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Abstract
Many genes, with products involved in the protection of
cells against carcinogens, oxidants, and other toxic chem-
icals, are under the transcriptional control of a simple DNA
regulatory element [i.e., the antioxidant response element
(ARE)]. One or more functional AREs have been confirmed
or are believed to exist in the upstream region of many
anticarcinogenic/antioxidant genes and have been shown
to mediate the coordinate transcriptional up-regulation of
these genes by many chemical agents [i.e., the ARE-med-
iated inducers]. There is strong evidence that increased
expression of ARE-regulated genes inhibits cancer devel-
opment. The signaling system leading to ARE activation
has been partly elucidated, and nuclear factor erythroid
2–related factor 2 (Nrf2) has been identified as the key
transcriptional factor that serves to transmit the inducer
signal to ARE. It is now known that nuclear factor
erythroid 2–related factor 2, which is normally seques-
tered in the cytoplasm by Kelch-like ECH-associated
protein 1, dissociates from Kelch-like ECH-associated
protein 1 on exposure to ARE-mediated inducers, trans-
locates to the nucleus, complexes with other nuclear
factors, and binds to ARE. Rapid and simple assays have
been devised to identify chemical agents that can
stimulate this signaling pathway. Moreover, many ARE-
mediated inducers have been identified, and several of
them have shown promising cancer preventive activity.
[Mol Cancer Ther 2004;3(7):885–93]

Introduction
For most individuals, one of the most concerning medical
problems is being diagnosed with cancer. This is well
founded, as it is estimated that there will be >1.3 million
individuals diagnosed with cancer and >0.5 million deaths
due to cancer in 2004 in the United States alone (1).

Unfortunately, for patients with metastatic cancer, even the
most advanced treatment methods often do not save their
lives, and in those with less advanced disease, treatment
still extracts a high morbidity and causes tremendous social
and economic devastation. Despite enormous advances in
delineating the molecular basis of cancer and development
of new diagnostic and treatment methods, the overall
mortality rates due to cancer have not decreased substan-
tially (Fig. 1; refs. 1, 2). Cancer may soon surpass
cardiovascular disease as the leading cause of death (1).

Unlike the usually invasive, fast-growing, and destruc-
tive nature of established cancers, the formation of a cancer
cell from a normal one [i.e., carcinogenesis], particularly in
adults, is typically a multiyear and occult process. There is
ample evidence that the sequential activation of oncogenes
and inactivation of tumor suppressor genes, resulting from
repeated DNA damage by carcinogens and constituting the
most fundamental molecular basis of carcinogenesis, is
preventable. Decades of research have led to the conclu-
sion that carcinogenesis can be slowed, stopped, or even
reversed. In fact, it is now increasingly appreciated that
targeting carcinogenesis may be the most effective strategy
in cancer control (3-7). Whereas the multistage and
multipath nature of carcinogenesis makes it a target for
many intervention strategies, this review will focus on a
strategy aimed at protecting DNA and other important
cellular molecules by enhancing the detoxification of
chemical carcinogens and oxidative stressors.

The ProteinsThat Are Encoded by the Antiox-
idant Response Element ^Regulated Genes
Chemical carcinogens are by far the most important cause
of carcinogenesis in humans, although other causes, such as
UV radiation and certain viruses, may play leading roles in
some cancers. Unfortunately, the metabolic machinery in a
human cell acts as a double-edged sword toward chemical
carcinogens (8, 9). On one hand, it is well known that the
majority of chemical carcinogens are not capable of
damaging DNA until they are metabolized (functionalized)
in cells and converted to reactive electrophiles. On the other
hand, many cellular biotransformation enzymes are im-
portant carcinogen-detoxifying enzymes, eliminating or
reducing the electrophilicity of a reactive carcinogen. To
further complicate the picture, enzymes that are involved
in either phase 1 biotransformation (oxidation, reduction,
or hydrolysis reactions) or phase 2 biotransformation
(conjugation reactions) may either activate or detoxify a car-
cinogen depending on the specific compound. Nonetheless,
it is a commonly held view that carcinogen activation takes
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place primarily during phase 1 metabolism, for which
many cytochrome P450 mono-oxygenases are responsible
(10). The phase 2 reactions generally counter such harmful
actions of phase 1 enzymes by reducing the electrophilicity
of reactive carcinogens through enzymatic conjugation
with endogenous ligands such as glutathione and glucu-
ronide (11). In a relatively few cases, phase 2 reactions may
also actually activate carcinogens (12-14). On balance,
however, elevating cellular levels of enzymes involved in
the phase 2 reactions are widely recognized as an important
strategy against carcinogenesis.

