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ABSTRACT 

 
Hyperspectral imaging systems have been shown to enable 
unresolved object detection through enhanced spectral 
characteristics of the data. Robust detection performance 
prediction tools are desirable for many reasons including 
optimal system design and operation. The research 
described in this paper explores the general understanding of 
system factors that limit detection performance. Examples 
are shown for detectability limits due to target subpixel fill 
fraction, sensor noise, and scene complexity. 
 

Index Terms— hyperspectral, target detection, system 
modeling, performance prediction 
 

1. INTRODUCTION 
 
Hyperspectral imaging systems have been shown to enable 
unresolved, or subpixel, object detection through the 
enhanced spectral characteristics of the image data [1]. 
However, the ability of a particular system to detect a given 
object (or target) in an arbitrary scene can vary widely 
depending on numerous factors. Robust detection 
performance prediction tools are desirable for many reasons 
including optimal system design and operation. While a 
completely general prediction capability is not likely to be 
feasible due to the overwhelming complexity of natural 
scenes (as well as sensor operation and algorithm 
characteristics), progress has been made in understanding 
aspects of the performance limits under reasonable 
constraints on the system complexity.  

One empirical approach for the prediction of target 
detection performance is the target implant method [2], [3]. 
This method uses laboratory or field measured spectra of a 
target of interest and “implants” it in a real hyperspectral 
image. Target detection algorithms can then be applied to 
the image and empirical performance estimated.  This 
method has the advantage of using real imagery with all its 
non-ideal characteristics, but this advantage is also a 
limitation in that the results are specific to that image and 
not generally extendable. 

The research described in this paper explores the 
general understanding of system factors that limit detection 

performance in hyperspectral unresolved object detection. 
While the approach generally applies to systems working 
throughout the optical regime, we focus the discussion in 
this paper on systems operating in the reflective solar 
spectrum (0.4 to 2.5 µm). We begin by identifying many of 
the factors in the full end-to-end imaging and detection 
system and discussing qualitative aspects of their impact on 
detection.  We then briefly describe approaches to the 
analytical modeling of detection performance as a tool for 
exploring detection limits. Example results are then 
presented which demonstrate the prediction capability and 
show sensitivity to selected system parameters.  Finally we 
conclude with a discussion of what has been learned and 
directions for future research.  
 

2. FACTORS AFFECTING DETECTABILITY 
 
A useful framework for understanding factors that affect 
unresolved object detection is to consider the end-to-end 
remote sensing process as a system. Previous work 
developed a taxonomy of “noise” factors in the context of 
land cover classification with spectral imagery [4]. That 
work divided the remote sensing process into three 
components: the scene, the sensor, and the processing 
algorithms. This structure helps isolate factors affecting 
detection to better identify them, while understanding that 
their impact can still depend very much on interactions of 
factors across the system. While limited by space in this 
paper, the following provides a useful overview of these 
factors in the context of unresolved object detection. 
 
2.1. Scene Factors 
 
The most obvious factor in the scene affecting object 
detection is the nature of the object itself. That is, what are 
its spectral and spatial characteristics as sensed by the 
hyperspectral imaging sensor? While the notion of a 
“spectral signature” is convenient and useful, it is clear most 
objects (man-made or natural) express variability in their 
spectral reflectance. Clearly the size of the object will also 
affect detection together with aspects such as whether it is in 
the open and fully visible, or partially occluded by adjacent 
objects, and how it is oriented.  



The other most significant factor is the nature of the rest 
of the scene, or the background.  This factor has many 
aspects including the spectral contrast with the object as 
well as its spectral diversity and complexity. The presence 
of rare, similar, non-target materials may be a source of 
significant false alarms. Alternatively, a relatively 
homogenous and benign background may lead to the easy 
detection of even small low contrast objects.  

Other aspects of the scene worth mentioning include 
effects of the atmosphere (e.g., haze, presence of clouds), 
shadowing of the object of interest by adjacent objects, and 
the goniometric configuration of the imaging system (solar 
and sensor view zenith angles). These are just a few of 
possible scene factors affecting detection. 
 
2.2. Sensor Factors 
 
Descriptive parameters of the imaging sensor are usually the 
first thing that comes to mind when people think of factors 
that affect remote sensing system performance.  These 
include the physical design factors such as aperture size, 
focal length, and detector size, as well as derived parameters 
such as spatial and spectral resolution, and noise levels. 
System accuracies and sensor artifacts can also strongly 
affect performance. 
 
