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Abstract

Understanding how sea ice melts is critical to climate projections. In the Arctic, melt

ponds that develop on the surface of sea ice floes during the late spring and summer

largely determine their albedo – a key parameter in climate modeling. Here we explore

the possibility of a conceptual sea ice climate model passing through a bifurcation point

– an irreversible critical threshold as the system warms, by incorporating geometric

information about melt pond evolution. This study is based on a bifurcation analysis

of the energy balance climate model with ice - albedo feedback as the key mechanism

driving the system to bifurcation points.

Keywords: sea ice, bifurcations, melt ponds, fractals, stochastic differential equation,

phase transitions, climate model.

1. Introduction

Sea ice is not only a sensitive, leading indicator of climate change, it is a key player

in Earth’s climate system. It also serves as a primary habitat for algal and bacterial

communities which sustain life in the polar oceans. Perhaps the most visible, large

scale change on Earth’s surface in recent decades has been the precipitous decline of

summer Arctic sea ice. With this significant loss of a white reflecting surface covering

the Arctic Ocean, its albedo or reflectance decreases, and solar radiation is absorbed by

the ocean rather than being reflected. This heats the upper ocean, melting even more

ice, and so on, which is known as ”ice-albedo feedback”.

While global climate models predict a general decline in Arctic sea ice over the 21st

century, the observed losses have significantly out-paced projections [19, 27]. Improv-

ing our predictive capability for the fate of Earth’s sea ice cover and its ecosystems de-

pends on a better understanding of important processes and feedback mechanisms. For

example, during the melt season the Arctic sea ice cover becomes a complex, evolving
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mosaic of ice, melt ponds, and open water. The albedo of sea ice floes is determined

by melt pond configurations [20, 22, 25]. As ponds develop, ice-albedo feedback en-

hances the melting process. Understanding such mechanisms and their impact on sea

ice evolution and its role in the climate system is critical to advancing how sea ice is

treated in climate models and improving projections.

Conceptual, or low order climate models often introduce feedback through em-

pirical parameterization, for example, taking into account a simple relation between

temperature and area of ice covered surface. There is a wide range of such works,

including [7, 9, 12, 18]. Usually, ice-albedo feedback was simply associated with a

decrease in ice covered area and a corresponding increase in the surface temperature,

further decreasing the ice covered area. Given the key role that melt pond formation

and evolution plays in sea ice albedo, we note here an apparent lack of incorporation

of such features into conceptual models of ice-albedo feedback. Here we note that it is

important to explore how melt pond geometry and thermodynamics affect conceptual

climate models, and ice-albedo feedback in particular.

While melt ponds form a key component of the Arctic marine environment, com-

prehensive observations or theories of their formation, coverage, and evolution remain

relatively sparse. Available observations of melt ponds show that their areal coverage

is highly variable, particularly for first year ice early in the melt season, with rates of

change as high as 35 percent per day [22]. Such variability, as well as the influence

of many competing factors controlling melt pond and ice floe evolution, make realistic

treatments of ice-albedo feedback in climate models quite challenging [22]. Small and

medium scale models of melt ponds which include some of these mechanisms have

been developed [25, 26], and melt pond parameterizations are being incorporated into

global climate models [19].

Moreover, recently it has been found [14] that melt pond geometry has a complex

fractal structure, and that the fractal dimension exhibits a transition from 1 to about 2

around a critical length scale of 100 m2 in area. This behavior should be taken into

account in investigating sea ice-albedo feedback.

Given the complex, highly nonlinear character of the underlying differential equa-

tions describing climate, it is natural to ask whether the decline of summer Arctic sea

ice has passed through a so-called tipping point, or irreversible critical threshold as

the system progresses toward ice-free summers [1, 9]. A key mechanism potentially

driving the system to ”tip” is ice-albedo feedback. The main aim of this work is to in-

vestigate such a tipping point for a simplified model of sea ice and the climate system

which takes into some account the evolution of melt pond geometry and its effect on

sea ice albedo.