However, the so-called phase 2 enzymes or carcinogen-
detoxifying phase 2 enzymes, a term widely used in the
current literature, do not just refer to the enzymes involved
in the phase 2 biotransformation reactions such as
glutathione S-transferase (GST) and UDP-glucuronosyl-
transferase. Several enzymes that catalyze reactions in
phase 1 biotransformation (i.e., phase 1 enzymes), such as
NAD(P)H:quinone oxidoreductase 1 (NQO1) and epoxide
hydrolase, also are frequently considered as ‘‘phase 2
enzymes’’ in the cancer prevention literature. A major
reason for this seemingly ambiguous classification was that
these enzymes are often coordinately induced by a variety
of chemical agents through a DNA element [i.e., the
antioxidant response element (ARE); see below for more
details; refs. 15, 16], which is also termed the electrophile
response element by some investigators. Indeed, a func-
tional ARE is found or believed to exist in the 5V flanking
region of genes encoding NQO1, multiple GST isozymes,
multiple UDP-glucuronosyltransferase isozymes, and ep-
oxide hydrolase (17-23). Many other anticarcinogenic/
antioxidant genes, including the regulatory and catalytic
subunits of glutamate cysteine ligase, glutathione reduc-
tase, heme oxygenase 1, thioredoxin, ferritin subunits,
catalase, and copper/zinc superoxide dismutase, also are
either known or believed to contain a functional ARE(s)
(17, 24-26). Moreover, recent gene array analyses have
revealed that several dozen genes in mammalian cells may
be regulated by ARE (21, 27, 28), although the roles of many
of these genes in cancer prevention remain undefined.

In light of this knowledge, a new name is needed to
replace the term ‘‘phase 2 enzymes,’’ to avoid the confusion
between ‘‘phase 2 enzymes’’ and enzymes involved in the
phase 2 biotransformation, to emphasize the nature of
coordinate response of these genes to chemical inducers at
the transcription level, and to broadly unify these genes
with a name that conveys the nature of their shared
transcriptional control. The term ‘‘ARE-regulated genes’’
appears to be well suited.

The Signaling SystemThat Enables the Coor-
dinate Induction of ARE-Regulated Genes
The cis-acting ARE element (consensus sequence: 5V-TGA-
CnnnGC-3V, where n represents any nucleotide) was first
reported by Pickett et al. more than a decade ago in the
5V flanking region of rat GSTA2 gene (29, 30). As described
above, it has subsequently been found in many genes that
code drug-metabolizing enzymes, enzymes involved in
glutathione biosynthesis, proteins that protect cells against
oxidative stress, and proteins with still largely unknown
functions in cancer prevention. ARE mediates transcrip-
tional up-regulation caused by many widely different
classes of chemical compounds, including Michael reaction
acceptors, diphenols, quinones, isothiocyanates, peroxides,
mercaptans, trivalent arsenicals, heavy metals, and dithiole
thiones (31). However, apparently not all AREs are
functional, as the ARE-containing human GSTP1 gene does
not respond to typical ARE-mediated inducers (32).
Although the exact reason is not known, the adjacent
sequences may render the ARE incompatible with its
function. In this connection, Hayes et al. have shown that
sequences flanking the ARE in the mouse NQO1 promoter
are necessary for its function (33). Moreover, a portion
of the ARE sequence in genes such as human NQO1
(TGACTCAGC) and rat GSTP (TGATTCAGC) is close-
ly related to the 12-O-tetradecanoylphorbol-13-acetate
response element (TGAC/GTCA), which is the binding
site for activator protein (AP)-1 transcription factors.
Indeed, AP-1 factors, including c-Fos and Jun-D, bind to
ARE (34). However, binding of AP-1 factors to ARE does
not appear to activate ARE but presumably prevents the
binding of other signaling molecules to the same site.
Indeed, overexpression of AP-1 factors (c-Fos and Fra1)
represses the expression of an ARE reporter gene in human
hepatoma HepG2 cells (35), whereas deletion of c-Fos gene
in mice leads to significant increases in NQO1 and GST
activities in several murine tissues (36). It was shown that
the GC box in ARE is critical because removal of the
dinucleotides or mutation of one of them abolished the
response of ARE to chemical inducers (37). However, there
may be a certain degree of degeneracy in the ARE
sequence. A recent study of mouse NQO1 gene showed
that the ARE that spans 24 bp (�444 to �421) and controls
both constitutive and inducible gene expression comprises
5V-GAGTCACAGTGAGTCGGCAAAATT-3V, where nucleo-
tides shown in italics are those with mutation resulting in
a complete loss of its function (33).

