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Effect of viscoelasticity on the collective behavior of swimming microorganisms
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Hydrodynamic interactions of swimming microorganisms can lead to coordinated behaviors of large groups.
Using a mean-field theory and the Oldroyd-B constitutive equation, we show how linear viscoelasticity of the
suspending fluid alters the hydrodynamic interactions and therefore the ability of the group to coordinate. We
quantify the ability to coordinate by the initial growth rate of a small disturbance from the uniform isotropic state.
For small wave numbers the response is qualitatively similar to a Newtonian fluid but the Deborah number affects
an effective viscosity of the suspension. At higher wave number, the response of the fluid to small amplitude
oscillatory shear flow, leads to a maximal growth rate at a particular wavelength unlike the Newtonian result.
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I. INTRODUCTION

In this paper, we consider the collective behavior of a large
group of swimming microorganisms. There is a long history of
studying how microorganisms move through fluids including
non-Newtonian fluids. Mucus is an important coating on sur-
faces, often as a barrier to infection [1–3]. Infections of H. py-
lori in the intestines occur when the bacterium is able to move
through the mucus and not be flushed [4–6]. H. pylori are able
to change the rheological properties of the mucus by changing
the local pH [7]. The properties of saliva are also known to
play a role in the process of biofilm formation on teeth [8].

Most models have shown that the presence of viscoelasticity
usually reduces the swimming speed [9–14]. However, the
swimming speed of some bacteria varies with viscosity
and viscoelasticity [15–19]. It is particularly interesting that
swimming speed is not a monotonic function of viscosity.
For a large class of organisms, as the viscosity increases, the
swimming speed first increases, reaches a maximum, then
decreases [20,21]. It has been speculated that this results
from the non-Newtonian nature of the polymer solutions used.
Although the influence of viscosity and viscoelasticity on a
single organism is not completely understood, the focus of
this paper is the collective behavior of large groups.

As an organism swims through a fluid, it causes a long-
ranged disturbance that moves and rotates the other organisms.
This hydrodynamic interaction (HI) plays an important role in
the collective behavior of the group. Previous results in a New-
tonian solvent have shown that hydrodynamic interactions lead
to long-ranged orientational correlations between organisms
and coordination in communities of bacteria [22–31]. Using
a linear stability analysis of a mean-field theory, it has been
shown that the uniform isotropic state is stable if the organisms
pull themselves forward (pullers) while it is unstable if they
push themselves forward (pushers).

II. MODEL

To understand how a non-Newtonian fluid can alter the sta-
bility (or instability) of the uniform isotropic state, we will cou-
ple the dynamics of the swimming microorganisms with a non-
Newtonian constitutive equation. We have chosen the Oldroyd-
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B constitutive equation, which consists of a Newtonian solvent
with viscosity ηs and a polymer stress, which satisfies a single
mode upper-convected Maxwell model [32]. The two parame-
ters in the Maxwell model are the polymer contribution to the
viscosity ηp and the relaxation time λ. This model has been
used previously to understand single organisms in biofluids
[12]. It represents the generic changes to the linear stability due
to viscoelasticity, and therefore the long-ranged correlations
of the group. Note that in the linear stability analysis, the
nonlinear terms of the constitutive model do not contribute.

Our model consists of �(x,n,t), the probability density of
an organism with position x and unit vector orientation n at
time t , which satisfies the equation

∂�

∂t
= −∇x · (ẋ�) − ∇n · (ṅ�), (1)

where ẋ is the effective velocity of the organism and ṅ is
the effective angular velocity. We model the effective velocity
as the isolated swimming speed vis in the direction of its
orientation plus the fluid velocity u plus a contribution to
model diffusion of the center of mass,

ẋ = visn + u − D∇x(ln�), (2)

where D is the translational diffusivity. As a model of the
effective angular velocity we will use Jeffery’s equation for
the rotation of a rigid ellipsoid in a linear flow to write

ṅ = (δ − nn) · [(γ� + �) · n − Dr∇n(ln�)] , (3)

where Dr is the rotational diffusivity, � = (∇u + ∇u†)/2 is
the rate of strain tensor, � = (∇u − ∇u†)/2 is the vorticity
tensor, and γ = (A2 − 1)/(A2 + 1) where A is the aspect ratio
of the ellipsoid. Most bacteria with long flagellar bundles have
a large enough aspect ratio including the body and bundle such
that γ is near 1.