The surface of an ice floe is viewed here as a two phase composite of dark melt

ponds and white snow or ice. The onset of ponding and the rapid increase in coverage

beyond the initial threshold is similar to critical phenomena in the theory of phase

transitions. Here we ask if the evolution of melt pond geometry − and sea ice albedo

− exhibit universal characteristics which do not necessarily depend on the details of

the driving mechanisms in numerical melt pond models. Fundamentally, the melting of

Arctic sea ice is a phase transition phenomenon, where a solid turns to liquid, albeit on

large regional scales and over a period of time which depends on environmental forcing

and other factors. We thus look for features which are mathematically analogous to
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related phenomena in the theories of phase transitions and composite materials.

Basing our approach on the standard nonlinear phase transition model in the 2D

case [6], we propose an expression for the rate of change of the melt pond size. It

can be extended to the 3D case taking into account the vertical transfer of water to the

ocean through ice due to the different physical processes. After that, we introduce the

expression for albedo of the ice-covered surface and investigate through the melt pond

size how the unexpected fractal geometry of melt ponds [14] can influence the formula

for albedo of the ice covered surface.

As the next step, we consider a standard conceptual climate model– an ordinary dif-

ferential equation (ODE) [12] with ice-albedo feedback taking into account the albedo

of melt ponds. We modify this model assuming a stochastic distribution of melt pond

sizes, based on the Fokker-Plank equation. After that we investigate equilibria of the

resultant stochastic ODE under the key assumption that the surface temperature is a

slow function of time relative to melt pond size. Different bifurcation regimes were

obtained for this model. One of them may be quite interesting for climate applications,

where the temperature of this system is stabilized only due to the fractal transition in

melt pond geometry.

2. Evolution of melt ponds

2.1. Mechanism of the fractal transition

Viewed from high above, the sea ice surface can be thought of as a two phase

composite of ice and melt water. The boundaries between the two phases evolve with

increasing complexity and a rapid onset of large scale connectivity, or percolation of

the melt phase (Fig.1). As was shown in [14] that the melt pond perimeter Π can be

defined approximately by

Π ∼
√

S
D
, (1)

here S is the area of ponds and D is the the fractal dimension. The authors have ob-

served a transition from D = 1 to D ≈ 2 as the ponds grow in size, with the transitional

regime centered around 100 m2. According to [14] there exist three regimes:

A) S < 10 m2; then we observe simple ponds with smooth boundaries and D ≈ 1;

B) 10 m2 < S < 1000 m2; corresponding to transitional ponds where complexity

increases rapidly with size;

C) S > 1000 m2; complex, self-similar case, where pond boundaries behave like

space filling curves with D ≈ 2 (so-called fractals).

Here, one can show the transition in empirical formula (1) can be obtained from the

rigorous pattern formation theory that uses the Kuramoto-Sivashinsky equation [16].

One can show that beginning with a critical characteristic size, the boundaries become

unstable with respect to perturbations along the boundary.

We can suppose pond boundaries with fractal dimension about one can be consid-

ered like growing elliptical curves (there are circular ponds, in the ideal case) which

become unstable at some characteristic size R, the lengths of the semi-major axe and

the semi-minor one are ae = re1R and be = re2R, respectively, where ae and be have

the same order. In the case of fractal transition, the ponds are close to long and narrow
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Figure 1: Melt pond fractal dimension D as a function of area S, showing the transi-

tion to complex ponds with increasing length scale. Ponds corresponding to the three

regimes are shown to upward: small ponds with smooth boundaries and D ≈ 1, transi-

tional ponds with a horizontal scale of about 50 m, and complex ponds with river-like

boundaries with D ≈ 2. Adapted from [14].

ellipses, where ae and be have the different order. These ellipses remind one of rivers

rather than the simple circular ponds (Fig.1). Then one can expect that the area of such

a river of length R is proportional to R.

2.2. Melting front of pond

Our initial considerations of melt ponds will be based on the following geometrical

property of melt ponds. Typically, developed ponds have [10, 22] horizontal (charac-

teristic) sizes (R) on the order 10–1000 m, and a small depth (z) of 0.1–0.8 m, i.e. a

melting layer has a small but non-zero thickness (see Fig.2). Specific geometric fea-

tures of melt ponds are determined through fundamental physical processes in sea ice.

