
Fault Tolerance in an Inner-outer Solver: A
GVR-enabled Case Study

Ziming Zheng1, Andrew A. Chien1, Keita Teranishi2

1 University of Chicago, Chicago IL 60637, USA
2 Sandia National Laboratories, Livermore, CA 94551, USA

Abstract. Resilience is a major challenge for large-scale systems. It is partic-
ularly important for iterative linear solvers, since they take much of the time
of many scientific applications. We show that single bit flip errors in the Flex-
ible GMRES iterative linear solver can lead to high computational overhead or
even failure to converge to the right answer. Informed by these results, we de-
sign and evaluate several strategies for fault tolerance in both inner and outer
solvers appropriate across a range of error rates. We implement them, extend-
ing Trilinos’ solver library with the Global View Resilience (GVR) programming
model, which provides multi-stream snapshots, multi-version data structures with
portable and rich error checking/recovery. Experimental results validate correct
execution with low performance overhead under varied error conditions.

1 Introduction
The scaling of semiconductor technology and increasing power concerns combined
with system scale make fault management a growing concern in high performance
computing systems [1, 4, 11, 13]. Soft errors and higher error rates all expected. Just as
they played an important role in achieving scalable, high performance, we expect that
widely-used numeric solvers such as Flexible Generalized Minimal Residual Method
(FGMRES) will play an important key role in achieving resilience and performance for
large-scale applications in future “exa” scale systems.

Flexible GMRES with restarting (see Fig. 1 [2, 17]) is robust to soft errors due to
three aspects. First, the inner solver in Step 3 is inexact, and the outer solver can tolerate
large changes to inner solver. Second, the minimal residual procedure can reduce the
impact of error on inner solver and keep the residual decreasing (see Step 11). Third,
FGMRES restarts the computation after m outer iterations (see Step 17). While the
major purpose of restarting is to address the performance and memory usage, restarting
can also eliminate errors in outer solver data structures. However in our experiments
some bit-errors are still problematic. Errors in inner solver can incur high computational
overhead for convergence. Errors in outer solver can even lead to divergence failure.
Restarting may lead to stagnation of convergence.

With these insights, we design and evaluate error checking and recovery strategies.
For inner solver, residual based checking is deployed to identify significant error; re-
computing and multi-versioning are exploited for recovery in different cost and gran-
ularity. For outer solver, double modular redundancy and data reloading strategies are
utilized for error checking and recovery. Our experiments employ the Trilinos library
[12], extending FGMRES inner-outer solver with the Global View Resilience (GVR)
framework [10], use 5 matrices from the Florida sparse collection [7], running on up to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357301701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

128 processes. Experimental results illustrate that our GVR-enabled FGMRES solver
successfully tolerates the bit flip errors and significantly reduces the impact on perfor-
mance. Specific contributions include:

– Characterizing situations where bit-errors cause resilience problems for both inner
and outer solvers in FGMRES.

– Employ GVR programming model with Trilinos library for portable and rich error
checking/recovery strategies in inner-outer solver.

– Evaluate each recovery method, empirically validating that they are efficient and
that each is best for regime of error rates.

The rest of the paper is organized as follows. Section 2 introduces the background
of GVR and Trilinos for our implementation. Section 3 and section 4 explore the error
impact error checking and recovery methods for inner solver and outer solver respec-
tively. Section 5 discusses experimental results, and Section 6 surveys related work.
Finally, we summarize and discuss future directions in Section 7.

Input:Linear system Ax = b and initial guess x0.
Output: Approximate solution xm.
1: r0 := Ax− b, β := ||r0||2, q1 := r0/β
2: for j = 1, . . . ,m do
3: Inner solver for inexact solution zj in qj = Azj
4: vj+1 := Azj
5: for i = 1, . . . , j do
6: H(i, j) := (vj+1, qi)
7: vj+1 := vj+1 − qiH(i, j)
8: end for
9: H(j + 1, j) := ||vj+1||2

10: qj+1 := vj+1/H(j + 1, j)
11: yj := argminy||H(1 : j + 1, 1 : j)y − βe1|||2
12: xj := x0 + [z1, . . . , zj]yj
13: end for
14: if converged then
15: Return xm
16: else
17: x0 := xm, go to 1
18: end if

Fig. 1: Flexible GMRES with Restarting

2 GVR and Trilinos
Our implementation of fault tolerance inner-outer solver is based Global View Re-
silience (GVR) [10] and Trilinos[12]. Trilinos is an object-oriented software framework
for solving big complex science and engineering problems. Kernel classes of Trilinos
include vector, matrix, and map. It provides common abstract solvers, such as itera-
tive linear solvers and preconditioners. Based on the kernel class and solvers, Trilinos
provides comprehensive algorithmic packages such as stochastic PDEs.