Because so many chemical compounds with diverse
structures were able to activate ARE, it was thought
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Figure 1. Annual total new cancer cases and deaths in the United
States. Numbers for 2004 are estimated values.
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unlikely that a receptor-ligand binding mechanism could
be involved in bridging the chemical inducers to ARE.
Significantly, Talalay et al. pointed out that ARE-dependent
inducers share a common chemical property: they are all
capable of reacting with sulfhydryl groups by either
oxidoreduction or alkylation (38-40). Hence, it was believed
that the inducers activate ARE through chemical reaction
with cellular ‘‘sensors’’ probably through reactive sulfhy-
dryl group(s) of the target protein(s). A major breakthrough
came when Yamamoto et al. reported in two landmark
articles in the late 1990s that two proteins—nuclear factor
erythroid 2–related factor 2 (Nrf2), a nuclear transcription
factor homologous to Drosophila cap ’n’ collar proteins, and
Kelch-like ECH-associated protein 1 (Keap1), a cytoplasmic
protein homologous to the Drosophila actin binding protein
Kelch—are intimately involved in transmitting the inducer
signals to ARE (20, 41).

Nrf2, a 66-kDa protein with a basic leucine zipper DNA
binding domain, was originally isolated, found to be ex-
pressed ubiquitously, and shown to bind to NF-E2 DNA
binding motif by Moi et al. (42). NF-E2 motif is involved in
the regulation of globin gene expression in hematopoietic
cells. Nrf2 was found not to be essential for murine
erythropoiesis, growth, and development, as Nrf2�/� mice
developed normally (43). However, Yamamoto et al. noted
that the NF-E2 motif contained an ARE sequence
(GTGACTCAGCA) and hypothesized that Nrf2 might
regulate ARE. Indeed, they found that Nrf2 bound to
ARE with high affinity as a heterodimer with a small
muscle aponeurotic fibrosarcoma (Maf) protein. Disrupting
the Nrf2 gene in mice reduced the basal expression level
of genes including epoxide hydrolase, glutamate cysteine
ligase, GSTs, heme oxygenase 1, NQO1, and UDP-glucur-
onosyltransferase 1A6 and abolished the response of these
genes to known ARE-mediated inducers including oltipraz
and butylated hydroxyanisole (20, 23, 44). Interestingly, the
Nrf2 gene itself also carries a functional ARE and is trans-
criptionally stimulated by ARE-mediated inducers (45),
raising a possibility that an inducer signal may be mag-
nified through positive autoregulation of Nrf2. However,
McMahon et al. found that sulforaphane, a potent ARE-
mediated inducer, only marginally increased Nrf2 mRNA
level (f1.5-fold), whereas, under the same condition, the
NQO1 mRNA level was increased f20-fold in rat liver
RL34 cells (46).