The complexity of the hydrology and thermodynamics of melt pond formation is the

basis for sophisticated numerical models of melt pond evolution [25, 26]. We do not

discuss here the details of the thermodynamic processes in sea ice leading to the for-

mation of the melt ponds. However, we can determine melting front (corresponding to

the length of the semi-major axis of the elliptical ponds), following by a phase transi-

tion model [6] where the melting layer has a small but non-zero thickness and a large
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Figure 2: Schematic representation of a melt pond. Adapted from [22].

horizontal dimension that agrees with our problem. Also, we can suppose that the ice-

water interfaces are quasi one-dimensional, following [17] we obtain the relation for

the melting front velocity:

v?(x,y, z, t)= δ (T ) (2)

where v? is the normal melting front velocity at the point (x,y, z) and δ is a function

of melting surface temperature T . The quantity δ can be expressed via microscopic

parameters of the phase transition problem [6,11,17], however, it is simpler to find this

quantity by experimental data since δ determines the main contribution in the pond

area increasing.

We are planning to consider the planar case. In this case, our fronts are curves.

All fronts are closed curves, which initially are not too different from ellipses. For

elliptical fronts of size R(t), Eq. (2) takes the form

dR

dt
= δ (T ), (3)

Some actual melt ponds can be thought of as three dimensional lenses (see Fig.2).

In [22] some important effects are described and experimental data are presented. It

is shown that there is a vertical transfer of water in the ocean through ice percolation,

permeability, or macroscopic flows, which is proportional to the depth of the lens. We

can assume that on average this depth is proportional to the pond size R. Therefore,

due to this effect, a rough estimate of the rate dW/dt of the water mass in the pond is

−βW . Since W = constR3, we have the following contribution Rw of this effect into

dR/dt: Rw = −γR. Taking into account this effect, we change Eq.(3) into the form

dR

dt
= δ (T )− γ(T )R = P(R,T ), (4)

where we suppose that δ and γ depend on the temperature.
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2.3. Melt ponds and albedo

Albedo is the reflecting power of a surface. Material properties, surface topogra-

phy, and other properties of the surface influence albedo as well as related feedback

mechanisms. We will involve melt ponds in the feedback by means of area. For this

aim we apply formula (1) to study the melt ponds area.

The total average albedo A can be approximated by

A = Arp
Srp

Srp +Sarc

+Aarc
Sarc

Srp +Sarc

, (5)

where Sarc is the area of the Arctic zone covered by ice for low temperatures and Srp is

the area of the rest planet, Arp is the average albedo of the rest planet, and Aarc is the

average albedo of Arctic zone.

According [10], the albedo of the Arctic surface is

Aarc = A0(1−Sr)+B0Sr = A0 − (A0 −B0)Sr, (6)

where A0 is an average albedo of ice area, B0 is an average albedo of melt ponds, the

percentage of the surface covered by ponds: Sr = Smelt
Sarc

with Smelt – the average area of

all melt ponds. Thus, we have obtained the formula for albedo involving the area of the

surface covered by melt ponds.

Using the facts about the fractal transition we compute the melt pond area as fol-

lows. For the averaged size R(t) < RF , again we assume that shape of melts ponds are

close to ellipses. Then we define the area of melt ponds by

Smelt(R) ≈ πc1

N

∑
i=1

Ri(t)
2, Smelt < s∗N ≈ Nπc1R2

F (7)

the coefficient c1 takes into account a deviation of elliptical form, RF is a critical char-

acteristic size of melt pond at the fractal transition. Here R = (R1(t), ..., ...RN(t)) is

a vector of pond sizes and N is the number of the ponds. For R > RF the ponds can

be envisioned as long and narrow (albeit contorted). The ellipse area is πaebe, where

ae,be are semi-major and semi-minor axis. We suppose that after the fractal transition

ae weakly depends on the size parameter Ri whereas be is proportional to Ri. Then we

use the relation

Smelt(R) ≈ c2

N

∑
i=1

Ri(t), Smelt > s∗N, (8)

where c2 is a constant, which determines a characteristic average width of river-like

ponds (that we observe after the fractal transition).

