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ABSTRACT 
The free vibration analysis of a nano-plate is investigated 

based on the first order shear deformation theory considering 
the small scale effect. The governing equations of motion are 
obtained using Hamilton’s principle by considering the nonlocal 
constitutive equations of Eringen. These coupled partial 
differential equations are reformulated into two new equations 
called the edge-zone and interior equations. Analytical solutions 
are obtained for a nano-plate with Levy boundary conditions. In 
order to find the natural frequencies of the nano-plate, the 
various boundary conditions at one direction of the plate should 
be imposed. Applying these conditions and setting the 
determinant of the six order coefficient matrix equal to zero, the 
natural frequencies of the nano-plate are evaluated. Non-
dimensional frequency parameters are presented for over a wide 
range of nonlocal parameters and different boundary conditions. 
In addition, the effects of nonlocal parameter on the natural 
frequency of a nano-plate are discussed in details. 
 
INTRODUCTION 

 Due to the vast computational expenses of nano-
structures analyses when using atomic lattice dynamics and 
molecular dynamic simulations, there is a great interest in 
applying continuum mechanics for analysis of nano-structures. 
Eringen [1] showed that it is possible to represent the integral 
constitutive relations of nano-structures in an equivalent 
differential form. Eringen presented a nonlocal elasticity theory 
to account the small scale effect by specifying the stress at a 
reference point is a functional of the strain field at every point 
in the body. Since then, many studies have been carried out for 
bending, buckling and vibration analyses of nano-structures. 

The nonlocal theory of elasticity has been extensively used 
to study buckling and vibration analyses of carbon nano-tubes 
with the help of beam and shell theories. 

Scale effect on static deformation of micro- and nano-rods 
or tubes is revealed through nonlocal Euler–Bernoulli and 
Timoshenko beam theories by Wang and Liew [2]. The 
constitutive relations of nonlocal elasticity theory for 
application in the analysis of carbon nanotubes when modelled 
as Euler–Bernoulli beams, Timoshenko beams or as cylindrical 
shells were presented by Q.Wang and C.M.Wang [3]. Aydogdu 
[4] developed vibration analysis of nano-rods considering the 
small scale effect. Li and Wang [5] investigated a theoretical 
treatment of Timoshenko beams, in which the influences of 
shear deformation, rotary inertia, and scale coefficient are taken 
into account. 

Nonlocal elasticity and Timoshenko beam theory are 
implemented by Murmu and Pradhan [6] to investigate the 
stability response of single walled carbon nanotube embedded 
in an elastic medium. Murmu and Pradhan [7] studied vibration 
response of nano cantilever considering non-uniformity in the 
cross sections using nonlocal elasticity theory. 

Although graphite sheet has many superior properties, such 
as low electrical and thermal conductivities normal to the sheet 
but high electrical and thermal conductivities in the plane of the 
sheet, relatively little research have been reported in the 
literature for mechanical analyses of graphene sheets.  

Kitipornchai et al. [8] used the continuum plate model for 
mechanical analysis of graphene sheets. He et al. [9] 
investigated vibration analysis of multi-layered graphene sheets 
in which the van der Waals interaction between layers is 
described by an explicit formula. 

Behfar and Naghdabadi [10] studied nano scale vibrational 
analysis of a multi-layered graphene sheet embedded in an 
elastic medium based on the classical plate theory. 

Lu et al. [11] derived the basic equations of nonlocal 
Kirchhoff and Mindlin plate theories for simply supported 
nano-plates. Axisymmetric bending of micro/nanoscale circular 
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plates is studied using a nonlocal plate theory by Duan and 
Wang [12]. Pradhan and Phadikar  [13] presented classical and 
first-order shear deformation plate theories for vibration of 
nano-plate. Their approach is based on the Navier solution and 
for a nano-plate with all edges simply supported. Pradhan and 
Phadikar [14] carried out vibration analysis of multilayered 
graphene sheets embedded in polymer matrix employing 
nonlocal continuum mechanics. 

In-plane vibration of nano-plates was investigated by 
Murmu and Pradhan [15] employing nonlocal continuum 
mechanics and considering small scale effect. 

Aghababaei  and Reddy [16] developed a higher order 
plate theory for buckling and vibration analyses of a simply 
supported plate accounting the small scale effect. Pradhan and 
Murmu [17] studied the small scale effect on the buckling 
analysis of biaxially compressed single-layered graphene sheets. 

