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ABSTRACT. We propose a new method for fitting proportional hazards models with error-prone

covariates. Regression coefficients are estimated by solving an estimating equation that is the

average of the partial likelihood scores based on imputed true covariates. For the purpose of

imputation, a linear spline model is assumed on the baseline hazard. We discuss consistency and

asymptotic normality of the resulting estimators, and propose a stochastic approximation scheme

to obtain the estimates. The algorithm is easy to implement, and reduces to the ordinary Cox

partial likelihood approach when the measurement error has a degenerate distribution. Simulations

indicate high efficiency and robustness. We consider the special case where error-prone replicates

are available on the unobserved true covariates. As expected, increasing the number of replicates

for the unobserved covariates increases efficiency and reduces bias. We illustrate the practical

utility of the proposed method with an Eastern Cooperative Oncology Group clinical trial where a

genetic marker, c-myc expression level, is subject to measurement error.

Key words: bootstrap, covariate measurement error, Cox models, imputed partial likelihood

score

1. Introduction

Analyses of survival data are often hampered by the presence of covariate measurement

error. For example, in clinical trials, many biomarkers, such as blood pressure (Carroll

et al., 1995) and CD4 counts (Tsiatis et al., 1995), are subject to measurement error, and in

nutritional studies, fat intake is often measured with error (Carroll et al., 1995). A large

body of literature has been devoted to the measurement error problem within the propor-

tional hazard model framework. Prentice (1982) has shown that the induced hazard function

conditional on the observed covariates is also a multiplicative hazard model, but having a

complicated form; consequently fitting the naive model by directly using the contaminated

covariates will typically lead to biases. Several remedy methods have been proposed recently.

Likelihood-based approaches, where the distribution of unobserved covariates is fully

parametrically, semiparametrically and non-parametrically specified have been considered by

Hu et al. (1998). From perspectives of estimating equation, Huang & Wang (2000), and

Tsiatis & Davidian (2001) (whose method is asymptotically equivalent to that of Nakamura,

1992) have considered asymptotically consistent corrected partial likelihood approaches.

Their methods are robust with respect to the assumptions on the unobserved covariates or

measurement error.

In all these aforementioned methods, the cumulative baseline hazards are non-parametri-

cally estimated by step functions with jumps at distinctive failure times. Though they are

robust with respect to misspecification in the baseline hazards, the number of unknown

parameters which need to be estimated increase with number of events. Hence, the compu-

tation may be complex and the efficiency may be low. A naive alternative is to consider a fully

parametric model, with all the baseline hazards and the distribution of unknown covariates

specified, and carry out a parametric maximum likelihood estimation, which shall yield
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consistent and the most efficient estimates under the correct model. However, the estimates are

generally biased when the model is misspecified. In view of these difficulties and along the line

of the imputational methods introduced by Satten et al. (1998) for interval censored data, and

by Li et al. (2003) for clustered survival data, this article proposes a method that is inter-

mediate between the fully parametric and non-parametric approaches for survival data with

covariate measurement error. A linear spline model is assumed on the baseline hazard, but it is

only used to impute the unobserved error prone covariates. Once the baseline distribution is

specified, the distribution of true covariates conditional on the observed data can be calcu-

lated. A new estimating equation can be obtained by averaging the score equation for the Cox

partial likelihood with respect to the conditional distribution of unobserved true covariates,

given observed data. We propose to use this average partial likelihood score equation for

estimating regression parameters, and give closed-form estimators of the sampling variance of

our proposed estimators. The algorithms are easy to implement, and reduces to the ordinary

Cox partial likelihood approach, when the measurement error has a degenerate distribution.

Simulations indicate high efficiency and robustness of the estimates obtained by the proposed

method. As expected, increasing the number of replicates for the unobserved covariates

increases efficiency and reduces bias.

The rest of the article is structured as follows. In sections 2 and 3, we state the model and

derive an average partial likelihood score equation. We show in section 4, asymptotic results

and outline in section 5 a stochastic approximation scheme for constructing the estimates. In

section 6, we assess via simulation the finite sample performance of the proposed methods, and

in section 7, we apply the methods to the analysis of a published clinical trial (Augenlicht

et al., 1997) in colon cancer. We conclude with general discussion in section 8.

2. Imputed partial likelihood score equation

Let Vi and Ci be failure and censoring times, respectively, for subject i, i ¼ 1, . . . ,m. Suppose

for each subject, an error-free covariate vector Zi(r1 � 1), and an error-prone covariate vector

Xi(r2 � 1), where r1 þ r2 ¼ r, are of interest. We suppose that the Xi are not directly

observable, but instead, multiple error-prone replicates, Wi ¼ (Wi1, . . . ,Wini
), are observed,

where the number of replicates ni is an i.i.d. random variable taking positive integer values and

is independent of Xi.

We assume that the Ci are independently and identically distributed and independent of the

Vi and Xi, conditional on Zi. The observed data are right censored with only Ti ¼ minfVi, Cig
and the censoring code di ¼ I(Vi � Ci) observed, where I(Æ) denotes an indicator function.

Introduce the counting process Ni(t) ¼ I(Ti � t, di ¼ 1), and the at-risk process Yi(t) ¼
I(Ti � t). Our model specifies that, conditional on the true covariates Zi and Xi, the counting

process Ni(t) has an intensity function following the proportional hazards model (Cox, 1972),

lim
Dt!0þ

1

Dt
PfNiðtþDtÞ�NiðtÞ¼1jXi;Zi;NiðsÞ;YiðsÞ;0�s�tg¼k0ðtÞYiðtÞexpðX0

ibxþZ0
ibzÞ; ð1Þ

where bx and bz are the vectors of fixed effects and k0(t) is an unknown baseline hazard

function.

This model is completed by adding a classical non-differential measurement error structure

(Carroll et al., 1995),

Wij ¼ Xi þUij; ð2Þ

where the Uij are assumed independent of Xi, Zi, and are i.i.d. with a normal distribution

N(0, Ru). Here non-differentiality indicates the conditional law L(Ti, di|Xi, Wi, Zi) ¼
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L(Ti, di|Xi, Zi), implying that, conditional on the true unobserved covariate Xi, the

observed replicates Wi do not contain additional information about the survival outcome

(Ti, di).
In what follows, we assume that the unobserved covariates Xi are time-invariant and are

i.i.d. with a known conditional density function fx|z(X|Z) or conditional distribution function

Fx|z(X|Z). It is common in practice to postulate a normal distribution N(lx|z, Rx|z) (Carroll

et al., 1995).

For notational convenience, we denote X ¼ (X1, . . . ,Xm), Z ¼ (Z1, . . . ,Zm), and likewise for

W, T, D, N(t) and Y(t). Write �Wi ¼
Pni

j¼1 Wij=ni, and �W ¼ ð �W1;. . . ; �WmÞ. Under model (2)

and non-differentiality of measure error, �Wi is a sufficient statistic for Xi conditional on Ti, di
and Zi. Hence, for convenience, we will work with �Wi; �W in lieu of Wi, W, hereafter.

Throughout, unless otherwise specified, F(Æ) represents a distribution function, f(Æ) is a density

function, and expectations are taken conditionally on the observed covariates Z.