3. Low order climate model with ice-albedo feedback for melt ponds

In the previous sections, we have obtained expressions for the albedo involving

the percentage of the surface covered by melt ponds, which depends on the area of

the ponds. In turn, the area evolution depends on melt pond dynamics. This can be

6



explored in a conceptual climate model. Such models are based on an ice-albedo feed-

back that allows albedo to be temperature dependent. These models couple the albedo

to the global energy balance through inclusion of heat transport [7, 18]. In this section

we show how these models can be developed taking into account melt pond character-

istic size dynamics. It is based on a relationship between albedo, melt pond size, and

temperature. It allows us to find a climate bifurcation point related to melt ponds, and

estimate climate sensitivity provided that melt ponds play a key role in the mechanism

of ice-climate feedback.

A simple climate model is a one-dimensional system which can be described [12]

by

dT

dt
=

1

λ
(−εσT 4 +

µ0I0

4
(1−A)), (9)

where λ is thermal inertia, T is surface temperature, t is time, and A is the albedo of the

surface. The left term characterizes the time-dependent behavior of the climate system,

usually taken to mean an average surface temperature. Surface temperature changes as

a result of an imbalance in radiative heat transfer. On the right hand side, the first term

is outgoing emission and the second term represents incoming solar radiation. Gener-

ally, incoming solar radiation to earth’s surface should depend on total solar radiation

incident on earth (µ0), and the solar constant (I0) as well as surface albedo. On the other

side, outgoing emission can be described through the fourth power of temperature, the

effective emissivity (ε) and a Stefan-Boltzmann constant (σ).

Substituting the formula (5) via the pond characteristic size, we finally have the

following system for Ri,T :
dT

dt
= f (R,T ), (10)

where the right hand side is a sum of two terms that describe, the contributions of land

albedo, land emissivity and arctic albedo, respectively:

f (R,T) = Frp(T )+Farc(Smelt(R)),

where

Frp(T ) =
1

λ
(−εσT 4 +

µ0

4
I0(1−Arp(T )), (11)

Farc(R,T ) =
µ0I0

4λ
(A0 − (A0 −B0)Smelt(R)/Sarc). (12)

Here we assume, for simplicity, that Arp(T ) is a regular function of averaged tempera-

ture T , which weakly depends on T at some value Ts. This value defines the averaged

surface temperature for the case when all Arctic is covered by ice, i.e., Smelt = 0:

Frp(T )+Farc(0) = 0 (13)

(following here ideas from [4] and [5]).

For Ri we use the equation

dRi = P(Ri,T )dt +2κdωi, (14)
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where i = 1, ...,N and κ is a parameter. Here, observing that pond growth can be

viewed as a stochastic process as was presented in [29], we use the Langevin equation

for Ri, where dωi are independent standard Wiener processes. Since N >> 1 we can

also use the Fokker-Planck equation for the pond size distribution ρ(Ri, t):

∂ ρ

∂ t
= −∂ P(Ri,T)ρ

∂ Ri
+κ2 ∂ 2ρ

∂ Ri
2
. (15)

This model involves the additive noise generated by the term κdωi. Such models

are standard, have many applications and well studied, see [15]. We need such a term in

order to obtain a reasonable pattern of pond sizes for large t since otherwise we obtain

that all the ponds have the same size as t >> 1. Moreover, the stochastic model allows

us to describe stochastic resonance effects [4,5], which are possible here.

This nonlinear climate model can be reformulated as a stochastic dynamical sys-

tem. Note that for Ri > R0, κ = 0 (when stochastic effects are absent), and with in-

creasing δ (T ) one has

∂ f (Ri,T )

∂ Ri
> 0,

∂ P(Ri,T)

∂ T
> 0.

This means that the system (10) is cooperative. Therefore, due to fundamental results

of M. Hirsch [13], this system cannot exhibit oscillating solutions and the Andronov–

Hopf bifurcations [3]. All trajectories converge to equilibria and the attractor is a union

of these equilibria.

This observation allows us to compute the pond area Smelt for large times. In phys-

ically realistic situations N >> 1, so we can simplify the approximations Eqs. (7) and

(8). We can transform these relations as follows

Smelt ≈ Sc = πc1N

∫ ∞

0
Ri

2ρ(Ri, t)dRi, (16)

for Sc < s∗N , where s∗ = πc1R2
F , and c1 is a constant taking into account the deviation

from the elliptical pond form.

After the fractal transition one has

Smelt ≈ SF = c2N

∫ ∞

0
Riρ(Ri, t)dRi, (17)

for Sc > s∗N . Here ρ(Ri, t) can be defined by Eq. (15).