Detailed analysis of differential Nrf2 activity displayed in
transfected cell lines ultimately led to the identification of
Keap1 by the same group of researchers (41). Keap1, a 69-
kDa protein (47), is in the cytoplasm and anchored to actin.
Site-directed mutagenesis of Keap1 revealed that Nrf2 is
normally sequestered in the cytoplasm by Keap1 (41, 48).
Dissociation of Nrf2 from Keap1 allows it to translocate to
the nucleus, heterodimerize with small Maf, and bind to
ARE, resulting in transcriptional activation of the gene.
Treatment of cells with ARE-mediated inducers results
in the dissociation of the Nrf2-Keap1 complex (47, 48).
Although the detailed mechanism underlying the inducer-
initiated dissociation of Nrf2 from Keap1 is still being
dissected, recent work by Talalay et al. has shed light on the

chemical interaction of inducers with this protein complex.
Both Nrf2 and Keap1 contain multiple cysteine residues
(e.g., murine Keap1 and Nrf2 contain 25 and 7 cysteines,
respectively). All cysteines on murine Keap1 were found to
react with ARE-mediated inducers, including dexametha-
sone mesylate, sulforaphane, and bis(2- and 4-hydroxy-
benzylidene)acetones (Michael reaction acceptors), but C257,
C273, C288, and C297 were shown to be the most reactive
cysteine residues of Keap1 (47).

Whereas the Nrf2-Keap1-ARE clearly constitutes the
main axis of this signaling system, additional factors and
regulatory mechanisms also are involved. As described
before, Nrf2 forms a heterodimer with small Maf proteins,
which also are leucine zipper proteins but lack the
transcriptional activation domain. Overexpression of small
Maf (MafG and MafK) results in inhibition of ARE
activation (49, 50). Nrf2 also is known to heterodimerize
with AP-1 family factors (51). Whereas overexpression of
Jun family proteins (c-Jun, Jun-B, and Jun-D) does not
significantly affect ARE activity, overexpression of Fos
family proteins (c-Fos and Fra1) does inhibit ARE activity
(52). However, the inhibitory effect of Fos family proteins
may also result from their binding to the AP-1 site within
ARE and consequently blocking access of ARE binding
factors, as indicated above. Other nuclear factor erythroid
2–related factors may play a role similar to Nrf2. Nrf1 and
Nrf3 have been identified, and Nrf1 activates ARE (52, 53).
Although there is evidence that direct interaction of chem-
ical inducers with Keap1/Nrf2 results in the nuclear
translocation of the latter factor, additional mechanisms
regulating Nrf2 and Keap1 also exist. Huang et al. (54)
showed that phosphorylation of Nrf2 at Ser40 by protein
kinase C promoted its dissociation from Keap1. Zhu and
Fahl (55) reported that additional factors, including p160
family coactivators and cyclic AMP-responsive element
binding protein/p300 factors, may bind to Nrf2-Maf-
ARE complex and further enhance transcription activa-
tion. In addition, mitogen-activated protein kinases also
were found to regulate ARE activity, although much is
still unknown. Kong et al. reported that mitogen-activated
protein kinase pathways, which are activated by mitogen-
activated protein kinase/extracellular signal-regulated
kinase kinase kinase 1, transforming growth factor-h–
activated kinase 1, and apoptosis signal-regulated kinase 1
in HepG2 cells, all enhance inducer-mediated Nrf2
activation (56), whereas p38 mitogen-activated protein
kinase plays a negative role (57). Moreover, phosphatidy-
linositol-3-kinase also appears to play a role in Nrf2
activation. Phosphatidylinositol-3-kinase regulates rear-
rangement of actin microfilaments in response to oxida-
tive stress, and the resulting depolymerization of actin
causes Nrf2 to translocate into the nucleus (58). Pharma-
cologic inhibition of this kinase in both rat hepatoma
H4IIE cells and human neuroblastoma IMR-32 cells
inhibits ARE-mediated transcriptional gene activation
(59, 60). A recent review by Pickett et al. is an excellent
source of additional information about this signaling
system (61). A simplified scheme depicting the Nrf2-
ARE signaling is shown in Fig. 2.
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ARE-Regulated Genes Confer Protection
against Carcinogenesis
As mentioned above, at least several dozen genes in mam-
malian cells may be regulated by the Nrf2-ARE signaling
pathway. Whereas many of these genes and their products
have not been adequately assessed for their role in the
prevention of carcinogenesis, a growing number of ARE-
regulated genes have been shown to protect cells against
carcinogenesis. Three gene or gene families are described
below in detail as examples.
Nrf2
The functional ARE element appears to exist between