Following Cox (1972), if X were observed, one would be able to estimate b ¼ (bx, bz) from

the �complete� data partial likelihood score function

SðT;D;X;Z; bÞ ¼
Xm
i¼1

Z s

0

Z�
i �

Sð1Þðt;Z�; bÞ
Sð0Þðt;Z�; bÞ

( )
dNiðtÞ; ð3Þ

where Z� ¼ ðZ�
1; . . . ;Z

�
mÞ; Z�0

i ¼ ðX0
i; Z

0
iÞ, SðlÞðt; Z�; bÞ ¼

Pm
i¼1 Z

��l
i YiðtÞ expðZ�0

i bÞ, and

s < 1 is a constant such that pr(Ci > s) > 0. In practice, s is usually the study duration.

Here, for a vector u, u�l ¼ uu0 if l ¼ 2, u�l ¼ u if l ¼ 1, and u�l ¼ 1 if l ¼ 0.

However, as X is not observerable, the �complete� data partial likelihood function (3) is not

calculable. Instead, we propose to estimate b from an average partial likelihood function,

which is the conditional expectation of S(T, D, X, Z; b) with respect to X over the observed

quantities, i.e. the observed survival information, the observed covariates Z and the error-

prone covariates �W. Explicitly, we introduce

Sfb; k0ð�Þg ¼ EfSðT;D;X;Z; bÞjT;D; �W;Z; b; k0ð�Þg: ð4Þ

Denote by b0 and ~k0ð�Þ, the true values of b and k0(Æ), respectively.Using a double expec-

tation theorem (e.g. Fleming & Harrington, 1991, p. 22), we can show that

E½Sfb0; ~k0ð�Þg� ¼ 0 ð5Þ

under b0 and ~k0ð�Þ. As a result, Sfb; ~k0ð�Þg ¼ 0 is indeed an unbiased estimating equation for

b, given the true value of the baseline hazard function.

The form of (4) thus motivates us to regard the unobserved true covariates as �missing�
covariates, to impute them by simulating from the conditional distribution, and to use the

imputed values to construct an unbiased estimating equation; we term this simulated version

of (4) an imputed partial likelihood equation. Indeed, data augmentation by imputing unob-

served quantities has drawn large attention in recent years, and multiple imputation has

become a general approach to handle missing values in regression models (see, e.g. Rubin,

1987; Rubin & Schenker, 1991).

We also remark that this proposed imputation-based methodology can easily handle the

presence of interactions between the error-free and error-prone covariates, which has been

rarely explored in the existing literature.

3. Construction of the estimating equation

The conditional score function (4) can be written as
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Z
SðT;D;X;Z; b;ÞdF fXjT;D; �W;Z; b; k0ð�Þg;

where the conditional distribution of X, F has a product form

F fXjT;D; �W;Z; b; k0ð�Þg ¼
Ym
i¼1

F fXijTi; di; �Wi;Zi; b; k0ð�Þg:

To fully specify this conditional distribution, instead of considering the baseline hazard

function k0(Æ) in an infinite dimensional space, we impose a local parametric form on

it. That is, we assume a piecewise-linear spline model for the log baseline hazard

function:

log k0ðt; gÞ ¼ g1 þ g2t þ g3ðt � s1Þ þ � � � þ gqðt � sq�2Þþ; ð6Þ

with knots fixed at 0 	 s0 < s1 < � � � < sq�2. xþ ¼ max(x, 0), and g ¼ (g1, . . . ,gq). In practice,

the choice of knots should be data-driven, e.g. by the criteria of AIC or BIC, and Cai et al.

(2002) recommend choosing knots densely to allow for a detailed study for the structure of the

baseline hazard function. In our particular setting (for the purpose of imputation), we found

that a relatively small number of knots suffice, especially when the underlying hazard is

relatively smooth. Our later simulations confirm this.

Under model (2) and the normality assumption on measurement error, we can write

dF fXijTi; di; �Wi;Zi; b; k0ð�; gÞg ¼
LðTi; dijXi;Zi; b; gÞ/ð �Wi;Xi;Ru=niÞdFxjzðXijZiÞ

LðTi; di; �WijZi; b; gÞ
; ð7Þ

where /(Æ; l, R) is the density function for a multivariate normal random variable N(l, R) and
L(Ti, di|Xi, Zi; b, g) is the conditional likelihood for the ith subject given the covariate Xi

under (1) and (6), i.e.

LðTi; dijXi;Zi; b; gÞ ¼ kdi0 ðTi; gÞ exp diðX0
ibx þ Z0

ibzÞ � K0ðTi; gÞ eXibxþZ0
ibz

n o
; ð8Þ

and LðTi; di; �WijZi; b; gÞ is the marginal likelihood for the observed data ðTi; di; �WiÞ. That is

LðTi; di; �WijZi; b; gÞ ¼
Z

LðTi; dijXi;Zi; b; gÞ/ð �Wi;Xi;Ru=niÞdFxjzðXijZiÞ; ð9Þ

which follows from the non-differentiality of the assumed measurement error. In (8) the

cumulative baseline hazard K0ðt; gÞ ¼
R t
0 k0ðs; gÞds.

For notational ease, we rewrite

Sfb; k0ð�; gÞg ¼ Sðb; gÞ: ð10Þ

As g is unknown, we resort to a full likelihood maximization to obtain an estimate.

Specifically, given an estimate of b, we solve for g from the following log likelihood

score equation

Uðb; gÞ ¼
Xm
i¼1

UðTi; di; �Wi;Zi; b; gÞ ¼
Xm
i¼1

@

@g
log LðTi; di; �WijZi; b; gÞ
� �

; ð11Þ

where L(Æ) is defined at (9).

The aforementioned scheme is equivalent to obtaining estimates for b and g by simul-

taneously solving
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Sðb; gÞ
Uðb; gÞ

� �
¼ 0: ð12Þ

Under model (1) with k0(t; g) correctly specified and by the usual properties of maximum

likelihood estimation, the estimating equations (12) are unbiased, and, consequently, would be

expected to yield consistent estimates.

Even when k0(t; g) is incorrectly specified, we may expect that (10) is less sensitive to such

misspecification than is the observed data likelihood score obtained by differentiating (9)

with respect to b, because the �complete� data partial likelihood score S(T, D, X, Z; b) is

independent of the baseline distribution. A similar observation was made by Satten et al.

(1998), who imputed unobserved failure times in the context of independent interval-

censored survival data by specifying a Weibull model on the baseline hazard. We study this

more analytically in section 4 and conduct simulations in section 7 to verify the theoretical

results.

4. Asymptotic theory and robustness analysis

Denote by ~b0, the true value of the regression coefficient b. With the assumption that (Ti,

di, Xi, Zi) are i.i.d., Lin & Wei (1989) have shown that the �complete� data partial likelihood

score SðT; D; X; Z; ~b0Þ can be represented, up to op(1), as an i.i.d. sum. That is,

m�1=2SðT;D;X;Z; ~b0Þ ¼ m�1=2
Xm
i¼1

nðTi; di;Xi;Zi; ~b0Þ þ opð1Þ; ð13Þ

where

nðTi; di;Xi;Zi; bÞ ¼ di Z�
i �

sð1ÞðTi; bÞ
sð0ÞðTi; bÞ

� �
� eZ

�0
i b

Z Ti

0

Z�
i �

sð1Þðt; bÞ
sð0Þðt; bÞ

� �
dGðtÞ

sð0Þðt; bÞ :

Here, G(t) ¼ EfNi(t)g, and s(l)(t; b) ¼ EfS(l)(t, Z�; b)g for l ¼ 0, 1, 2, where the expecta-

tion is taken with respect to the true (but unspecified) distribution distribution of

(N, Y, X, Z).