The fluid velocity u is generated by the motion of the other
organisms. At low Reynolds number conservation of mass and
momentum in the fluid give ∇x · u = 0 and

− ηs∇2
x u + ∇xq + ∇x · τp = ∇x · �, (4)

where q is the pressure, � is the stress from the organisms
pushing on the fluid, and τp is the stress due to the “polymers,”
which give rise to the non-Newtonian behavior of the fluid. In
the mean-field approximation, the stress � is the orientational
average over the other organisms using the distribution � in a
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self-consistent model,

� = dN

∫
S

�

(
nn − 1

3
δ

)
dn, (5)

where S is the surface of a unit sphere, d is the dipole moment
exerted by a swimmer, and N is the number of organisms in
the domain of volume V . In this mean-field approximation, the
stress � accounts for the HI between organisms, which leads
to the instability and collective behavior. We assume that d is
constant and not affected by the flow due to the other organ-
isms. The stress τp is assumed to follow the upper-convected
Maxwell model τp + λτ̂p = −2ηp�, where τ̂p is the upper
convected derivative τ̂p = ∂τp/∂t + u · ∇τp − (∇u† · τp +
τp · ∇u). Equations (1)–(5) form a closed system, for which
the uniform isotropic state is a steady-state solution. Other than
the inclusion of the polymer stress, this system is the same
as that used by previous researchers [27,29–31]. Using our
knowledge of the Newtonian problem, we nondimensionalize
the system using a characteristic time scale tc = ηs/(|d|c),
where we have used the absolute value of the dipole moment d

and the concentration c = N/V . This time scale represents the
characteristic time needed for HI between organisms to rotate
the orientation of an organism. We choose a characteristic
length scale lc = vis tc and characteristic stress scale ηs/tc =
|d|c. We will also rescale � such that the uniform isotropic
state corresponds to � = 1/(4π ). Unless otherwise stated, for
the remainder of the paper, we will use dimensionless variables
with these scales.

We will neglect both translational diffusion and rotational
diffusion for simplicity. It is known for Newtonian fluids that
translational diffusion stabilizes high wave-number perturba-
tions but does not affect the stability of low wave-number
perturbations. Rotational diffusion is known to stabilize all
perturbations. We expect both to be true for non-Newtonian
fluids. In our linear stability analysis, primed variables repre-
sent the deviation of the variable from the steady-state solution.

To leading order, the primed variables satisfy

∂� ′

∂t
= −n · ∇x�

′ + 3γ nn : �′, (6)

∇x · u′ = 0, (7)

−∇2
x u′ + ∇xq

′ + ∇x · τ ′
p = ∇x · �′, (8)

�′ = p

4π

∫
S

� ′
(

nn − 1

3
δ

)
dn, (9)

τ ′
p + 5De

∂τ ′
p

∂t
= −2H�′, (10)

where p denotes the sign of the dipole moment (p = −1
for pushers and p = 1 for pullers), the ratio of the polymer
viscosity to the solvent viscosity is H = ηp/ηs , and the
Deborah number is De = λ|d|c/(5ηs). We can solve these
equations by postulating a plane-wave solution with depen-
dence exp(ık · x + σ t) and determine the dispersion relation
for σ . The dispersion relation is the solution to

3ıpγ

4k
(
1 + H

1+5Deσ

)
[

2a3 − 4

3
a + (a4 − a2)ln

(
a − 1

a + 1

)]
= 1,

(11)

where a = −ıσ/k.

k
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FIG. 1. Dispersion relation for pushers showing the real part of
σ (a) and the imaginary part of σ (b) versus wave number k. The
dimensionless parameters in the constitutive equation are H = 2 and
De = 1.

III. RESULTS AND DISCUSSION

Figure 1 shows the dispersion relation for a suspension of
pushers (p = −1) with γ = 1 for a weakly non-Newtonian
fluid for which H = 2 and De = 1. The result is qualitatively
similar to a Newtonian fluid. For k < k0, σ is real with three
possible values, one positive value that approaches a finite
value as k → 0, one positive value that approaches zero as
k → 0, and one negative value that approaches a finite value
as k → 0 (not shown). The negative value does not occur in
the Newtonian case and results from a stable decay of the
polymer stress with time because of the relaxation time. The
limit De → 0 is a singular limit in which this negative root
scales as De−1. By expanding as a → ∞ we find that as k → 0
the finite values of σ solve

De = H

−pγ − 5σ
− 1

5σ
. (12)

Although this expression can be solved easily for both σ roots,
the form of Eq. (12) illustrates a key feature; the level curves
of σ are straight lines.

Figure 2 shows level curves for the positive root for pushers
with γ = 1. The values of H and De can vary widely for
biofluids. For saliva, H ranges from near zero to ∼10 [33,34].
De is proportional to λ and c. The relaxation time typically
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FIG. 2. (Color online) Contour plot and level curves of the
positive σ for pushers as k → 0 from Eq. (12) when γ = 1.

lies between 5 ms and 1 s, though it has been reported as high
as 76 s. Relevant concentrations to expect possible collective
behavior are from 109 to 1011 cells/mL. Using 1 s as the
maximum relaxation time and the dipole moment for E. coli
(∼2 × 10−18J ), De can range from near zero to ∼40. For
gastric mucus, the properties depend strongly on pH. Near
neutral pH, it is fit well using H = 32 and λ = 50 ms [7].
Therefore De can range from near zero to ∼2. At low pH,
gastric mucus forms a gel with much higher viscosity and
relaxation time. H can be in the thousands and De in the
hundreds, though gels are typically not modeled using the
Oldroyd-B constitutive equation.