�574 and �403 region of the gene in mice, and both total
and nuclear Nrf2 levels increase rapidly and persistently
after treatment with a typical ARE-mediated inducer,
3H-1,2-dithiole-3-thione, in murine keratinocytes (45).
Because Nrf2 really functions to transmit the inducer signal
to ARE, it is not surprising that deficiency of this
transcriptional factor can render cells more susceptible to
carcinogens. Nrf2 knockout female ICR mice developed
nearly twice as many tumors in the forestomach as the
wild-type mice when fed p.o. benzo(a)pyrene (BaP; ref. 62).
Moreover, whereas feeding sulforaphane (f7.5 Amol/d),
another ARE-mediated inducer, during the carcinogen
exposure period reduced the number of tumors from 17.6
to 10.8 per mouse (a 39% reduction), similar sulforaphane
treatment did not significantly reduce tumor multiplicity in
the Nrf2-deficient mice (from 30.2 tumors per Nrf2+/+

mouse to 28.5 tumors per Nrf2�/� mouse; ref. 62). Levels of
BaP-DNA adducts in the forestomach were significantly
higher, as might be predicted, in Nrf2-deficient mice com-
pared with wild-type mice (63). Oltipraz, yet another ARE-
mediated inducer, also significantly reduced BaP-induced
tumor burden of forestomach in the wild-type mice when

administered p.o. but was ineffective in the Nrf2-deficient
mice (63). Likewise, there was accelerated DNA adduct
formation in the lung of the Nrf2-deficient mice when
exposed to diesel exhaust (64). Because many genes under
the control of the Nrf2-ARE pathway are involved in the
detoxification of a wide spectrum of both exogenous and
endogenous compounds, Nrf2-deficient mice are likely
susceptible to many diseases in addition to cancer. Indeed,
it has been shown that Nrf2 knockout mice are much more
sensitive to acetaminophen-induced hepatotoxicity (65) and
butylated hydroxytoluene–induced acute respiratory dis-
tress syndrome (44).

NQO1
A functional ARE is known to exist in the NQO1 gene

of mice (33), rats (66), and humans and is located be-
tween �470 and �445 region of the gene (34). The NQO1
gene product is a flavoenzyme that catalyzes the obliga-
tory two-electron reduction and detoxification of quinones
and their derivatives, thus leading to protection of cells
against redox cycling. NQO1 could also act as a coenzyme
Q (ubiquinone reductase), maintaining this natural antiox-
idant in its reduced form. Moreover, it can catalyze the
conversion of a-tocopherolquinone (an oxidation product
of a-tocopherol) to the powerful antioxidant a-tocopher-
olhydroquinone (67). A more recent study showed that
NQO1 was involved in stabilizing tumor suppressor p53
protein, although the mechanism is still unclear (68).
Cultured cells overexpressing NQO1 were protected
against the cytotoxicity of various quinones (69) and BaP-
induced DNA adduct formation (70). NQO1�/� mice were
found to be much more susceptible to BaP- or 7,12-
dimethylbenz(a)anthracene– induced skin tumorigenesis
(71, 72). NQO1 was also shown to play a critical role in
the protection against azoxymethane- or methyl nitro-
sourea–induced aberrant crypt foci in colons of Sprague-
Dawley rats (73).

The following data allow one to understand the possible
significance of NQO1 alterations in humans. An epidemi-
ologic study conducted in Shanghai, China demonstrated
that NQO1-deficient individuals are at a considerably
higher risk of developing leukemia following occupational
exposure to benzene (74). NQO1 deficiency in humans is
also linked to an increased risk of developing urologic
malignancies (75) and basal cell carcinomas (76). Although
Wiencke et al. (77) reported in a case-control study in-
volving Mexican and African Americans that there was
a significant association of the wild-type genotype with
higher lung cancer risk [odds ratio (OR) 1.80, 95% confi-
dence interval 1.09-2.97], Xu et al. (78) found no overall
association between NQO1 genotypes and lung cancer
susceptibility in a study involving mostly Caucasians.
Thus, whether the wild-type NQO1 really promotes lung
cancer development remains to be confirmed.