Denote by c ¼ (b, g), the collection of unknown parameters. Following the proof of Datta

et al. (2000) and Li et al. (2003), we further show that in a small neighborhood of c the term-

wise integration of (13) is allowable, enabling us to write

m�1=2SðcÞ ¼ m�1=2
Xm
i¼1

wðTi; di; �Wi;Zi; cÞ þ opð1Þ; ð14Þ

where S(Æ) is defined in (10) and wðTi; di; �Wi; Zi; cÞ ¼
R
nðTi; di; Xi; Zi; bÞ�

dF fXijTi; di; �Wi; Zi; b; k0ð�; gÞg: Hence, we are able to approximate the average partial

likelihood score with respect to the conditional distribution of unobserved covariates using a

sum of i.i.d. random variables.

Denote by c0 ¼ (b0, g0) the solution to the following equation:

E
wðTi; di; �Wi;Zi; cÞ

@
@g log LðTi; di; �WijZi; cÞ

� �� �
¼ 0; ð15Þ

where the expectation is taken with respect to the true distribution distribution of

(N, Y, X, Z, W). Note when the baseline hazard k0(t; g) and the distribution of X, W are

correctly specified, b0 ¼ ~b0, as the terms inside the braces of (15) are unbiased under the true

parameters.
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When implementing the proposed estimating procedure, however, we might misspecify the

baseline hazard function as well as the distribution functions of X, W and measurement error

U. Hence the proposed estimates will incorporate some asymptotic bias. Theorem 1 shows

that, under regularity conditions C1–C3 (in the Appendix), the imputed partial likelihood

estimates converge in probability to b0, the solution to (15), enabling the calculation of

potential asymptotic biases.

Theorem 1

There exists a sequence of solutions bc to (12) such that for any given � > 0, there exists a K < 1
and an integer m0 > 0 such that prfbc 2 N K=

ffiffiffi
m

p ðc0Þg � 1� � for any m � m0, where Nq(c0) is

the neighbourhood around c0 with radius q.

Using (14), it can be shown readily that

m�1=2fSðc0Þ;Uðc0Þg!
d
Nð0;WÞ; ð16Þ

where W, the covariance matrix of wðTi; di; �Wi; Zi; c0Þ and UðTi; di; �Wi; Zi; c0Þ, is defined

later. Asymptotic properties of the solution to (12) follow in part from (16) and are

summarized in theorem 2.

Theorem 2

Let bc be a solution to (12) that converges to c0 in probability. Then

m1=2ðbc� c0Þ!
d
Nð0;VÞ;

whereV ¼ A
�1W(A�1)T,withW ¼ W11 W12

W0
12 W22

� �
:Here,A is expectation of the Jacobian matrix

of the score equations (12) and

W11 ¼ EfwðTi; di; �Wi;Zi; c0ÞwðTi; di; �Wi;Zi; c0Þ0g;

W12 ¼ EfwðTi; di; �Wi;Zi; c0ÞUðTi; di; �Wi;Zi; c0Þ0g;

W22 ¼ EfUðTi; di; �Wi;Zi; c0ÞUðTi; di; �Wi;Zi; c0Þ0g:

We now compute the asymptotic bias from (15), wherein the expectation can be evaluated,

for any measurable function g, by

EfgðTi; di; �Wi;ZiÞg

¼
X1
d¼0

Z
gðt; d; �w; zÞkdðtjx; zÞSðtjx; zÞc1�d

c ðtÞCd
c ðtÞf�wjx;zð�wjx; zÞfx;zðx; zÞ dt d�w dx dz;

where k(t|x, z) [defined in (1)], Sðtjx; zÞ ¼ expð�
R t
0 kðsjx; zÞ dsÞ are the true hazard function

and survival function, respectively, cc(t), Cc(t) are the density and survival functions for the

censoring time C, and f�wjx; x; fx;z are the conditional density function of �W and the joint density

of X, Z, respectively. Numerical integration can be employed to evaluate this integral, if

necessary.

To illustrate bias patterns, we calculated the asymptotic biases for the imputed partial

likelihood estimates (denoted by b̂I ) under the following settings: the true hazard

kðtjxÞ ¼ k0ðtÞ expð~b0xÞ, where k0(t) ¼ 0 if t < 1 and 2 if t � 1, x 
 N(0, 1); censoring time

C 
 U(0, 4); the number of replicates per subject is ni 	 4. We varied the measurement error

variance r2u from 0.25 to 2 and the regression coefficient ~b0 from 0.25 to 2. For the purpose of
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comparison we also calculated the asymptotic biases for the fully parametric maximum

likelihood estimates (denoted by b̂L), converging in probability to the solution to the following

equation.

E
@
@b log LðTi; di; �WijZi; b; gÞ

� �
@
@g log LðTi; di; �WijZi; b; gÞ

� � !
¼ 0:

The relative biases (|bias|/true value) were computed and depicted in Fig. 1 for various

measurement error variances and true regression parameter ~b0. When calculating b̂I and b̂L,
we assumed a linear spline model on the baseline hazard log k0(t, g) ¼ g1 þ
g2t þ g3(t � 0.5)þ.

The plot indicates the asymptotic biases for b̂I were small, when ~b0 was not too large (i.e.

<1) and when the measurement error was moderate [the noise-signal ratio

ðr2u=niÞ=r2x < 0:25], in which cases the absolute asymptotic biases for b̂I were less than 0.20

and the relative biases were below 12%. We also notice that, under extreme cases, when
~b0 > 0 and the measurement error variance was as large as 2, the absolute asymptotic bias for

b̂I was large, indicating that the proposed method may not work well. Under all the scenarios

examined, the absolute asymptotic biases for the fully parametric MLE, b̂L, always exceeded
those for b̂I . For example, when the measurement error variance was 2 and ~b0 ¼ 0:25, the

relative bias for b̂L was �0.12 compared with �0.04 for b̂I . Note that even in the absence of
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Fig. 1. Asymptotic biases of b̂I , the imputed partial likelihood estimates (IPLE), and b̂L, the para-

metric MLE, under various values of ~b0 and r2u. The horizontal line is the zero-line, corresponding to

no bias.
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measurement error (r2u ¼ 0), b̂L was still biased (especially when ~b0 was as large as 2.0)

because the baseline hazard function was misspecified. In contrast, our proposed imputation-

based method reduces to the standard Cox proportional hazards analysis in the absence of

measurement error, and hence incurs no bias.

5. A stochastic approximation scheme

In practice, Ru, lx and Rx will typically be unknown, but can be consistently estimated by

moment estimators, when replicate data are available. For example, following Carroll et al.