4. Analysis of the system for temperature and ponds

Equilibria of the system (10) and (14) for κ = 0 can be found as follows. For fixed

temperature T we compute quasi-equilibria Ri(T ) setting P(Ri,T ) = 0. This equation

has the root

R+(T ) =
δ (T )

γ(T )
. (18)
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Note that the root R+ is a stable resting point (a local attractor) of a semi-flow

defined by Eq. (10). Therefore, the dynamics of Eq. (10) can be described as follows:

Ri(t) → R+ for large times.

Our key assumption is that T is a slow function of time relative to Ri(t), i.e., the

melting process for ponds is fast while changing of the related climate system is slow.

Under this assumption computing equilibria for the temperature T becomes a math-

ematically tractable problem even in the stochastic case κ > 0. In fact, then (using clas-

sical results of dynamical systems theory) we solve the Fokker-Planck equation (15)

for each fixed T , after which we substitute the results in Eq. (9) and find the equilibria

for T . So, let us fix T in Eq. (15). It is well know that ρ(Ri, t)→ ρeq for large times t ,

where ρeq is an equilibrium distribution defined by

ρeq = C(T )exp(−κ−2V (R,T )), (19)

with

V(R,T ) = δ (T )R−0.5γ(T )R2,

where C(T ) is a factor such that
∫ ∞

0 ρeq(R)dR = 1. We have then

Smelt = πc1NC(T)

∫ ∞

0
R2 exp(−κ−2V (R,T ))dR, (20)

before the fractal transition and

Smelt = c2NC(T)

∫ ∞

0
Rexp(−κ−2V (R,T ))dR, (21)

after this transition. Therefore, for small κ we obtain the following relations for the

pond area Smelt (using that the function ρeq is well localized at R = R+(T ))

Smelt(T ) = C0N(R+(T ))2, (22)

for R+(T ) < RF , and

Smelt(T ) = C0NR+(T )RF (23)

for R+(T ) ≥ RF . Here C0 is a constant and RF is a critical characteristic size of melt

pond at the fractal transition. We assume that R+(T ) is an increasing function of T ,

i.e.,
dR+(T )

dt
> 0. This assumption looks natural. Note that Smelt(T ) has such properties.

This function is continuous and has a derivative dSmelt/dT = S′melt(T ), which has a

break at the temperature TF such that Smelt(TF) = RF .

For the temperature T , as a result of some straight forward transformations, we

obtain then the evolution equation

dT

dt
= G(T ), (24)

where

G(T ) = ζ (T )−Q(T ), (25)

There are

ζ (T ) =
4εσT 4(Srp +Sarc)

µ0I0Sarc

+Arp(T )
Srp

Sarc

+A0
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and

Q(T ) = (A0 −B0)
Smelt(T )

Sarc

.

The equilibria of this equation are defined by

Q(T ) = ζ (T ). (26)

These equilibria are intersections Teq of the curves ζ (T ) with Q(T ). If for Teq one has

ζ ′(Teq) < Q′(Teq),

then the intersection gives us a stable equilibrium and and thus a local attractor, other-

wise this equilibrium is a saddle point.

Note that the function Q(T ) equals zero for T < Tb, where Tb is the temperature

of the phase transition, when we have no melt ponds, it grows faster in T for smaller

T while the averaged pond size is less than the critical value around RF . This means

that early in the warming cycle we observe fast growth and afterwards when the ponds

become fractals, the growth of Q(T ) in T is slower. This result is consistent with

experimental data [22].

The analysis of Eq.(26) can proceed if we take into account that Sarc << Srp

and, moreover, supposing that melting phenomena appear at some temperature interval

T0,T1, following [4, 5] note that T 4 and Arp(T ) vary insignificantly on this range. The

the problem can be further simplified by a linearization of ζ (T ) at the temperature Ts

which is an equilibrium averaged surface temperature of the system “The rest of the

planet + the Arctic zone”, where Smelt = 0. We have

ζ (Ts) = 0

and, following [2], consider Q(T ) as a small but sufficiently irregular in T perturbation.