2.3. Processing Factors 
 
While not normally thought of as part of a remote sensing 
system, the application of processing algorithms including 
calibration procedures, feature extraction and actual 
detection algorithms can, and usually do, significantly affect 
the detection of objects. A given hyperspectral image can be 
processed by different analysts with vastly different results, 
thus bringing in a human component through choices made 
by analysts.  

The above abbreviated discussion of factors affecting 
detection is already overwhelming in scope and complexity, 
yet is not even complete.  While this is truly a challenging 
research topic, the complexity is not a reason to not pursue 
the research. On the contrary, the richness of the challenge 
offers much room for exploration, and new insights gained 
through its pursuit can be very beneficial to the remote 
sensing community.  
 

3. ANALYTICAL MODELING 
 
Theoretical modeling of detection performance has been 
explored by previous researchers [1], [5]. These publications 
show the detectability of targets from a signal processing 
perspective where the contrast between the target and 
background is described by probabilistic models and 
assumed parameters.  This approach has a solid 
mathematical foundation and is an important contribution to 
the field, but significantly oversimplifies the complexity of a 
real imaging situation. 

The capture of realism together with the pragmatism of 
probabilistic modeling and linear systems theory underlies 
the development of our modeling approach described in 
previous publications [6], [7]. This model is known as 
Forecasting and Analysis of Spectroradiometric System 
Performance (FASSP). It includes realistic target and 
background variability derived from empirical observations, 
atmospheric effects through MODTRAN, verified sensor 
models and commonly used processing algorithms, and is 
used here to explore detection sensitivities and limits. 
 

4. RESULTS 
 
For this paper we will explore the limits of detectability for 
a subpixel target as a function of three important system 
parameters: sub-pixel fraction, signal-to-noise ratio, and 
background complexity as measured by the number of 
background classes.  Table 1 lists the system parameters for 
the nominal case and Table 2 provides the list of classes 
used in the background. 

The target and background classes are characterized 
throughout the model by their spectral mean vectors and 
spectral covariance matrices. These are input to the model as 
spectral reflectances derived from empirically compensated 
HYDICE [9] airborne hyperspectral data collected over well 
ground-truthed sites. 
 

Table 1. Nominal system parameter setting used in study. 
 

System Parameter Value 
Target Green cotton fabric 
Target fill fraction varies 
Background classes 10 
Atmospheric model Summer mid-latitude 
Aerosol model Rural haze 
Meteorological range 10 km 
Solar zenith angle 30º 
Sensor HyMap [8] 
Relative calibration error 1% 
Number of spectral bands 126 
Detection algorithm Spectral matched filter 

 
Table 2. Background classes and their fractions of the scene. 

 
Background Class Fraction of Scene 
1. Grass (type 1 – dark) 25% 
2. Trees (type 1 – light) 20% 
3. Grass (type 2 – light) 15% 
4. Light paved road 15% 
5. Trees (type 2 – dark) 10% 
6. Building roofs 7% 
7. Shadowed trees 5% 
8. Light green vehicle 1% 
9. Bright blue vehicle 1% 
10. Dark green vehicle 1% 



The first study is to explore how small of a fraction of a 
pixel can the object occupy, yet still be detectable. Figure 1 
shows the results of the probability of detection at a constant 
false alarm rate = 10-5 versus the subpixel fraction occupied 
by the target.  As can be seen, the object becomes detectable 
(PD > 0.8) around 20% pixel fill. 
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Figure 1. Trade study result showing probability of detection at 
FAR = 10-5 vs. the fraction of a pixel occupied by the subpixel 
target. Scenario used parameters as defined in Tables 1 and 2. 
 

The next two studies looked at the impact of the other 
two important system parameters studied for this paper.  The 
first is the sensor signal-to-noise ratio.  The system model 
has a detailed radiometric model for the HyMap sensor 
including flux-dependent photon noise and fixed noise 
sources.  However, in addition to these noise sources the 
model includes a “catch-all” noise source defined in Table 1 
as “relative calibration error.” This noise source adds to the 
electronics noise (in quadrature) noise with a standard 
deviation equal to the specified percent of the mean signal 
radiance level. This has the net effect of providing an upper 
bound across the spectrum of the combined signal-to-noise 
ratio and offers a convenient way of varying the system 
noise with a single parameter. The extra noise can occur due 
to uncorrected detector non-uniformity or other sources. 