(1995), we have the following
ffiffiffiffi
m

p
-consistent estimating equations:

blx ¼Pm
i¼1

Pni
j¼1 WijPm

i¼1 ni
; bRu ¼

Pm
i¼1

Pni
j¼1ðWij � �WiÞðWij � �WiÞ0Pm

i¼1ðni � 1Þ ;

and

bRx ¼
Pm

i¼1 nið �Wi � blxÞð �Wi � blxÞ0Pm
i¼1 ni

:

We rewrite (11) as

UðcÞ ¼
Z

UðT;D;X;Z; b; gÞ dF ðXjT;D; �W;ZÞ;

where UðT; D; X; Z; b; gÞ ¼ ð@=@gÞ
Pm

i¼1 log LðTi; di; Xi; Zi; b; gÞ. Both U(c) and S(c)

in (12) are multidimensional integral with respect to the conditional distribution

F ðXjT; D; �W; ZÞ. As neither F ðXjT; D; �W; ZÞ nor f ðXjT; D; �W; ZÞ has a closed form, we

propose to use a stochastic approximation (see, e.g. Gu & Zhu, 2001), coupled with a

sampling-importance resampling (SIR) scheme (McLachlan and Krishnan, 1997, Ch. 6), to

evaluate U(c) and S(c) and solve (12). In contrast to the common rejection sampling

approach, an advantage of the SIR algorithm is that the bound of the ratio of the candidate

and the target distributions do not need to be evaluated. We proceed as follows.

Denote by ck, the estimate of the unknown parameter c ¼ (b, g) at the kth step. Assume

Xk,1, . . . ,Xk,n are n i.i.d realizations following distribution F ðXjT; D; �W; Z; HkÞ. Introduce
I(X; b) ¼ (o/ob)S(T, D, X, Z; b) and J(X; b, g) ¼ (o/og)U(T, D, X, Z; b, g). Let Ik ¼
ð1=nÞ

Pn
i¼1 IðXk;i; b

kÞ Jk ¼ ð1=nÞ
Pn

i¼1 J ðXk;i; b
k ; gkÞ; Sk ¼ ð1=nÞ

Pn
i¼1 SðT; D; X; Z; bkÞ;

and Uk ¼ ð1=nÞ
Pn

i¼1 UðT; D; X; Z; bk ; gkÞ.
Then at the (k þ 1)-step, the updated estimate of c is

b̂kþ1 ¼ ~bk � ak~Ik~S
k ;

ĝkþ1 ¼ ~gk � ak~Jk ~Uk ;

where ~bk ¼ ð1=kÞ
Pk

i¼1 b̂
i; ~gk ¼ ð1=kÞ

Pk
i¼1 ĝ

i; ~Ik ¼ ð1=kÞ
Pk

i¼1 I
i; ~Sk ¼ ð1=kÞ

Pk
i¼1 S

i; ~Jk ¼
ð1=kÞ

Pk
i¼1 J

i; ~Uk ¼ ð1=kÞ
Pk

i¼1 U
i. Here the gain constant ak is defined to be ak ¼ c/(ke þ g),

where c, g > 0, e 2 (0, 1) are fixed. In practice, e is chosen to be close to 1/2 and c to be small

and g is relatively large (cf. Gu & Zhu, 2001). The iteration continues until convergence. To

guarantee convergence in stochastic approximation, a good starting value is often needed; our

experience suggested that choosing the naive estimates as starting points is preferable.

We apply the SIR to draw samples from intractable distribution F ðXjT; D; �W; Z; cÞ or

density f ðXjT; D; �W; Z; cÞ. Specifically, we draw M values, X1, . . . ,XM from a candidate

density h(X) and calculate the importance ratios: rj ¼ f ðXjjT; D; �W; Z; cÞ=hðXjÞ for j ¼
1, . . . ,M. Then draw n values from X1, . . . ,XM. It can be shown that as M/n ! 1, the dis-
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tribution of the drawn values follows the targeted distribution (McLachlan & Krishnan, 1997,

Ch. 6). In order for SIR to work well, one needs to carefully select the candidate density h(X)

such that h(X) and the object density function f ðXjT; D; �W; Z; cÞ have the same support, and

h(X) approximates f ðXjT; D; �W; ZÞ well. We proceed as follows.

First notice that f ðXjT; D; �W; ZÞ ¼
Qm

i¼1 f ðXijTi; di; �Wi; ZiÞ, and apply a Taylor series

expansion to ‘iðxÞ 	 log f ðxjTi; di; �Wi; ZiÞ centred at its mode ~li, yielding

‘iðxÞ ¼ ‘ið~liÞ þ
1

2
ðx� ~liÞ

0 @2

@x@x0
‘iðxÞjx¼~li

� �
ðx� ~liÞ þ ri; ð17Þ

where the remainder term ri is negligible compared to the quadratic term if x is close to ~li or ni
is large. From (7) and (8), ~li solves

0 ¼ @

@x
‘iðxÞ ¼ di � K0ðTi; gÞ eb

0
xxþb0zZi

n o
bx � niR�1

u ðx� �WiÞ � R�1
x ðx� lxÞ

and

� @2

@x@x0
‘iðxÞjx¼~li

¼ K0ðTi; gÞ eb
0
x~liþb0zZibxb

0
x þ niR�1

u þ R�1
x :

Considering (17) as a function of x only, the first term is a constant, whereas the second term

is proportional to the logarithm of a normal density, yielding a normal approximation

Nð~li; ~RiÞ, where

~Ri ¼ � @2

@x@x0
‘iðxÞjx¼~li

� ��1

:

Therefore, hð�Þ ¼
Qm

i¼1 /ð�; ~li; ~RiÞ. Notice when mini(ni) ! 1 or norm ||Ru|| ! 0,

~li � �Wi ! 0 almost surely and jj~Rijj ! 0 almost surely for i ¼ 1, . . . ,m, in which case �Wi can

be substituted for Xi, and the estimating equation reduces to the ordinary partial likelihood

equation and attains semiparametric efficiency (Bickel et al., 1993). Consequently, increasing

the number of replicates for the unobserved covariates increases efficiency and reduces bias.

6. Variance estimator

The variances of the maximum likelihood estimates are conventionally calculated by inverting

the Fisher information matrix. However, because (12) is not an i.i.d. sum of ordinary likeli-

hood scores, a more in-depth analysis is required to derive an estimate of the variance matrix

of bc, the zero of (12). The appendix establishes that the asymptotic variance of m1=2ðbc � c0Þ,
V, can be estimated by

bV ¼ A�1
m ðbcÞbWfA�1

m ðbcÞg0; ð18Þ

where Am and bW are consistent estimates to A and W in theorem 2 and are given in the

appendix.

Computationally, using (18) to calculate a variance estimate is complicated and time-

consuming, even without accounting for the additional variability induced by estimating

lx, Rx and Ru. A simple alternative is to use the bootstrap approach (Efron, 1981). Specific-

ally, we resample m subjects, with replacement, from ðTi; di; �Wi; ZiÞjmi¼1 to obtain a new data

set fTðiÞ; dðiÞ; �WðiÞ; ZðiÞgjmi¼1. Given this new dataset, we solve (12) for the estimates of c, in

particular, b. Such a procedure can be repeated for B times to obtain a sequence of estimates,

say, ~bðlÞ; l ¼ 1, . . . ,B. The bootstrap variance estimates can be calculated using the sample

variance
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varbootðbbÞ ¼ 1

B� 1

XB
l¼1

~bðlÞ � �bboot

n o
~bðlÞ � �bboot

n o0
;

where �bboot ¼ ð1=BÞ
PB

l¼1
~bðlÞ. In practice, it is adequate to choose a moderate number of

resamplings, B, in the range of 25–100 (Lange, 1999, p. 301). We chose B ¼ 40 in our

simulation studies. For a review of other nonparametric techniques for obtaining the variance

estimates, such as the Jackknife procedure, the smoothed bootstrap method and the half-

sampling approach, see Efron (1981) and Efron & Tibshirani (1993).