GVR is a novel programming model to enable sophisticated, application-specific
fault tolerance in parallel computing. It enables the application to create global data
store (GDS) objects for flexible, portable and efficient fault management. We extend the
kernel classes of Trilinos using GVR APIs, including the GDS object creation, put/get
operations, and GDS versioning. Based on the extended kernel classes, we implement
GVR enabled inner-outer solver package, which can be directly used for other Trilinos
applications. Especially, GVR facilitates our inner-outer solver in the following aspects.
1. GVR provides multi-stream scheme to create multiple GDS objects for distributed

basis vectors and solution vectors. Each GDS object can periodically take snapshots
at application specified stable point such as the end of iteration. GVR explores the
benefits of local and hierarchy storage to reduce the runtime overhead of snapshot.

2. Multiple older versions of the GDS object remain available for access. The multi-
version scheme is motivated for latent error, i.e., errors that retain for some itera-
tions. We use it for recovery inside of the inner solver.

3. It is flexible to configure different versioning, error-checking, and error-recovery
schemes to each GDS object. It is helpful to customize the explored strategies thus
adapting to different error rates.

4. GVR provides erasure code based on resilience mechanisms for the multi-version
snapshots. Since the snapshot is used only for recovery, the overhead is negligi-
ble. It is also configurable to explore NVRAM with low error rate for snapshot
resilience.

5. The application can provide each GDS object with specific callback routines for
error checking and error-recovery in a uniform framework. Error-recovery routines
can respond to errors raised by either the application or by the underlying system,
such as uncorrectable ECC signal from operating system. Combining with multi-
version, GVR can recover the application from catastrophic memory failures.
In this paper, we only use 1-4 GVR features to address soft errors. We will explore

using more features in the future.

3 Inner Solver
In this study, we presume that the inner solves takes most of execution time and arbi-
trarily set 30 iterations inner solver. In this scenario, the inner solver takes more than
90% execution time, which is a key factor to make trade-off between system reliability
and inner solve reliability. We will study other scenarios as a future work.

3.1 Error Impact
To study the impact of errors on inner solver, we randomly inject the error during SpMV
or vector dot product operation as the most error-prone, or inject the result vector zj
directly as the most important data visible to the outer solver. In this study, we focus
on double precision floating-point data, which consists of 1 sign bits, 11 exponent bits,
and 52 bits for mantissa. Bit-flips not in the first 2 bytes only introduce a relative error
<= 2−4 [9], thus having little impact on execution correctness and convergence.

As inner solver result is approximate, if error occurs not in the first 2 bytes which
only introduces a relative error <= 2−4 [9], error impact is minimal on execution
correctness and convergence. However, as shown in Fig. 2, if a bit error significantly
increase the residual of a significant inner solver comparing with previous inner-outer

iteration, it generally incurred 2 or 3 additional inner-outer solver iterations, which is
consistent with the study in [9]. In extreme cases, as many as 48 additional inner-outer
solver iterations can be required. Further, the error impact can accumulate. As the in-
creasing of errors, we observe 8× number of inner-outer iterations in extreme cases.

3.2 Error check and recovery: outside
First, we study outside error checking and recovery; such coarse-grained recovery is
relevant even in current-day error environments, and applies to many inner solvers such
as GMRES and CG. We exploit two symptoms to identify significant error: 1) residual
increase (vs previous iteration) and 2) the matrix H(1 : j, 1 : j) is not full rank [2]. For
these methods, checking overhead is low. Explicit residual checks can be calculated by
outer solver, as well as checks for errors in A and qj . In our experiments, the explicit
residual check incurs only take 0.2% overhead per iteration. Further, checking rank
deficiency of matrix H(1 : j, 1 : j) is essentially free as the SVD-based method to
calculate step-11 (see Fig. 1) computes the its rank directly.

There are two simple strategies for recovery outside of inner solver. The first is
recomputing the inner solver, incurring high overhead since the inner solver is 90% of
the computation. Despite that, recomputing is still viable as the significant inner solver
errors generally introduce 2-3 more inner-outer solver iterations (see Fig. 2. The second
is restarting the whole computation as step-17 in Fig. 1 [2]. Restarting may lead to
stagnation of convergence, so it is employed only if recomputing fails.

3.3 Error recovery: inside
For higher error rates, it is necessary to handle the errors inside of the inner solver rather
than recomputing the whole inner solver. In this study, we keep one snapshot of qj at
the beginning and multi-version snapshot of zj during the inner solver iterations. If a
significant error is detected outside of inner solver, we check the versions in descend
order. If any version of intermediate result has significant lower residual than the fi-
nal result, inner solver rolls back to that point, reload qj and A, and executes the rest
iterations. Otherwise, inner solver is recomputed from the scratch.