GSTs
GSTs are a family of enzymes that play an important

role in cellular detoxification of toxic chemicals including
chemical carcinogens. Their main function is to catalyze the
conjugation reaction of glutathione with electrophilic
xenobiotics and endogenous metabolites, giving rise to

Figure 2. Stimulating the ARE-regulated signal transduction for cancer
prevention. The mitogen-activated protein kinases, phosphatidylinositol-3-
kinase, AP-1 factors, etc., which are not in this scheme, may also
modulate this signaling system, but their mechanisms are not yet fully
elucidated.
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normally less reactive, more water soluble, and more
disposable products. Some individual GST isozymes also
possess peroxidase activity, isomerase activity, or non-
catalytic drug binding activity (79). The human GST iso-
zymes discovered thus far include seven cytosolic families
(a, A, k, j, u, ~ , and N), a mitochondrial family (n), and a
membrane-bound family (79-81). It is not yet known how
many human GST isozymes are under ARE control. How-
ever, loss of Nrf2 caused a marked reduction in both con-
stitutive and inducible gene expression of GSTa1, GSTa2,
GSTm1, GSTm2, GSTm3, GSTm4, and GSTp1 in mice
(18, 82). Moreover, a variety of ARE-mediated inducers,
such as oltipraz, ethoxyquin, sulforaphane, 6-methylsulfi-
nylhexyl isothiocyanate, tert-butyl hydroxyanisole, and
tert-butyl hydroquinone, are known to elevate GST activ-
ities in cultured human and animal cells (15, 19, 83, 84).

GSTs are probably the most studied and best known
carcinogen-detoxifying enzymes. There are an accumulat-
ing number of studies that document their anticarcinogenic
roles. Many excellent reviews have been written on this
topic (79, 85, 86). Described below are just a few recent
studies on the effect of GST deficiency on cancer incidence,
although they may not be entirely representative of all
other studies in this subject. Wolf et al. found that knocking
out GSTp1/p2 genes in mice resulted in a 3.4-fold increase
in the number of skin papillomas after topical exposure to
7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphor-
bol-13-acetate (87). Several GST genes are polymorphic in
humans (88). Humans lacking either GSTM1-1 or GSTT1-1
or carrying GSTP1 genotypes that are believed to encode
enzymes with reduced catalytic activity were found to be at
a significantly higher risk of developing cancer in many
organs, including breast cancer (OR 1.9; ref. 89), sporadic
colorectal cancer (OR 1.6; ref. 90), thyroid cancer (OR 2.6;
ref. 91), lung cancer (OR 4.21-4.68; ref. 92), stomach cancer
(OR 2.63; ref. 93), prostate cancer (OR 1.8; ref. 94), and
bladder cancer (OR 1.53-6.97; refs. 95-100).

Identification and Cancer Chemopreventive
Activity of ARE-Mediated Inducers
Cell-BasedScreenAssay forDetectionofARE Inducers
The discovery of inducers of ARE-regulated genes that

traditionally relied on the time-consuming and expensive
animal experiments entered a new and exciting era when
Prochaska and Talalay developed a rapid and low-cost cell-
based screen assay in the late 1980s. They identified the
murine hepatoma Hepa1c1c7 cell and its NQO1 as the most
robust and sensitive cell line and marker of global ARE-
regulated genes (101, 102). By growing the cells in 96-well
plates and measuring NQO1 activity in each well with a
plate reader–based spectroscopic assay, this screen assay
allows one to simultaneously measure a series of concen-
trations of many test compounds in a single experiment.
The entire experiment is completed in 3 to 4 days, and the
inducer activity of a test compound can be quantitatively
expressed. Remarkably, this screen assay has consistently
predicted the inducer activity of many test compounds
in vivo and was solely responsible for the isolation of