In this paper, the vibration analysis of a nano-plate is 
presented by considering the small scale effect. The three 
coupled governing equations of motion are obtained based on 
the nonlocal continuum theory and are decoupled into two new 
equations. Solving these two decoupled partial differential 
equations, the natural frequencies of the nano-plate with 
arbitrary boundary conditions are determined. Finally, a detailed 
study is carried out to understand the effects of boundary 
conditions, nonlocal parameter, thickness to length and aspect 
ratios on the vibration characteristics of nano-plates. 

 
CONSTITUTIVE RELATIONS 

According to nonlocal elasticity theory, the stress at a 
reference point X is considered to be a function of the strain 
field at every point 'X in the body. The nonlocal stress tensor 

nlσ at point X can be expressed as [1] 
 

')'()|,'(| dXXXXK lnl στσ ∫ −= (1) 

where lσ is the classical stress tensor and |)'(| XXK − is 
the Kernel function represents the nonlocal modulus. While the 
constitutive equations of classical elasticity is an algebraic 
relation between stress and strain tensors, that of nonlocal 
elasticity involves spatial integrals which represent weighted 
averages of contributions of the strain of all points in the body 
to the stress at the given point. Eringen [1] showed that it is 
possible to represent the integral constitutive relation in an 
equivalent differential form as 
 lnl σσµ =∇− )1( 2 (2) 

 
where 2

0 )( ae=µ is nonlocal parameter, a an internal 

characteristic length and 0e a constant. Also, 2∇ is the 
Laplacian operator. 

 
GOVERNING EQUATIONS OF MOTION 

The first order shear deformation plate theory assumes that 
the plane sections originally perpendicular to the longitudinal 

plane of the plate remain plane, but not necessarily 
perpendicular to the longitudinal plane. This theory accounts for 
the shear strains in the thickness direction of the plate and is 
based on the displacement field 
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where 0u and 0v are displacement components of the 
midplane, w is transverse displacement, t is time, and xψ and 

yψ are the rotation functions of the midplane normal in the x
and y directions, respectively. Using the Hamilton’s principle, 
the nonlocal bending governing equations of motion for a single 
layered nano-plate are obtained as follows [13] 
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In the above equations, dot above each parameter denotes 

derivative with respect to time, G is the shear modulus, 
)1(12/ 23 ν−= EhD denotes the bending rigidity of the plate, 

E and ν elastic modulus and Poisson’s ratio, respectively and 
2κ the shear correction factor. Also, q is the transverse loading 

and the mass moments of inertia, 1I and 2I , are defined as 

 ∫
−

=
2/

2/
21 ),1(),(

h

h

dzzII ρ (5) 

 

in which ρ is the density of the plate. It can be seen that 
the governing equations (4) are generally a system of six-order 
coupled partial differential equations in terms of x and y
variables. 
SOLUTION  

In order to solve the governing equations of motion (4) for 
various boundary cinditions, it is reasonable to find a method to 
decouple these equations. Let us introduce two new functions ς
and ϕ such that 

 

yyxx ,, ψψς += (6a) 
 xyyx ,, ψψϕ −= (6b) 
 

Using Eqs. (6), the governing equations (4) can be 
rewritten as 
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Doing some algebraic operations on Eqs. (7), the three 

coupled partial differential equations in (4) can be replaced by 
the following two uncoupled equations 
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where C denotes 2/)1( ν−D . It can be seen that the above 

equations becomes as the classical equations of the Mindlin 
plate when 0=µ . Like the classical elasticity [18], equations 
(8a) and (8b) are called edge-zone (boundary layer) and interior 
equations, respectively. Also, the rotation functions xψ and yψ
can be defined in terms of w and ϕ as 
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With deriving w , xψ and yψ , the stress components of 

the nano-plate can be computed by using the nonlocal 
constitutive relations in the following forms 
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Here, a rectangular plate )( ba × with two opposite simply 
supported edges at 0=x and ax = and arbitrary boundary 
conditions at two other edges is considered. For free harmonic 
vibration of the plate, the transverse loading q is put equal to 
zero and the transverse deflection w and boundary layer 
function ϕ are assumed as 
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which exactly satisfy the simply supported conditions at 
0=x and ax = . In these relations, nω is the natural 

frequency of the nano-plate and nβ denotes an /π .
Substituting the proposed series solutions (11) into Eqs. (8) 
yields 
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where the constant coefficients )5,..,1( =iiλ are given in 