An alternative solution is to check and handle the error during the inner solver itera-
tions. In this study, we do not adopt it due to two reasons. First, it is difficult to identify
the error with low overhead and high coverage. Second, it is hard to predict the impact
of the error on the inner-outer iterations. We will study this solution as a future work.

The crossover between outside and inside error handling happens when the over-
head of error recovery within the solver is less than later recomputing. In this study, we
define the error probability as the ratio between the number of iterations with errors and
the total iterations. Suppose the probability of inner solver error is P , the error-free exe-
cution is Φ longer due to the overhead of snapshot, and the error handling inside reduce
the recomputing time by Θ shorter. So the error handling inside inner solver become
beneficial when 1− P + 2P > (1− P)Φ+ (1 + Θ)P . We validate these tradeoffs in
our experiments in Section 5.

4 Outer solver
The outer solver typically consumes less execution time, but errors in outer solver are
more critical for correctness and performance. In most cases, if significant errors occur

Fig. 2: Distribution of additional inner-outer solver iterations incurred by significant
inner solver errors.

in the basis vectors or Hessenberg matrix H , the residual may increase or stay constant.
Even a single bit-flip may lead to divergence no matter at which iteration the bit-flip
occurs.

To tolerate the error in outer solver, we adopt simple double modular redundancy
(DMR) [15]. It executes the outer solver twice and compare the results. DMR based
method may fail to tolerate the memory error staying in both executions. To address this
problem, at each error-free iteration, we take snapshots of subspace basis [v1, v2, . . . , vj−1],
[z1, z2, . . . , zj−1], matrix H, and result vector xj . Notice that GVR provides resilience
mechanism for these snapshots. Reloading A, b, and these snapshots in previous iter-
ation from GDS objects before the second execution, can detect memory errors in the
original execution. If any inconsistency between two outer solver executions, the third
one will be triggered to identify the correct execution. This approach has low overhead,
high error checking accuracy and prevents error propagation to the next iteration.

5 Experiments
Based on our implementation from GVR and Trilinos, we run 128 processes with 5
matrices from the Florida sparse collection. The data is the average result of 1,000 error
trials for each error probability and matrix. As the error impact studies, we mainly focus
on significant error in the first 2 bytes of double precision data.

5.1 GVR Overhead in Error-free Execution
In our GVR enabled FGMRES, we create GDS objects on the solution and basis vectors,
put the data into GDS objects and make the versions. We vary the number of processes
to study the overhead of GVR in error-free execution. Here we take one snapshot of zj ,
[v1, v2, . . . , vj−1], [z1, z2, . . . , zj−1], H, and xj at each inner-outer iteration.

As shown in Figure 3, the overhead is less than 15% and keeps stable with the
increasing of processes. The major overhead is on versioning since we use collective
call to get consistent snapshot. We plan to bundle these vectors into one GDS object
thus reducing the number of versioning operation.

5.2 Inner solver
To explore a range of error rates, we vary probability of significant error inside of inner
solver computation or the result vector zj . The recovery process is triggered only if the
inner solver residual becomes 100× larger than the previous iteration. We compare the
total execution time without recovery and with our inside/outside resilience method. We

Fig. 3: GVR Overhead in Error-free Execution. Here one snapshot of related vectors are
taken at each inner-outer iteration.

calculate the slowdown as the ratio between the total execution time with errors and the
failure-free execution time.

Our results of slowdown (see Fig. 4) show that both recomputing and multi-versioning
based recovery outperforms the original FGMRES with restarting. When error proba-
bility is< 11%, recomputing has lower slowdown than multi-versioning based recovery
due to the cost of snapshot. As the growth of error probability, multi-versioning based
recovery becomes more beneficial by reducing the work loss.

Fig. 4: Execution slowdown - original FGMRES, recomputing based recovery, and
multi-version based recovery.

5.3 Outer solver

We vary probability of significant error in the basis vectors and solution vectors of outer
solver and present the slowdown in Figure 5. The significant error in outer solver al-
ways leads to divergence for FGMRES without restarting. When the error probability is
low, restarting can tolerate the error but introduce extreme high overhead, e.g. 1682.5%
slowdown on 10% of error probability. As the increasing of error probability, it also
becomes divergence. Our GVR enabled FGMRES successfully addresses the high er-
ror probability with relatively small overhead because it can isolate the errors in each
iteration.

Fig. 5: Execution slowdown - original FGMRES, recomputing based recovery, and
multi-version based recovery.