In the limit H → 0, the level curves approach σ = 1/5,
which is the Newtonian result. This corresponds to a dimen-
sional growth rate of |d|c/(5ηs). When De = 0, we obtain
σ = 1/[5(1 + H )]. In this limit, the polymer is able to relax
fully during the growth process and therefore the fluid acts as
an effective Newtonian fluid with viscosity ηs + ηp. Since the
growth rate for a Newtonian fluid is inversely proportional to
the viscosity, the growth rate is scaled down by a factor 1 + H .
Finally, for any nonzero value of H , as the Deborah number is
increased from zero, the polymer cannot relax fully during the
growth process and contributes less to the instability. Therefore
for any finite H as De → ∞ the value of σ approaches the
Newtonian solvent result.

We can better understand the behavior near small k by
calculating the small k expansion for each branch. Using these
expansions, we find that if we scale σ by σ0 (the positive root
as k → 0) we can almost collapse the data by also scaling k by
σ0. Figure 3 plots the scaled dispersion relation. The scaling
collapses the curves exactly when De = 0 and De = ∞. For
intermediate De, the curves do not collapse exactly but retain
the same qualitative structure for k < k0.

This qualitative collapse for k < k0 in Fig. 3 suggests that
the dominant change in this region is a rescaling by an effective
viscosity that depends on De and H . In the limit De → ∞,
the polymer does not have time to relax during the growth
process and therefore has no impact on the growth rate of
the unstable mode. When De → 0 the polymer fully relaxes
and therefore acts as an effective Newtonian fluid with a new
viscosity. Therefore the growth rate is scaled down by a factor
of 1 + H and is shifted to smaller k by a factor of 1 + H .

k/σ0

R
e(

σ
)/

σ
0

FIG. 3. (Color online) Scaled dispersion relation for pushers for
γ = 1 and H = 40. The curves represent De = 0 (solid black),
De = 14 [solid orange (gray)], De = 20 (dashed blue), De = 30
(dot-dashed red), De = 50 (dotted magenta), and De = 100 [solid
green (lighter gray)]. The scaling collapses the curves for De = 0
and De = ∞.

At intermediate De, the dispersion relation for k0 < k < k1

is qualitatively different for a non-Newtonian fluid than for
a Newtonian fluid. At large enough H and intermediate De
the growth rate exhibits a maximum at a particular k. This is
in sharp contrast to the Newtonian result in which the largest
growth rate occurs for k → 0 and is thought to lead to large
scale coordination in suspensions of microorganisms. This
peak occurs because of the competition of two effects. As
k increases toward k1 for a Newtonian fluid, the real part of
σ decreases as the imaginary part of σ increases. However,
as k increases, the flow becomes dominated by oscillations
[similar to small amplitude oscillatory shear (SAOS)] and
the frequency of oscillation increases as k increases. As the
frequency increases, the effective viscosity η′(ω) decreases,
leading to an increase in the growth rate. The competition of
these two phenomena leads to a peak.

This peak occurs for “large” H and intermediate De. H

must be large enough that the low- and high-frequency values
of η′ differ significantly. The constitutive equation considered
here does not “shear-thin” in steady shear flow, and any
shear-thinning would not alter the results of the linear stability
analysis. However, in the region k0 < k < k1 the relevant
viscosity is η′, which does decrease with increasing frequency.
Even for large enough H , the peak does not occur for all De
since for De → ∞ the polymer does not contribute to the
dynamics and for De → 0 the polymer acts as a Newtonian
fluid. The scale of De for which the peak does occur is
approximately De ∝ H for large H . A predictive theory of
the peak height and k at the peak is left for future work.

For Fig. 3 using De = 30 and σ0 from Eq. (12), the value of
k at the peak corresponds to a length scale approximately
equal to 20lc. The value of lc is inversely proportional to
cell concentration. Using parameters for E. coli and c ranging
from 109 to 1011 cells/mL gives a range of the length scale
associated with the peak from 3 to 300 μm. This length scale
is larger than the typical separation between organisms, which
represents large-scale collective behavior, although we expect
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that these numbers would be altered slightly by fluctuations
not in the mean-field assumption and nonlinear effects.

IV. CONCLUSION

In conclusion, we have used a mean-field theory and
viscoelastic constitutive equation to better understand how
a non-Newtonian fluid alters the hydrodynamic interactions
of swimming organisms and therefore their ability to form
large scale structures. This naturally leads to the question of
whether one role of non-Newtonian biological fluid barriers

is to interrupt the HI of microorganisms. It also leads to the
possibility that microorganisms could alter the properties of
those barriers to enhance their ability to interact using HI.
We hope this work helps in efforts to start addressing these
questions.
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