Figure 2 shows the detection probability versus 
maximum (across spectral bands) signal-to-noise ratio. The 
target subpixel fraction was set to 20% for this study.  The 
results indicate that this particular scenario sits on a fairly 
steep portion of the detection sensitivity to noise level. Note 
that the electronics noise (photon and fixed) alone for this 
scenario with HyMap leads to a maximum SNR around 450.  

The third study looked at the complexity of the 
background as measured by the number of background 
classes. This was implemented by reducing the number of 
background classes from the list given in Table 2 one at a 
time starting from the bottom, and adding the scene fraction 
for that class to the fraction allocated for the dominant class 
(grass type 1).  As an example, when running the case for 7 
background classes, the three vehicle classes were 
eliminated and the first background class had its scene 
fraction adjusted to 28%. To obtain detection results that 
were not all 0 or 1, the target fraction was set to 10%. 
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Figure 2. Trade study result showing probability of detection at 
FAR = 10-5 vs. maximum instrument signal-to-noise ratio across 
spectral bands. Scenario used parameters as defined in Tables 1 
and 2 with the target fill fraction set to 20%. 
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Figure 3. Trade study result showing probability of detection at 
FAR = 10-5 vs. number of background classes. Scenario used 
parameters as defined in Tables 1 and 2 with the target fill fraction 
set to 10% and the background classes varied as described in the 
text. 
 

Figure 3 shows the results for this study on the 
background classes.  It is obvious that the results are not 
monotonic with number of classes.  In particular the 
addition of the third background class (grass type 2) had a 
severe impact in lowering the detection probability, yet 
adding the next two classes (road and dark trees) actually 
yielded a higher detection probability. Looking at the 
spectra for these classes we observe the grass type 2 spectra 
are rather bright with less spectral variation than the type 1 
grass, corresponding to yellowing or dying grass. This 
seems to have led to the class being a bit of an “outlier” and 
driving the detection probability down for the specified false 
alarm probability.  The addition of the next two classes 
seems to have reduced the effect of this class allowing a 
higher detection probability, although the actual number is 
quite low and the target would still be considered not 
detectable. 

This result of a non-monotonic trend with number of 
background classes is no surprise to anyone who has worked 
in hyperspectral target detection.  While some general trends 
can be observed, it is quite common to have cases arise 



where a given target can be found in one image, but not in 
another similar, yet slightly different scene [10]. The lesson 
learned through these types of studies is that there is 
significant complexity in hyperspectral target detection. 

While there is not room in this paper to discuss in 
detail, it is worth describing two other related aspects of our 
research into the performance of hyperspectral target 
detection.  One is the development and operation of a blind 
test for the community [11]. This blind test provides data 
and an automatic scoring mechanism for researchers to test 
their algorithms on an independent data set for which the 
truth is withheld. These data have been actively used and 
well received by the community [12]. 

Also, our research has raised an issue that is often 
ignored in empirical performance studies of hyperspectral 
target detection. The issue is the fact that most studies use 
imagery that have relatively few target samples while 
achieving small numbers of false alarms. We have published 
and made available as an online tool a technique to estimate 
confidence regions on receiver operating characteristic 
(ROC) curves based on the sample sizes [13], [14]. This tool 
helps researchers understand the limitations of small sample 
sets on empirical performance estimation and algorithm 
comparisons. 
 

5. CONCLUSIONS 
 
This paper provides a discussion and example results of 
ongoing research in exploring the detection limits of 
hyperspectral imaging systems. We present a viewpoint of 
modeling the full end-to-end imaging process including the 
scene, the sensor, and processing algorithms as a coupled 
system, and identify examples of system factors that affect 
detection performance. The example shown provides a 
glimpse into the ability of the modeling approach to explore 
these limits by showing how little of a pixel may an object 
occupy while still being detectable in a typical scenario. We 
also examined the sensitivity of the detectability to sensor 
system noise and the complexity of the background.  While 
the example results shown here are specific to the studied 
scenario, they represent typical performance limitations and 
illustrate the capability of the analytical end-to-end system 
modeling tool. Future work will continue to develop, 
validate, and apply the model to expand our understanding 
of system performance. 
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