By an elementary perturbation theory, we have that the temperature T is defined by

ζ ′(Ts)(T −Ts) = Q(T ). (27)

Depending on the parameters A0−B0, Sarc/Srp, β = µ0I0
4εσ , and others there are possible

such main cases:

(I) a single stable equilibrium which serves as a global attractor, Fig. 3;

(II) a stable and unstable equilibria, Fig. 4;

(III) two stable equilibria plus a saddle point, Fig. 5.

A bifurcation picture occurs if we assume that Q(T ) is close to 0 for T < Tb, and

increasing for T > Tb. This condition looks natural since for low temperatures melt

ponds are frozen.

We can take the following approximation, when Eq. (27) can be solved analytically.

Let us set Smelt = 0 for T < Tb. For T > Tb we use relations (22) and (23) with some

C0 ≈ π and R+(T ) ≈ r0(T −Tb), where r0 > 0 is a parameter, which determines the

pond size increase in temperature T . Such an approximation means that we use linear

approximations for δ (T ) and γ = const for T > Tb. Then Eq. (27) becomes

Bp(T −Ts) = (A0 −B0)
Smelt(T )

Sarc
= Q(T ),

Bp =
4εσT 3

s

I0µ0/4
−ap, ap =

dArp(T )

dT
|T=Ts ,

(28)
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Figure 3: This picture illustrates the bifurcation, here Teq = 275.50 K is a single equi-

librium value. The dotted blue line corresponds to the term Bp(T −Ts) in the equation

(28) and the red curve is Q(T ) = (A0 −B0)
Smelt (T )

Sarc
. The steady state value of T can be

obtained as intersections of these curves.

where the right hand side is zero for T < Tb, it is quadratic function in T for T ∈ (Tb,TF)
and it is a linear function for T > TF .

Note that Eq. (28) can have n = 1,2 or n = 3 roots and it is also possible that the

roots are absent. We consider Bp as a bifurcation parameter for the next two cases: A

the fractal transition is absent; B in presence of this transition.

A. Here the plot of Q(T ) is a parabolic curve. Therefore, for small Bp there are no

roots of Eq. (28), for some Bp = B∗ we have a single root, and for Bp > B∗ one has two

roots, and only a single one is stable, whereas the second one is unstable. Remind that

the saddle-node (SN) bifurcation corresponds to situation, in which, as a bifurcation

parameter goes a critical value, two fixed points (or equilibria) of a dynamical system

collide and annihilate each other. The pitchfork bifurcation occurs when we have a

stable equilibria, after two equilibria (at a bifurcation point) and finally three equilibria

(one equilibrium is a saddle point and unstable, other two ones are stable). Therefore,

in the case A we are dealing with the SN bifurcation (since n take the values 0,1 and

2).

B. In this case situation is much more complicated. First, the bifurcation obtained

for the case A also appears but now it can be classified as a pitchfork bifurcation.
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Figure 4: Here we see the case of two equilibria. We have a stable equilibria at Teq =
274.00 K and a unstable one at Teq = 276.60 K (for stable equilibria Teq one has Bp >

Q
′
(Teq)). The dotted blue line corresponds to the term Bp(T −Ts) in the equation (28)

and the red curve is Q(T ) = (A0 − B0)
Smelt (T)

Sarc
. The steady state value of T can be

obtained as intersections of these curves.

Moreover, we observe the new effects. The main new effect is a second bifurcation

and formation of new equilibria. To see it, let us note, that the graph of Q(T ) is a

parabolic curve on some interval. After the fractal transition this graph is a right line:

Q(T ) = Q(TF)+qc(T −TF ), where qc > 0 is a coefficient (see Figs. 3, 4, 5). Consider

the number n of the roots of Eq.(28) as a function of Bp. Assume this parameter

increases from 0 to +∞. If qc is not too large, then for very small Bp there no roots

n = 0, after n = 1 and for Bp = B∗ we have n = 2 (here the first SN bifurcation occurs),

and for Bp > B∗ we have n = 3. The bifurcation point is not influenced by the fractal

transition but this transition gives us an additional stable equilibrium formed by the

intersection between Bp(T −Ts) and the right line Q(TF)+qc(T −TF ). For n = 1 we

have a single stable equilibrium, for n = 3 we obtain two stable equilibria and a saddle

point. As it was explained above, this situation corresponds to a pitchfork bifurcation.

Thus, the fractal transition changes a bifurcation type.