Appendix. The above equations are two ordinary differential 
equations with total order of six. The solutions of Eqs. (12) can 
be expressed as 
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where )6,..,1( =iCi are constants of integration and 

parameters 1η , 2η and 3η are defined as 
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Six independent linear equations must be written among the 
integration constants to solve the free vibration problem. 
Applying arbitrary boundary conditions along the edges of the 
plate at 0=y and by = , leads to six algebraic equations. 
Here, three types of boundary conditions along the edges of the 
nano-plate in y direction are considered 

 
Simply supported (S)  0=== xyyMw ψ (14a) 
Clamped (C)              0=== yxw ψψ (14b) 
Free (F)                     0=== yxyyy QMM (14c) 
 
where the resultant moments yyM and xyM and resultant 

force yQ are expressed as 
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In order to find the natural frequencies of the nano-plate, 

the various boundary conditions at 0=y and by = should be 
imposed. Applying these conditions and setting the determinant 
of the six order coefficient matrix equal to zero, the natural 
frequencies of the nano-plate are evaluated. 

 
NUMERICAL RESULTS AND DISCUSSION 

For numerical results, the following material properties are 
used throughout the investigation [13] 

 
TPaE 2.1= , 3.0=ν , 6/52 =κ (16) 

In order to verify the accuracy of the present formulations, 
a comparison has been carried out with the results given by 
Pradhan and Phadikar [13] for an all edges simply supported 
nano-plate. To this end, a four edges simply supported nano-
plate is considered. The non-dimensional natural frequency 
parameter DIa /1

42πω=Ω is listed in Table 1 for some 
nonlocal parameters. From this table, it can be found that the 
present results are in good agreement with those of Ref. [13] 
when the rotary inertia terms have been neglected. It can be also 
seen that the rotary inertia terms have considerable effects 
especially in second mode of vibration and cause the natural 
frequency decreases. Hereafter, the rotary inertia terms are 
considered in numerical results. 

To study the effects of boundary condition, the nonlocal 
parameter )(µ and thickness to length ratio )/( ah  on the 
vibrational behavior of the nano-plate, the first two non-
dimensional frequencies are listed for a single layered nano-

plate. The results are tabulated for the nano-plates with two 
boundary conditions at 0=y and by = as clamped-clamped 
(C-C) and clamped-simply (C-S) in Tables 2-3. Nano-plates are 
identified by their boundary conditions at 0=y and by = .

Based on the results in these tables, it can be concluded 
that the frequency parameter decreases for all modes as the 
nonlocal parameter µ increases. The reason is that with 
increasing the nonlocal parameter, the stiffness of the nano-
plate decreases. i.e. the small scale effect makes the nano-plate 
more flexible as the nonlocal model may be viewed as atoms 
linked by elastic springs while the local continuum model 
assumes the spring constant to take on an infinite value. In sum, 
the nonlocal plate theory should be used if one needs accurate 
predictions of natural frequencies of nano-plates. 

The influence of thickness-length ratio on the frequency 
parameter can also be examined by keeping the nonlocal 
parameter constant while varying the thickness to length ratio. It 
can be easily observed that as ah / increases, the frequency 
parameter decreases. The decrease in the frequency parameter is 
due to effects of the shear deformation, rotary inertia and use of 
term ha2 in the definition of the non-dimensional frequency. 
These effects are more considerable in the second mode than in 
the first modes.   
In Fig. 1, the relation between natural frequency and nonlocal 
parameter of a square C-C nano-plate is depicted for different 
thickness to length ratios. It can be seen that nonlocal theories 
predict smaller values of natural frequencies than the local 
theories especially for higher thickness to length ratios. Thus 
the local theories, in which the small length scale effect between 
the individual carbon atoms is neglected, overestimate the 
natural frequencies. Also, for lower values of nonlocal 
parameters, variation of the natural frequency is significant. In 
addition, it is seen that changes of natural frequencies are less 
significant for lower values of thickness to length ratios. 
Therefore, the small scale effect is more significant for thicker 
nano-plates. Conversely, for a thin nano-plate, the frequency 
for the nonlocal plate theory is close to that furnished by the 
local plate model, indicating the negligible effect of small scale 
in such plates. The effect of boundary conditions on the natural 
frequency of a nano-plate is shown in Fig. 2. It can be 
concluded that the boundary condition has significant effect on 
the vibrational characteristic of the nano-plates. It can be seen 
that the lowest and highest values of frequency parameters 
correspond to F-F and C-C edges, respectively.  
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TABLE 1. COMPARISON OF NON-DIMENSIONAL 
FREQUENCY PARAMETER DIa /1