7. Simulation

Simulations were performed to assess the finite sample performance of the proposed imputed

partial likelihood score (PLS) estimators. For simplicity, we focus on a single covariate

measurement error survival model. Of particular interest were robustness and efficiency of the

proposed estimator, along with the performance of the bootstrap variance estimator.

In each simulated data set, survival times Vi were generated for each individual by the

hazard kiðtÞ ¼ k0ðtÞ expð~b0XiÞ; i ¼ 1; . . . ;m, where ~b0 ¼ 1, and the Xi were generated

independently from the standard normal N(0, 1). Censoring times Ci were simulated from the

uniform distribution on interval [0, s].
We considered the following combinations of experiments: the number of subjects m was set

to be 50, 100 and 200, while the number of replicates ni were distributed according to the

discrete uniform distribution with mass on the integers 1–5; for j ¼ 1, . . . ,ni, the measurement

error Uij were independently generated from Nð0; r2u ¼ 0:5Þ; s was chosen to yield two dif-

ferent censoring proportions 30 Per cent (light censoring) and 70 Per cent (heavy censoring).

When generating the data, we chose the following three models for the baseline hazard k0(t) to
examine the robustness of the proposed PLS approach. A log linear model:

log k0ðtÞ ¼ log 2þ 2t: ð19Þ

Weibull model: k0(t) ¼ 0.5t, which departs frommodel (6); and a discrete hazardmodel, k0(t) ¼
0 if t < 1 and k0(t) ¼ 2 if t � 1, corresponding to a common scenario in clinical trials, in which

failures are not seen immediately following treatment. For each parameter configuration, a total

300 replicated data sets were generated, and for each dataset, the regression coefficient was

estimated in three methods: the naive method where the predicator was substituted by the

average of its multiple measurements, the regression calibration where the unobserved cova-

riates were replaced by their conditional expectation based on the observed surrogates, the

conditional intensity estimator, derived by Tsiatis & Davidian (2001) via the conditional

intensity of the counting process based on the sufficient statistic of the unobserved true cova-

riate, the parametric maximum likelihood estimation and the imputed PLS method. When

carrying out the parametric MLE and the imputed PLS estimation, we assume a linear spline

model (19) on the baseline hazard with three knots (corresponding to time 0-, 33- and 67-

percentile of the observed failures times) and a normal distribution on the unobserved covariate.

The averages of the estimates, the empirical standard errors were calculated. We reported

the results when the baseline hazard follows (19) in Table 1. We used the mean-squared error

(MSE) to summarize the performance of each estimator. The imputed PLS method is quite

robust to the specification of the underlying baseline hazard, and successfully corrected biases.

It gave highly efficient estimates compared with the conditional intensity estimator. For

example, with a sample size of 100 (censoring proportion 30 Per cent) and a log linear baseline

hazard, the relative bias and standard error for b̂ calculated by the Imputed PLS method was 1

Per cent and 0.196 (MSE ¼ 0.039), compared with those of 1.2 Per cent and 0.274 (MSE ¼
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0.075) calculated by the conditional intensity approach. Similar patterns persisted across

different sample sizes, censoring proportions and baseline hazards. Noticeably when the

sample size is relatively small, we found the imputed PLS method outperformed the condi-

tional intensity approach significantly in terms of efficiency and bias correction. This is be-

cause the unbiasedness of the latter estimator relies on asymptotic approximation, and, hence,

is only valid when the sample size is large. We also notice that the imputed PLS performed

much better than the regression calibration and parametric MLE.

We next examined the robustness of the proposed imputed PLS estimators with respect to

the parametric assumptions made on the distributions underlying covariate and the meas-

urement error, when computing the imputed PLS estimates. We generated true Xi and

measurement error Uij from a normal mixture

F ¼ pNf�ð1� pÞl; r2g þ ð1� pÞNfpl; r2g; ð20Þ

where p is a constant between 0 and 1. This distribution has mean 0 and variance h ¼
p(1 � p)l2 þ r2. Two cases for F were considered: unimodal normal mixture, that is, p ¼
0.25, l ¼ 0.5, r2 ¼ h � p(1 � p)l2, and bimodal normal mixture, that is p ¼ 0.50, l ¼ 1,

r2 ¼ h � p(1 � p)l2. By appropriate choice of h, we let var(Xi) ¼ 1 and var(Uij) ¼ 0.5. In the

calculation of the imputed PLS, we however assumed normal distributions on Xi and Uij.

Because of space limitation, we only reported the results when the Xi and Uij follow the

bimodal normal mixture distributions in Table 2. Both the imputed PLS method and the

conditional intensity approach gave consistent results, in contrast with the regression

calibration and parametric MLE. Again, we found the imputed PLS method outperformed the

conditional intensity approach in terms of efficiency. For instance, with a sample size of 100

(censoring proportion 30 Per cent), covariates and measurement errors following bimodal

normal mixtures, and a Weibull baseline hazard, the relative bias and standard error for b̂
calculated by the imputed PLS method was 1.7 Per cent and 0.180 (MSE ¼ 0.033), compared

with those of 8.4 Per cent and 0.322 (MSE ¼ 0.111) calculated by the conditional intensity

approach. Similar patterns presented with varied sample sizes and censoring proportions.

Finally, to explore robustness of imputed PLS estimates with respect to choices of knots, we

computed the imputed PLS estimates using the linear spline model with three knots (time 0-,

33- and 67-percentiles of the observed failures times), with four knots (time 0, the first, second

and third quartiles of the observed failures times) and with five knots (time 0-, 20-,

40-, 60-, 80-percentiles of the observed failures times); to examine the performance of the

bootstrap variance estimator, we obtained the bootstrap standard error estimates using the

procedure outlined in section 6 and compared the average of them with the empirical standard

errors. We generated the data using the Weibull baseline hazard (k0(t) ¼ 0.5t) and the normal

covariates and measurement errors. We varied sample size from 50 to 200 and censoring

proportion from 30 Per cent to 70 Per cent, and the results were listed in Table 3. Under all

these scenarios, the imputed PLS method gave fairly consistent estimates and were robust to

the specification of the knots. For example, with a sample size of 200 (censoring proportion 70

Per cent), the relative bias, the empirical and the bootstrap standard errors for b̂ calculated

using three knots were �0.9 Per cent, 0.161 and 0.152, compared with those of 1.8 Per cent,

0.152 and 0.147 (four knots) and �0.1 Per cent, 0.158 and 0.158 (five knots), respectively.

Noticeably the bootstrap standard errors agreed well with the empirical standard errors.