Furthermore, a new bifurcation occurs when n = 2 when the intersection point of

the curves Bp(T −Ts) and Q(T ) corresponds to the value T = TF . We obtain then n = 2

and for larger Bp we have n = 1. This second bifurcation also is a pitchfork one, which
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Figure 5: This plot shows the case of three equilibria. A stable equilibria Teq are 275.24,

276.20 and 276.90 K. The blue dotted line corresponds to the term Bp(T −Ts) in the

equation (28) and the red curve is Q(T ) = (A0 −B0)
Smelt (T )

Sarc
. The steady state value of

T can be obtained as intersections of these curves.

goes in an inverse direction. Finally, we observe that, as Bp increases, n takes the value

0,1,2,3,2,1 and that the fractal transition leads to two pitchfork bifurcations.

A similar geometric arguments show that for large qc the number n takes the values

0,1,2,1. Here we obtain two saddle-node bifurcations (the first one is illustrated by

Fig. 3).

Note that for τ = Ts−Tb > 0 three equilibria are possible if and only if the following

conditions hold:

v ∈ (1/2,1), u > v(1− v), u < 1/4,

where

b = (A0 −B0)C0Nr2
0/(BpSarc), u = bτ, v = b(RF/r0).

Here, we list the parameters, which were used for Figs. 3, 4, 5. There are effective

emissivity ε = 0.62, average albedo of ice area A0 = 0.68, Stefan-Boltzmann constant

σ = 5.67 · 10−8 J · s−1m−2K−4 average albedo of melt ponds B0 ≈ 0, µ0 = 1.00 and

incoming solar energy I0/4 is 340.00 W ·m−2. We have put Sarc = 5.00 · 1012 m2 and

ap = 0. The number N of the ponds is N ≈ 4.00 · 108. In case of Fig.3 there are

RF = 35.00 m, r0 = 3.00 m/K, Tb = 275.00 K, Ts = 274.50 K. For Fig. 4 the parameters
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are r0 = 7.00 m/K, Ts = 276.00 K, Tb = 275.00 K and RF = 17.50 m. The parameters

RF = 25.00 m, r0 = 20.00 m/K, Tb = 275.00 K, Ts = 275.20 K are used in Fig. 5.

5. Discussion

In this section, we discuss some physical consequences of the obtained results.

5.1. Melt pond evolution and sea ice melt pond area.

First of all, we discuss the different regimes of our toy climate system related to

bifurcations that can happen in this system. In the case of saddle-node bifurcation we

have two stable zones: “Frozen ocean” and “Melting ice”, see Fig.3. Such kinds of

climate states were described in the earliest works [7,18]. We can explain its existence

through the phase transition. However, the other two cases are more interesting.

In the case of two equilibria (Fig.4), we can distinguish three different zones. Two

of them are similar to the first case “Frozen ocean” and “Melting ice”, however we in-

troduce a new zone between two equilibria: “Onset of melting”. This zone corresponds

to the initial growth of melt ponds with the elliptical shapes. Physically, the existence

of this zone plays an important role, because seasonal sea ice minimum strongly cor-

relates with beginning melt pond fraction as was shown in [24], based on statistical

analysis of data from models. In this paper, it is shown that this zone, which is located

between two stable and unstable equilibria, determines the future state of this system.

However, here we can suppose that in the “Melting ice” zone growing ponds will cover

a significant ice surface that will lead to full ice disappear in during one season.

In the case of three equilibria (Fig.5), we still distinguish three different zones:

“Frozen ocean” subsists due to the low temperature; “Onset of melting” still exists,

however in this case it is shorter, because the elliptical ponds shifts its shapes very

fast to narrow and long rivers due to the fractal transition, which corresponds to the

second point of equilibrium. Crossing this point, the melt ponds are approaching to the

complex fractal forms. Such fractal system stabilizes our simple climate system at the

third point of equilibrium. After that point the pond growth is absent. Computations

show that in the second case the area Smelt covered by ponds is 1.60 · 1011 m2 at Teq =
276.60 K, but in the third case the area Smelt covered by ponds is significantly less

0.27 · 1011 m2 at Teq = 276.90 K. Thus, we can conclude melt ponds help to prevent

full summer Arctic sea loss, because they can stabilize the state of the climate system

due to the fractal transition. In addition, existence of “Onset of melting” zone due to

the transition from stable to unstable equilibria allows to control the amount of sea ice

extent by the end of the melting ice season.