42πω=Ω OF A NANO-
PLATE WITH ALL EDGES SIMPLY SUPPORTED 

a Neglecting the rotary inertia terms 

TABLE 2. FIRST TWO NON-DIMENSIONAL FREQUENCY 
PARAMETERS DIa /1

42πω=Ω OF A C-C NANO-PLATE  
 

TABLE 3. FIRST TWO NON-DIMENSIONAL FREQUENCY 
PARAMETERS DIa /1

42πω=Ω OF A C-S NANO-PLATE  
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FIG. 1 VARIATION OF NATURAL FREQUENCY WITH 
NONLOCAL PARAMETER FOR A C-C NANO-PLATE 

 

µ bh / Mode 1 Mode 2

Present 0.1322 
0.1332a

0.1994 
0.2026 a 0.1 

Ref. [13] 0.1332 0.2026 

Present 0.1210 
0.1236 a 

0.1673 
0.1730 a 

1nm 

0.2 
Ref. [13] 0.1236 0.1730 

Present 0.0935 
0.0942 a 

0.1410 
0.1432 a 0.1 

Ref. [13] 0.0942 0.1432 

Present 0.0855 
0.0874 a 

0.1183 
0.1224 a 

2nm 

0.2 
Ref. [13] 0.0874 0.1224 

Present 0.0763 
0.0769 a 

0.1151 
0.1170 a 0.1 

Ref. [13] 0.0769 0.1170 

Present 0.0698 
0.0714 a 

0.0966 
0.0999 a 

3nm 

0.2 
Ref. [13] 0.0714 0.0999 

Present 0.0661 
0.0666 a 

0.0997 
0.1013 a 0.1 

Ref. [13] 0.0666 0.1013 

Present 0.0605 
0.0618 a 

0.0836 
0.0865 a 

4nm 

0.2 
Ref. [13] 0.0618 0.0865 

µ bh / Mode 1 Mode 2
0.1 0.1757 0.2124 

1nm 
0.2 0.1494 0.1735 
0.1 0.1242 0.1502 

2nm 
0.2 0.1057 0.1227 
0.1 0.1014 0.1226 

3nm 
0.2 0.0863 0.1002 
0.1 0.0878 0.1062 

4nm 
0.2 0.0747 0.0868 

µ bh / Mode 1 Mode 2
0.1 0.1501 0.2049 

1nm 
0.2 0.1333 0.1700 
0.1 0.1062 0.1449 

2nm 
0.2 0.0942 0.1202 
0.1 0.0867 0.1183 

3nm 
0.2 0.0769 0.0982 
0.1 0.0751 0.1024 

4nm 
0.2 0.0666 0.0850 
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FIG. 2 VARIATION OF NATURAL FREQUENCY WITH 
NONLOCAL PARAMETER FOR NANO-PLATES WITH 

DIFFERENT BOUNDARY CONDITIONS AT TWO EDGES 
 

CONCLUSION 
Presented herein is a variational derivation of the governing 

equations and boundary conditions for the free vibration of 
nano-plates based on Eringen’s nonlocal elasticity and first 
order shear deformation plate theory. This nonlocal plate theory 
accounts for both the scale effect and the effects of transverse 
shear deformation and rotary inertia which become significant 
when dealing with nano-plates. Coupled partial differential 
equations have been reformulated and the generalized levy type 
solutions have been presented for free vibration analysis of a 
nano-plate considering the small scale effect. The accurate 
natural frequencies of nano-plates have been tabulated for 
various nonlocal parameters, some thickness to length ratios 
and different boundary conditions. The effects of boundary 
conditions, variation of nonlocal parameter, thickness to length 
and aspect ratios on the frequency values of a nano-plate have 
been examined and discussed in detail. The effect of different 
boundary conditions on natural frequencies of nano-plates has 
been investigated for the first time. 
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