8. Application

Clinical oncologists have become increasingly interested in assessing the role of various genetic

markers in predicting patient survival and response to treatment. The Eastern Cooperative
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Oncology Group recently published a study (Augenlicht et al., 1997) designed to assess

associations between expression of the c-myc oncogene and the disease free survival and

overall survival of patients treated for early stage colon cancer. We considered a subset of the

cases from this clinical trial, which was also coordinated by the North Central Cancer

Treatment Group. In this subset, disease progression free survival and overall survival from

date of study entry was measured for a total of 92 patients randomized to receive either

surgery alone or surgery plus chemotherapy, namely, Levamisole. Figs 2 and 3 give the

progression free and overall survival comparisons by treatment and c-myc expression level. It

appears that patients with higher expression of the c-myc gene might have an enhanced

response to treatment. Statistically, then, the goal was to assess whether there was a c-myc

effect and/or a treatment/c-myc interaction. Complicating the analysis was that the expression

level of c-myc gene could not be assessed precisely, and multiple measurements had to be taken

if possible. The 92 patients had a total of 124 measurements on c-myc, with a range of 1–6

measurements per person. The variability in the number of replicates was caused by vriation in

the size of available tissues.

Let X be the true c-myc expression level. We assumed that X follows a normal model with

mean lx and variance r2x . The observed replicate, W, also follows a normal model with the

residual variance equal to r2x þ r2u, where r2u is the measurement error variance. In our cal-

culation, the replicates of c-myc expression level, W, were log transformed so as to make the

normality assumption more plausible. Using the moment estimating equations given in section

5, we estimate that lx ¼ 0.366, r2x ¼ 0:173; and r2u ¼ 0:047.

We fitted two survival models for progression free survival and overall survival, separately,

using the proposed imputed PLS approach. Covariates of interest included the true (log trans-

formed) c-myc value, treatment (coded by TRT, with 0 ¼ Surgery alone and 1 ¼ Surgeryþ
Chemotherapy) and their interaction. For comparison, we refitted the models using the naive

method, i.e. replacing X with the mean of its replicate in the model. The results are presented

in Tables 4 and 5. It appears that, in both progression free survival and overall survival

models, the magnitude of c-myc and its interaction with the treatment increased after the

measurement error in c-myc level was taken into account, compared with the naive

method. For example, in the progression free survival model, the point estimate for the

main effect of c-myc increased from 0.747 (SE ¼ 0.43, p ¼ 0.083) by the naive method to

0.905 (SE ¼ 0.50, p ¼ 0.070) by the imputed PLS method; while that of the interaction effect

of c-myc with treatment changed from �1.298 (SE ¼ 0.71, p ¼ 0.069) to �1.613 (SE ¼ 0.90,

p ¼ 0.073); similar patterns were seen in the overall survival model.

Table 3. Robustness of imputed PLS estimates with respect to choices of knots and the performance of the

bootstrap variance estimator

n Censor (%)

Three knots Four knots Five knots

b̂ SEe SEb b̂ SEe SEb b̂ SEe SEb

50 30 0.986 0.279 0.268 1.029 0.276 0.273 1.032 0.279 0.278

70 1.057 0.368 0.371 1.013 0.341 0.345 1.042 0.373 0.364

100 30 0.984 0.180 0.181 1.007 0.186 0.181 1.009 0.199 0.185

70 1.006 0.235 0.221 1.043 0.252 0.224 1.011 0.225 0.231

200 30 0.975 0.137 0.122 0.980 0.134 0.126 0.979 0.133 0.129

70 0.988 0.161 0.151 0.996 0.168 0.155 1.005 0.158 0.156

The true baseline hazard follows the Weibull model.

The true regression coefficient ~b0 ¼ 1.

SEe: empirical standard error; SEb: bootstrap standard error.
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9. Discussion

In this article, we have extended the Cox partial likelihood approach to fit survival models

with covariate measurement errors. Our key idea is to impute the unobserved covariates based

on their conditional distributions, for which purpose, a linear spline model is assumed on the

baseline hazard. We estimate the regression coefficients by solving the average PLS equations.

Simulations have indicated high efficiency of the resulting estimates. Despite the dependence

of our estimating equations on the parametric structure of the baseline hazard and the dis-

tribution of unobserved true covariates, analytic considerations and simulations have also

revealed that the estimation of regression coefficients is quite robust to possible deviations.

An alternative strategy would be the regression calibration approach (Prentice, 1982), which

replaces the unobserved true covariate in the partial likelihood score by its conditional
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Fig. 2. Comparison of progression free survival by treatment arm and c-myc.
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expectation, given the the observed quantities at each risk set. This approach generally re-

quires the availability of a validation data set, in which gold standard measurement are

available on a subset of study subjects (see, e.g. Wang et al., 2001). Recently, Xie et al. (2001)

have developed a calibration procedure that is applicable to the reliability sample situation.

Table 4. Results of the progression free survival model for the c-myc study

Covariates Naive Imputed PLS

c-myc 0.747 (0.43) 0.905 (0.50)

TRT �0.295 (0.39) �0.208 (0.44)

c-myc � TRT �1.298 (0.71) �1.613 (0.90)

Estimates were calculated by the Naive (ignoring measurement error) and the imputed method.

Numbers inside the parentheses are estimated SEs.
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sugery + chemo, c-myc> = 1.5

Fig. 3. Comparison of overall survival by treatment arm and c-myc.

184 Y. Li and L. Ryan Scand J Statist 33

� Board of the Foundation of the Scandinavian Journal of Statistics 2006.



In our setting, we considered the case where replicate measurements were available on the

covariates of interest. But the proposed method should extend easily to settings, where

validation data samples are available.

With a slight modification, we can also extend the proposed methodology to analyse

recurrent event data. In particular, (3) remains valid except that N(t) will be treated as the

number of events observed up to time t. The conditional likelihood of (8) should be modified

to accommodate the recurrent data [cf. eq. (6.1.1) in Andersen et al., 1993, Ch. 6]. All the

other procedures will be intact.
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Appendix

Technical details

Regularity Conditions. For the ith subject, we introduce the score function with respect to the

conditional density of the unobserved covariates as follows:

Uxi;cðTi; di; �Wi;Zi;Xi; cÞ ¼
@

@c
logff ðXijTi; di; �Wi;Zi; cÞg

¼ @

@b
logff ðXijTi; di; �Wi;Zi; cÞg;

@

@g
logff ðXijTi; di; �Wi;Zi; cg

� 	
¼ ½Uxi;bðTi; di; �Wi;Zi;Xi; cÞ;Uxi ;gðTi; di; �Wi;Zi;Xi; cÞ�: ð21Þ

Denote by Ux;cðT; D; �W; Z; X; cÞ, Ux;bðT; D; �W; Z; X; cÞ and Ux;gðT; D; �W; Z; X; cÞ, the

sums of the corresponding terms in (21) over subjects. We further denote a q-neighbourhood
of c by Nq(c) ¼ fc0 2 B : ||c0 � c|| < qg, where ||Æ|| denotes an Euclidean norm. With the

notations introduced above and those established in sections 2 and 3, we stipulate the fol-

lowing regularity conditions:

(C1) The sequences (Ti, di, Xi, Zi, Wi, ni) are i.i.d.