In addition, we can consider another parameter which can control the physical state

of the system: there is a thermal inertia λ (Eq.(9)). A huge heat capacity of the ocean

produces the thermal inertia that can make surface of melting or freezing more grad-

ual. In our model the parameter λ defines a rate of the system approaching to an

equilibrium. Usually, conceptual models take into account this parameter as a con-

stant, however in case of melt pond incorporated models this parameter may be defined

as a function, then the rate of reaching equilibrium will be easily computed. It can

help to understand how fast a bifurcation may happen. However, these models should
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incorporate more complicated thermodynamics of the ocean-atmosphere interaction, at

least, a model such as was suggested in [9].

5.2. Melt ponds evolution and critical behavior of albedo.

From the first appearance of visible pools of water, often in early June, the area

fraction of sea ice covered by melt ponds can increase rapidly to over 70 percent in just

a few days. Moreover, the accumulation of water at the surface dramatically lowers

the albedo where the ponds form. A corresponding critical drop-off in average albedo

[22]. The resulting increase in solar absorption in the ice and upper ocean accelerates

melting [21], possibly triggering ice-albedo feedback. Similarly, an increase in open

water fraction lowers albedo, thus increasing solar absorption and subsequent melting.

The spatial coverage and distribution of melt ponds on the surface of ice floes and the

open water between the floes thus exerts primary control of ice albedo and partitioning

of solar energy in the ice-ocean system [8,22].

Thus, each data set exhibits critical behavior at the onset of melt pond formation,

similar to the behavior of order parameters characterizing phase transitions in thermo-

dynamics.

We would like to discuss such critical behavior related to melt pond evolution based

on our model. Here, we are taking into account that the melt pond size is a fast variable,

and the surface temperature (time-averaged) is a slow variable. Therefore, the mean

size depends on the temperature. Also, δ (T ) and γ(T ) in Eq. (4) are close to constant

(or slightly changing as a function of T ). In this case, the size is a smooth function

of the temperature. When the critical size is changing due to the fractal transition,

functions of melt pond area have a jump at this point(see Eqs. (7), (8)). According to

formula (6) the albedo depends linearly on area. So, we can approximate albedo as a

hyperbolic tangent (see Fig. 6) of the average surface temperature(T̄ ):

A(T̄ ) ≈ AF +Am tanh(T∆) (29)

where AF is the albedo of the surface after the fractal transition, and Am – the constant

corresponds to the change in albedo due to the fractal transition, T∆ – changing in the

surface temperature due to the fractal transition [22]. Previously, this formula was

introduced empirically, based on the observation data. However, we may see physical

interpretation of this phenomenon: the transition in fractal dimension of melt ponds

affects the shape of the albedo curve.

6. Conclusions

In this work, we have addressed some fundamental questions related to the role of

sea ice in the climate system. First of all, we considered how geometrical properties of

melt ponds can influence ice-albedo feedback and how it can influence the bifurcation

structure of a simple climate model. The melting pond growth model is developed

to study melt pond formation and its changes in geometry. The approach, proposed

here, can be useful for future investigations of the geometry of melt ponds and their

evolution.
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Figure 6: Albedo as a hyperbolic function of the average surface temperature due to

the fractal transition in the melt pond geometry.

We reviewed a low-order energy balance climate model using standard methods

of dynamical systems theory. As a result, we see different behavior of the climate

system in the case of the ice-albedo feedback with melt pond following a stochastic

distribution for the sizes. We concluded that in this case melt ponds can strengthen the

positive feedback and lead the climate system through a bifurcation point. Moreover,

the melt pond contributions can have a significant influence on the temperature state of

the climate system.

We would like to emphasize that in this research three scales of the problem were

connected. We have tied up micro, macro and global scales through the relation for

albedo. Albedo (global scale) contains the area of melt ponds (expressed through sizes

– macro scale) which in turn is connected to the microscopic parameters describing

thermodynamic changes in the melting front. Thus, this research advances the mul-

tiscale approach to tipping point investigations, first presented for permafrost lakes

in [28].
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