the anticarcinogen sulforaphane from broccoli (103, 104).
However, by stably transfecting human hepatoma HepG2
cells with an ARE-green fluorescence protein reporter
construct, Zhu and Fahl (105) later introduced a more
specific and faster screen assay for ARE-mediated inducers.
In their assay, the HepG2/ARE-green fluorescence protein
cells are also grown in microtiter plate wells and are ex-
posed to a test compound in the same manner as described
in the Prochaska-Talalay assay. One advantage of this assay
is that no enzyme assay is needed, as the green fluorescence
protein level in each well can be directly measured by a
fluorescence plate reader. However, this HepG2 cell-based
assay may not be as sensitive as the Prochaska-Talalay
assay (84). In addition, it should be pointed out that
the ARE in structure, and perhaps its function, in the
5V flanking region of NQO1 in Hepa1c1c7 cells, as described
by Nioi et al. (33), is different from that driving green
fluorescence protein in the HepG2 cell. Interestingly,
human prostate cancer LNCaP cells also showed robust
induction of NQO1 enzymatic activity after treatment with
a variety of known chemical inducers and may be espe-
cially useful for identifying ARE-mediated inducers as
chemopreventive agents against prostate cancer (83, 106).

The Cancer Chemopreventive Activity of Selected
ARE-Mediated Inducers

Many dietary and synthetic compounds have been
found to potently induce the expression of ARE-regulated
genes and subsequently shown to inhibit carcinogenesis.
Although it is often difficult to determine how much the
induction of ARE-regulated genes contributes to the in-
hibition of carcinogenesis, because these compounds
may also possess other anticarcinogenic mechanisms,
several anticarcinogens have been identified and devel-
oped based on their ability to induce ARE-regulated genes.
These compounds include oltipraz [5-(2-pyrazinyl)-4-meth-
yl-1,2-dithiol-3-thione] and anethole dithiolethione [ADT,
5-(p-methoxyphenyl)-1,2-dithiole-3-thione; both belonging
to the dithiolethione family], sulforaphane (belonging to
the isothiocyanate family), and 4V-bromoflavone (belonging
to flavonoid family; see Fig. 3 for their chemical structures).

Oltipraz, a synthetic analogue of 1,2-dithiole-3-thione, is
probably the best known ARE inducer. The pioneering and
rigorous research initiated by Bueding and continued by
Kensler et al. is primarily responsible for the development
of this compound. Oltipraz, originally identified and used
as an antischistosomal agent, is a potent inducer of many
ARE-regulated genes, including GST, NQO1, glutamate
cysteine ligase, epoxide hydrolase, aflatoxin B1 aldehyde
reductase, and ferritin in both cultured cells and rodent
organs (107). However, it also inhibits several carcinogen-
activating cytochrome P450 enzymes (108). Whereas ol-
tipraz may be potentially effective against carcinogenesis
in several organs, including breast, colon, pancreas, lung,
stomach, skin, and bladder (109), it is best known for
its activity against aflatoxin-induced liver cancer. Aflatox-
ins, especially aflatoxin B1, are potent hepatocarci-
nogens produced by some strains of Aspergillus and are
significant contaminants of various grain foods in some
parts of China and elsewhere. Oltipraz potently inhibited
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aflatoxin B1–induced formation of DNA adducts and
hepatocarcinogenesis in rodent models (110, 111). Both
phase I and IIa trials of oltipraz have been conducted in
Qidong, China. Side effects of oltipraz were limited to mild
numbness, tingling, and pain in the fingertips (112). Using
urinary aflatoxin metabolites as biomarkers, p.o. dosing of
oltipraz was found to inhibit the activation of aflatoxin
and to enhance the formation of its detoxification products
(113-115). Whereas a more complete understanding of the
utility of oltipraz in the prevention of human hepatocarci-
nomas awaits further clinical trials, these studies high-
light a paradigm and the feasibility of a strategy aimed at
developing ARE-mediated inducers for cancer prevention.