(C2) The sequences f@W@cg; f@U@cg; fnUx;cg; f@Ux;c

@c g and f@n@bg each satisfy the Uniform Weak

Law of Large Numbers (UWLLN) conditions at c0 (e.g. Satten et al., 1998).
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(C3) The expectation matrix, A, of the Jacobian matrix of the score equations (12) is

invertible, where A ¼ A11 A12

A21 A22

� �
and

A11 ¼ Qðb0Þ � EfnðTi; di; �Wi;Zi;Xi; c0ÞUxi;bðTi; di; �Wi;Zi;Xi; c0Þ0g;

A12 ¼ EfnðTi; di; �Wi;Zi;Xi; c0ÞUxi;gðTi; di; �Wi;Zi;Xi; c0Þ0g;

A21 ¼ E
@

@b
UðTi; di; �Wi;Zi;Xi; c0Þ0

� �
;

A22 ¼ E
@

@g
UðTi; di; �Wi;Zi;Xi; c0Þ0

� �
;

Qðb0Þ ¼
Z

sð2Þðt; b0Þ
sð0Þðt; b0Þ

� sð1Þðt; b0Þ�2

sð0Þðt; b0Þ2

( )
dGðtÞ;

and all the expectations involved are taken under the true parameter c0.

Proofs of Theorems 1 and 2. Along the line of Datta et al. (2000) and Li et al. (2003), we first

give two lemmas leading to the proofs of theorems 1 and 2.

Lemma 1

As m ! 1, for each K > 0, m�1=2SðcÞ ¼ m�1=2 ~SðcÞ þ opð1Þ uniformly in N
Km�1

2
ðc0Þ, where

~SðcÞ ¼
Pm

i¼1 wðTi; di;Wi;Zi; cÞ.

Proof. Consider RmðbÞ ¼ m�1=2fSðT; D; X; Z; bÞ � ~SðT; D; X; Z; bÞg, where

~SðT;D;X;Z; bÞ ¼
Xm
i¼1

nðTi; di;Xi;Zi; bÞ:

Then

m�1=2fSðcÞ � ~SðcÞg ¼
Z

RmðbÞ dF ðXjT;D; �W;Z; cÞ

¼
Z

RmðbÞ expfUx;cðT;D; �W;Z;X; c�Þ0ðc� c0Þg dF ðXjT;D; �W;Z; c0Þ;

where c� lies on the line segment connecting c and c0. For an arbitrary function

H(x): Rrþq ! R, denote its suprema in NKm�1/2(c0) by ¤H(c) ¼ supc2NKm�1/2(c0)
H(c).

Then
W
jm�1=2fSðcÞ � ~SðcÞgj � C1C2; where

C1 ¼ expfK �
_

jjm�1=2Ux;cðT;D; �W;Z;X; cÞjjg ð22Þ

and C2 ¼
R W

fjRmðbÞjg dF ðXjT; D; �W; Z; c0Þ:
Notice that_

jjm�1=2Ux;cðT;D; �W;Z;X; cÞjj � jjm�1=2Ux;cðT;D; �W;Z;X; c0Þjj

þ K �
_

jjm�1 @

@c
Ux;cðT;D; �W;Z;X; cÞjj:

The first term is Op(1) by applying the central limit theorem, while the second term on the

right-hand side of the inequality converges to KjjE @
@cUx;cðTi; di; �Wi; Zi; Xi; cÞjc¼c0

n o
jj by the

UWLLN condition; hence C1 ¼ Op(1).

To estimate the magnitude of C2, we consider the integrand ¤|Rm(b)|. We observe that
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_
jRmðbÞj ¼

_
m�1=2jSðT;D;X;Z; bÞ � ~SðT;D;X;Z; bÞj

� jRmðb0Þj þ K �
_

jjm�1IðT;D;X;Z; bÞ �Qðb0Þjj

þ K �
_

jj � m�1 @

@b
nðTi; di;Xi;Zi; bÞ �Qðb0Þjj: ð23Þ

Following the decomposition of the partial likelihood score (Lin & Wei, 1989), we may find

Rm(b0) ¼ op(1) uniformly with respect to X. Recalling that I(T, D, X, Z; b) is the partial

likelihood information (given the true X) and applying theorems 3.2 and 4.2 of Andersen &

Gill (1982), one may show that the second term in (23) is op(1) uniformly with respect to X.

With the UWLLN conditions on on/ob, the third term in (23) is op(1) uniformly with respect to

X as well. Thus, we have been able to show that C2 ¼ op(1). Therefore, C1C2 ¼ op(1), which

proves the lemma.

We next show in lemma 2, that the Am
ijðcÞ, the components of the Jocobian matrix of the

score equations (12), defined in (28), are consistent estimators of the Aij in a small neigh-

bourhood of c0.

Lemma 2

As m ! 1, for each K > 0,

supc2N
Km

�1
2
ðc0ÞjjA

m
ijðcÞ � Aijjj ¼ opð1Þ:

Proof. As shown in lemma 1,_
jjm�1IðT;D;X;Z; bÞ �Qðb0Þjj ¼ opð1Þ:

By a similar calculation as before,

Zm ¼
_

jj
Z

fm�1IðT;D;X;Z; bÞ �Qðb0Þg dF ðXjT;D; �W;Z; cÞjj

� C1

Z
Dm dF ðXjT;D; �W;Z; c0Þ; ð24Þ

where C1 is as in (22) and Dm ¼ ¤||m�1I(T, D, X, Z; b) � Q(b0)||. Hence, Dm ¼ op(1). As

Dm is bounded, by the dominated convergence theorem,
R
Dm dF ðXjT; D; �W; Z; c0Þ ! 0.

Hence, Zm ¼ op(1). In a way analogous to the proof in lemma 1, one can also establish that_
jj
Z

RmðbÞUx;bðT;D; �W;Z;X; b; gÞ dF ðXjT;D; �W;Z; cÞjj ¼ opð1Þ: ð25Þ

On the other hand,

m�1

Z Xm
i¼1

nðTi; di;Xi;Zi; cÞUx;bðT;D; �W;Z;X; b; gÞ dF ðXjT;D; �W;Z; cÞ

¼ m�1
Xm
i¼1

Z
nðTi; di;Xi;Zi; cÞUxi;bðTi; di; �Wi;Zi;Xi; cÞ dF ðxijTi; di; �Wi;Zi; cÞ

!p EfnðTi; di;Xi;Zi; cÞUxi;bðTi; di; �Wi;Zi;Xi; cÞg; ð26Þ

uniformly in NKm�1/2(c0) by the UWLLN conditions. Thus, combining (24)–(26), we finish the

proof of the uniform convergence of the Am
11. Similarly, we can obtain the convergence for Am

12.

188 Y. Li and L. Ryan Scand J Statist 33

� Board of the Foundation of the Scandinavian Journal of Statistics 2006.



Convergence of Am
21 and Am

22 follows from the standard maximum likelihood score argument

and the UWLLN conditions.

With lemmas 1 and 2 established, we can prove consistency and asymptotic normality of the

estimators.

Proof of Theorem 1. Let P(c) ¼ fS(c), U(c)g and assume that A is positive definite,

otherwise we can replace P(c) with A0P(c). A standard Taylor expansion gives that

m�1=2PðcÞ ¼ m�1=2Pðc0Þ � Amðc�Þm1=2ðc� c0Þ;

where c� lies between c0 and c.