6 Related work

In large-scale system, traditional studies have focused on system level checkpoint/restart
to tolerate fail-stop process failures [16]. As the growing concern around soft errors,
more recent studies have focused on application level and cross layer solutions, es-
pecially for numeric solvers. Huang and Abraham developed the checksums based
algorithm-based fault tolerance (ABFT) technique for matrix operations [14]. In [6],
Chen developed theoretical conditions based error checking for Krylov subspace itera-
tive methods. In [3], Bronevetsky analyzed soft error vulnerability for linear solvers. In
[18], fault tolerant PCG solver is presented for sparse linear systems. Du presented en-
coding strategy for LU factorization based dense liner systems [8]. Unlike these works,
this study is focusing on inner-outer solver.

The studies on fault tolerant inner-outer solver are limited. In [5], Chen analyzed
flexible BiCGStab to bound the inner solver error for convergence. In [9], Elliott stud-
ied the impact of inner solver error in FGMRES. In [2] FGMRES solver was extended
to tolerate inner solver error. Distinguished from these studies, this paper presents com-
prehensive error analysis for FGMRES and develops GVR-enabled methods for both
inner and outer solvers under various error rate.

7 Summary and Future Work

We analyze the impact of bit-flip errors on the FGMRES inner-outer solver, which
can lead to divergence failure or extreme high computation overhead. Based on the
analysis results, we design the error checking/recovery strategies for inner solver and
outer solver. We implement it by extending Trilinos solver library with our Global View
Resilience (GVR) system. Our experimental results illustrate that our GVR-enabled
inner-outer solver successfully tolerate the bit flip errors for execution convergence with
low performance overhead.

Interesting research directions include, consideration of a wider range of inner-outer
solver configurations, error checking and recover methods, and a wider range of GVR
features. Also, future resilience study clearly should expand the class of memory errors
considered or even including errors in other hardware elements.

Acknowledgement
We would like to thank Mark Hoemmen from Sandia National Laboratories for his
advice. This work was supported by the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under Award DE-SC0008603
and Contract DE-AC02-06CH11357. This work was supported by the U.S. Department
of Energy (DOE) National Nuclear Security Administration (NNSA) Advanced Simu-
lation and Computing (ASC) program. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy National Nuclear
Security Administration under contract DE-AC04-94AL85000.

References

1. S. Borkar and A. A. Chien. The future of microprocessors. Communications of the ACM,
54(5):67–77, 2011.

2. P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen. Fault-tolerant linear solvers
via selective reliability. ArXiv e-prints, June 2012. Provided by the SAO/NASA Astrophysics
Data System.

3. G. Bronevetsky and B. de Supinski. Soft error vulnerability of iterative linear algebra meth-
ods. In Proc. of ICS, 2008.

4. F. Cappello, A. Geist, W. Gropp, L. Kale, W. Kramer, and M. Snir. Towards exascale re-
silience. International Journal of High Performance Computing Applications, 23(4):374–
388, 2009.

5. J. Chen, L. Curfman McInnes, and H. Zhang. Analysis and practical use of Flexible
BiCGStab. Technical Report ANL/MCS-P3039-0912, Argonne National Laboratory, 2012.

6. Z. Chen. Online-ABFT: An online algorithm based fault tolerance scheme for soft error
detection in iterative methods. In Proc. of PPoPP, 2013.

7. T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM Transac-
tions on Mathematical Software, 38(1):1–25, 2011.

8. P. Du, P. Luszczek, and J. Dongarra. High performance dense linear system solver with
resilience to multiple soft errors. In Proc. of ICCS, 2012.

9. J. Elliott, M. Hoemmen, and F. Mueller. Evaluating the impact of SDC on the GMRES
iterative solver. In Proc. of IPDPS, 2014.

10. A. Chien et al. Global View Resilience Project (GVR) website. http://gvr.cs.uchicago.edu.
11. M. Elnozahy et al. System resilience at extreme scale, 2009. White Paper written for the

Defense Advanced Research Project Agency (DARPA), with Ricardo Bianchini et al.
12. M. Heroux et al. An overview of the trilinos project. ACM Transactions on Mathematical

Software, 31(3):397–423, September 2005.
13. P. Kogge et al. Exascale computing study: Technology challenges in achieving exascale

systems. Technical Report TR-2008-13, University of Notre Dame CSE Department, 2008.
14. K. Huang and J. Abraham. Algorithm-based fault tolerance for matrix operations. IEEE

Transactions on Computers, C-33(6):518–528, 1984.
15. J. Lidman, D. J. Quinlan, C. Liao, and S. A. McKee. ROSE::FTTransform – a source-to-

source translation framework for exascale fault-tolerance research. In DSN-W, 2012.
16. A. Moody, G. Bronevetsky, K. Mohror, and B. Supinski. Design, modeling, and evaluation

of a scalable multi-level checkpointing system. In Proc of Supercomputing, 2010.
17. Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, second edition, 2003.
18. M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Fault tolerant preconditioned conjugate

gradient for sparse linear system solution. In Proc. of ICS, 2012.