ADT is another dithiolethione, the potential cancer
chemopreventive activity of which was predicted on the
basis of its activity in inducing the expression of ARE-
regulated genes (116-119). ADT has been used clinically for
treating drug- and radiation-induced hyposalivation as
well as other related disorders (120-122). In a randomized
phase IIb trial of smokers, ADT at 25 mg p.o. thrice daily
for 6 months significantly decreased the progression rate
of bronchial dysplasia (122). Adverse events were minor
gastrointestinal symptoms that disappeared with dose
reduction or discontinuation.

Sulforaphane is an isothiocyanate originally isolated
from broccoli and later chemically synthesized as a potent
inducer of ARE-regulated enzymes (103). Subsequent study
revealed that broccoli sprouts were a much richer source of
sulforaphane than mature broccoli (123). Sulforaphane is
synthesized and stored in plants as glucoraphanin (a
glucosinolate) and is released by a coexisting enzyme
myrosinase. Although sulforaphane was first recognized as
an inducer of ARE-regulated genes, it was later shown to
inhibit several cytochrome P450 enzymes, induce apopto-
sis, arrest cell cycle progression, and perhaps affect other
cellular functions (124), all of which may contribute to its
anticarcinogenic activity. Sulforaphane was shown to be
effective against carcinogen-induced tumorigenesis in
several rodent organs, including colon, mammary glands,

skin, and stomach (62, 104, 125, 126). Although clinical
trials of pure sulforaphane have not yet been conducted,
extracts of broccoli sprouts, with sulforaphane as the major
isothiocyanate, have been given to human volunteers (127).
Nearly 90% of p.o. administered broccoli sprout isothio-
cyanates (25 to 200 Amol) contained in the extracts were
detected in the urine as dithiocarbamate metabolites within
72 hours, indicating high bioavailability of sulforaphane
(128). The broccoli sprout isothiocyanates were absorbed
rapidly, reached peak concentrations in plasma at 1 hour
after feeding, and declined with first-order kinetics (half-
life 1.77 F 0.13 hours; ref. 127).

4V-Bromoflavone was synthesized and identified by
Pezzuto et al. through systematic investigation of >80
natural or synthetic flavonoids using the Prochaska-Talalay
assay (129). 4V-Bromoflavone activated ARE, potently
induced NQO1 and GST, and elevated glutathione levels
in cultured cells and rodent organs and significantly
reduced the covalent binding of metabolically activated
BaP to cellular DNA (129). On the basis of these findings,
a cancer chemoprevention study was carried out in 7,12-
dimethylbenz(a)anthracene–treated female Sprague-Daw-
ley rats. Dietary administration of 4V-bromoflavone from 1
week before to 1 week after 7,12-dimethylbenz(a)anthra-
acene exposure significantly inhibited the incidence and
multiplicity of mammary tumors and greatly increased
tumor latency (129). However, unlike oltipraz, ADT, and
sulforaphane, 4V-bromoflavone also activates the xenobiotic
response element, as revealed by transient transfection of
reporter constructs, and thus raises the concern that this
compound may potentially induce enzymes involved in
carcinogen activation. Further study of this interesting
compound is warranted.

Summary
As the importance and our understanding of metabolism in
the activation and deactivation of chemical carcinogens and
other toxic chemicals evolved, a nomenclature that has
been widely used (i.e., the ‘‘phase 2 enzymes’’) to designate
the many carcinogen-detoxifying enzymes no longer
reflects the current state of knowledge. The roles of ARE
and its key signaling coconspirators Nrf2 and Keap1
provide a rational basis for the proposal that the term
‘‘ARE-regulated genes’’ now replace the term ‘‘phase 2
enzymes.’’ The Nrf2-ARE signaling system, with continu-
ing elucidation of molecular detail, enables the coordinate
induction of many genes. Progress in the identification of
ARE-regulated genes and recognition of the anticarcino-
genic roles of their gene products have stimulated the
search for chemical agents that can activate this signaling
system. Rapid and simple methods have been developed to
aid the identification of such chemical agents. Indeed,
several such agents have shown promising anticarcino-
genic activity in animal and human studies.
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