By lemma 1 and the central limit theorem, m�1/2
P(c0) converges to a mean 0 random normal

variable. Hence m�1/2P(c0) ¼ Op(1). Let � > 0 be arbitrary. Then for sufficiently large m01,

when m > m01, on a set with probability 1 � (1/2)�, ||m�1/2P(c0)|| < J, where J < 1. By

lemma 2, there exists an m02 > 0 such that when m > m02, on a set with probability 1 � (1/2)�,

Am(c) converges uniformly to A in c 2 NKm�1/2(c0), where K is any positive numbers. Let m0 ¼
max(m01, m02). We then work on the intersection of the two random sets (with probability at

least 1 � �. Now we fix any m > m0. Denote by kmin the minimum eigenvalue of A. Then for

K0 ¼ 2J/kmin, one can show jjðc � c0Þ0PðcÞjj � m�1=2ðkminK2
0 � JK0Þ > 0 for ||c � c0|| ¼

K0m
�1/2 ¼ 2(J/kmin)m

�(1/2). Since P(c) is continuous in c, by the fixed point theorem of

Aitchison & Silvey (1958, lemma 2), P(c) has a solution in ||c � c0|| < 2(J/kmin)m
�1/2.

Proof of Theorem 2. With PðbcÞ ¼ 0, expanding it about c0 gives that

Amðc�Þm1=2ðbc� c0Þ ¼ m�1=2Pðc0Þ; ð27Þ

where c� lies between bc and c0. By the proof of theorem 1, for any � > 0, there exists a K0 > 0

and m such that the event fjjbc � c0jj < K0m�1=2g has measure at least 1 � �. Hence, by

lemma 2 Amðc�Þ!
p
A. Using lemma 1 and a central limit theorem, one obtains that

m�1=2Pðc0Þ!
d
Nð0;WÞ:

Hence, theorem 2 follows from (27) by the Slutsky theorem.

Variance Estimator. We can show A can be consistently estimated by AmðbcÞ, where bc is the

solution to (12) and Am(c) is the Jacobian matrix of the score equations (12). It is given by

Amðb; gÞ ¼
Am

11ðb; gÞ Am
12ðb; gÞ

Am
21ðb; gÞ Am

22ðb; gÞ

� �
¼ � 1

m

@
@bSðb; gÞ @

@gSðb; gÞ
@
@bUðb; gÞ @

@gUðb; gÞ

 !
; ð28Þ

where Am
21 and Am

22 are easily obtained by differentiating (11) with respect to b and g, while Am
11

and Am
12 are given by

Am
11ðb;gÞ¼

1

m

Z
IðT;D;X;Z;bÞ�SðT;D;X;Z;bÞUx;bðT;D;X;Z;b;gÞ
� �

dF ðXjT;D; �W;Z;b;gÞ

and

Am
12ðb; gÞ ¼ � 1

m

Z
SðT;D;X;Z; bÞUx;gðT;D;X;Z; b; gÞ dF ðXjT;D; �W;Z; b; gÞ:

To develop a consistent estimator for W, we begin with n(Ti, di, Xi, Zi; c). For each

t 2 (0, s), we consider consistent estimates for sð0Þðt; bÞ ¼ EðYiðtÞ eb
0
xXi þ b0zZiÞ; sð1Þðt; bÞ ¼

fsð1Þx ðt; bÞ; sð1Þz ðt; bÞg ¼ EfYiðtÞXi e
b0xXi þ b0zZi ; YiðtÞZi e

b0xXi þ b0zZig: To proceed, denote by Sð0Þ ¼
ð1=mÞ

P
YiðtÞ eb

0
x
�Wiþb0zZi ;Sð1Þ

w ¼ ð1=mÞ
P

YiðtÞ �Wi e
b0x

�Wiþb0zZi and Sð1Þ
z ¼ ð1=mÞ

P
YiðtÞ�Zi e

b0x
�Wiþb0zZi .

Note
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E YiðtÞ eb
0
x
�Wib

0
zZi

n o
¼ en

�1
i

1
2b

0
xRubxs

ð0Þðt;bÞ;

E YiðtÞWi e
b0x

�Wib
0
zZi

n o
¼ en

�1
i

1
2b

0
xRubxsð1Þx ðt; bÞ þ n�1

i Rubx e
n�1
i

1
2b

0
xRubx sð0Þðt; bÞ

E YiðtÞZi e
b0xZib

0
zZi

n o
¼ en

�1
i

1
2b

0
xRubxsð1Þz ðt; bÞ:

Hence, sð0Þðt; bÞ; sð1Þðt; bÞ ¼ fsð1Þx ðt; bÞ; sð1Þz ðt; bÞg can be consistently estimated by

ŝð0Þðt; bÞ ¼ Sð0Þ=M0; bsð1Þðt; bÞ ¼ fðSð1Þ
w � Sð0ÞM1Þ=M0; S

ð1Þ
z =M0g; where M0 ¼ ð1=mÞ

Pm
i¼1 �

en
�1
i

1
2b

0
xRubx ; M1 ¼ ð1=mÞ

Pm
i¼1 n

�1
i Rubx e

n�1
i

1
2b

0
xRubx and Ru can be replaced by a moment esti-

mator R̂u in section 5.

It follows that, with the same argument in Lin & Wei (1989), n can be estimated by

bnðTi; di;Xi;Zi; b; gÞ ¼ di Z�
i �
bsð1ÞðTi; bÞbsð0ÞðTi; bÞ

� �
�
X
i0

Ni0 ðTiÞ eZ
�
i b

m �bsð0ÞðTi0 ; bÞ Z�
i �
bsð1ÞðTi0 ; bÞbsð0ÞðTi0 ; bÞ

� �
:

Note that bnð�Þ resembles the influence function for the �complete� data proportional hazards

model (Reid & Crépeau, 1985).

Because each WðTi; di; �Wi; Zi; cÞ is the expectation (with respect to Xi conditional on

Ti; di; �Wi and Zi) of n(Ti, di, Xi, Zi; c), it can be consistently estimated by the conditional

expectation of bnðTi; di; Xic; Zi; cÞ, which is

bWðTi; di; �Wi;Zi; cÞ ¼ di
giðbx; cÞ

Zi

� �
�bsð1ÞðTi; bÞbsð0ÞðTi; bÞ

� �
� giðbx; cÞ eZ

0
ibz
X
i0

Ni0 ðTiÞ
m �bsð0ÞðTi0 ; bÞ Z��

i �bsð1ÞðTi0 ; bÞbsð0ÞðTi0 ; bÞ
� �" #

;

where giðs; cÞ ¼
R
es

0Xi dF ðXijTi; di; �Wi; Zi; cÞ and gð1Þi ðs; cÞ is its first derivative with respect

to s, and Z��
i ¼ gð1Þi ðbx; cÞ=giðbx; cÞ; Zi

n o0
:

Since bWðTi; di; �Wi; Zi; bcÞ is an estimate of the contribution of the ith subject to the score

SðbcÞ, the matrix W can be estimated by bW ¼
bW11

bW12bW0
12

bW22

� �
; where

bW11 ¼
1

m

Xm
i¼1

bWi
bW0
i;

bW12 ¼
1

m

Xm
i¼1

bWi
bU0
i;

bW22 ¼
1

m

Xm
i¼1

bUi
bU0
i;

and bWi and bUi are the abbreviations of bWðTi; di; �Wi; Zi; bcÞ and bUðTi; di; �Wi; Zi; bcÞ;
respectively. Hence, the asymptotic variance of m1=2ðbc � c0Þ, V, can be estimated by (18).

190 Y. Li and L. Ryan Scand J Statist 33

� Board of the Foundation of the Scandinavian Journal of Statistics 2006.


