
+k5β2

[
δ7

126
− δ6

18
+

δ5

6
− 5

δ4

18
+ 5

δ3

18
− δ2

6

]
.

The average velocity v̄(x) over the cross section of the film is given by

v̄(x) =
Q

Wδ
,

v̄(x) = k
δ

2

(
δ

3
− 1

)
− k3β

(
δ4

60
− δ3

12
+

δ2

6
− δ

6

)
+k5β2

[
δ6

126
− δ5

18
+

δ4

6
− 5

δ3

18
+ 5

δ2

18
− δ

6

]
.

4 Results and discussion
Figure 1 shows that solution for fluid flow down an inclined plane obtained by perturbation and homotopy perturbation
method are same for identical values of ϵ and β. Similarly Figure 2 shows that the solution for fluid flow on a moving belt
obtained by perturbation and homotopy perturbation method are same for the identical values of ϵ and β. This shows that
solutions are identical, hence for further study, we discuss only solution obtained by homotopy perturbation method. To
see the effect of different parameters of interest on velocity field, Figures 3 and 4 are displayed in the case of fluid flow
down an inclined plane and moving belt.
Figure 3 (a)-(c) exhibits the effect of parameters m,β, γ on the velocity field. In Figure 3 (a), velocity function u(y)
is plotted against y for different values of m. Clearly, increasing values of m cause to increase in the velocity. This
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Figure 1: Dimensionless velocity profiles for the third order fluid flow down an inclined plane and for different values of
m = 0.3, 0.6, 0.9: (a) (23) for ϵ = 0.01, µ = 1, δ = 1, γ = 1 , (b) (36) for β = 0.01, µ = 1, δ = 1, γ = 1.
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Figure 2: Dimensionless velocity profiles for the third order fluid flow on moving belt for different values of γ = 0, 0.5, 1.0:
(a) (57) for ϵ = 0.2, µ = 1, δ = 1, k = 1.5, (b) (71) for β = 0.2, µ = 1, δ = 1, k = 1.5.

is because the reason that increasing value of m correspond to the increasing angle of inclination, which shows that by
increasing the angle of inclination of inclined plane, the velocity increases. Figure 3 (b) is plotted for different values of
non-Newtonian parameter β, we see that with increase in β, the velocity increases in this region and as a consequence, the
velocity gradient also increases, due to which skin friction also increases. In Figure 3 (c), graph is plotted against different
values of slip parameter γ, as the values of γ increases the velocity decreases.
Figure 4 is prepared for the flow of third order fluid on moving belt for different values of parameter k, β, γ. Figure
4 (a) depicts that the velocity decreases as the value of k increases. Figure 2 (b) shows that the velocity of the fluid
flow decreases with increase of β in this region. Figure 4 (c) elucidates that the velocity decreases with increase in slip
parameter γ.

5 Concluding remarks
A thin film flow of a third order fluid with slip conditions has been discussed in two cases: (i) when moves down an
inclined plane and (ii) when moves on a moving belt using analytical techniques. We see that the solution obtained by
perturbation and homotopy perturbation method are identical at the same values of β and ϵ, this is witnessed by graphs in
Figure 1 & 2. The effect of non-Newtonian parameter, slip parameter and other parameters involved in the problem are
discussed and results are displayed in graphs to visualize their effects.
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Figure 4: Dimensionless velocity profiles for the third order fluid flow on moving belt: (a) Velocity profile for β =
0.1, µ = 1, δ = 1, γ = 1 and different values of k = 0.5, 0.8, 1, (b) Velocity profile for k = 0.8, µ = 1, δ = 1, γ = 1.5
and different values of β = 3.0, 3.5, 4.0, (c) Velocity profile for β = 0.2, µ = 1, δ = 1, k = 1.5 and different values of
γ = 0, 0.5, 1.0.
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