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ABSTRACT
Mobile application markets currently serve as the main line
of defense against malicious applications. While market-
place revocations have successfully removed the few overtly
malicious applications installed on mobile devices, the antic-
ipated coming flood of mobile malware mandates the need
for mechanisms that can respond faster than manual inter-
vention. In this paper, we propose an infrastructure that
automatically identifies and responds to malicious mobile
applications based on their network behavior. We design
and implement a prototype, Airmid, that uses cooperation
between in-network sensors and smart devices to identify
the provenance of malicious traffic. We then develop sam-
ple malicious mobile applications exceeding the capabilities
of malware recently discovered in the wild, demonstrate the
ease with which they can evade current detection techniques,
and then use Airmid to show a range of automated recovery
responses ranging from on-device firewalling to application
removal.

1. INTRODUCTION
Malware infections on mobile phones have flourished in

recent years. Nearly immediately after the introduction of
functionality beyond basic telephony, researchers have sug-
gested that such devices were likely targets of malicious soft-
ware [14, 24]. However, even as mobile operating systems
move towards greater sophistication and an increasing num-
ber of malicious applications have been discovered, large-
scale infection has been avoided. This relative safety can be
largely attributed to the revocation capabilities of mobile
application markets which, upon discovering or being noti-
fied of the existence of a malicious program, can remove it
from both the marketplace and installed platforms.

Manually-triggered revocations have been successful be-
cause the number of malicious applications has been small.
As the rate with which new mobile malware is discovered
begins to approach that of traditional malware, estimated
by some as greater than 70,000 new samples per day [38],
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such mechanisms are unlikely to be able to continue to re-
spond rapidly. Specifically, cellular providers will not be
able to rely solely upon the rapid identification and removal
of malware by mobile market operators.

In this paper, we propose, design, and implement Airmid1,
a system for the automated detection of and response to ma-
licious software infections on handheld mobile devices. Our
architecture leverages cooperation between network moni-
tors and on-device software components. We place the main
detection component within the network so that no malware-
specific knowledge needs to be stored at every mobile device.
When the network sensor detects malicious traffic (which
can be done using traditional security tools including DNS
blacklists, domain firewall policies, an IDS, etc), it notifies
devices sending or receiving that traffic via an authenticated
channel. A protected software agent on each device then
identifies executing processes responsible for the malicious
traffic and initiates a recovery action to repair the infection:
traffic can be filtered at the device, apps can be sandboxed
or deleted, or the device itself can be patched or restored to
its factory defaults. This system allows malware detection
and response to occur at machine speed without human in-
teraction and without burdening small handheld systems with
the computation, storage, and power consumption typical of
traditional anti-virus systems.

As in desktop malware, we expect malicious apps to in-
crease in sophistication as defensive utilities become widespread;
however, current malicious applications remain rather sim-
plistic. To facilitate testing with complex malicious apps, we
developed laboratory samples of mobile malware exhibiting
characteristics common to mature desktop-class malware.
The basic functionality of the malware reflects attacks al-
ready occuring in cellular devices: our apps leak private
data [39], dial premium numbers [26], and participate in
botnet activity [36]. To this we added complex evasive func-
tionality: our samples detect the presence of an emulated
environment and change their behavior, create hidden back-
ground processes, scrub logs, and restart on reboot. These
samples demonstrate that mobile device software architec-
tures permit the creation of advanced malware that can-
not be easily identified prior to distribution, underscoring
the need for rapid recovery after infection. For safety, our
malware lacks propagation ability and was tested only on a
closed network.

In summary, we make the following contributions:

1Airmid is the Celtic goddess of healing, and is known for
her ability to bring the dead back to life.



• Identification of current remediation shortcom-
ings: While mobile application markets have thus far
successfully removed most discovered malware, we ar-
gue that such mechanisms are unlikely to remain suc-
cessful as the only mechanism given the expected in-
crease in malicious software for mobile environments.
In particular, markets do not have access to all traf-
fic generated by such applications, nor the perfectly
analyze all incoming applications prior to distribution.

• Design and implementation of advanced proto-
type malware: We build three proof-of-concept mal-
ware instances based on samples collected“in the wild”.
We then demonstrate the ease with which such mal-
ware can resist static and dynamic analysis in a mar-
ket, making their pre-deployment detection unlikely
and the need for a more dynamic “kill switch” mecha-
nism.

• Cooperatively neutralize malware on infected
mobile phones: We pair a software agent running
within a hardened, modified version of the stock An-
droid Linux kernel with a network sensor running Snort.
Our network sensor initiates a range of remediation ac-
tions that successfully sanitize our advanced prototype
malware in under 10 ms. Remediation results can be
fed back to mobile markets, allowing both providers
and application vendors to more quickly protect cus-
tomers from malware.

The remainder of this paper is organized as follows: Sec-
tion 2 compares related research. Section 3 presents an
overview of the current state of mobile malware creation
and detection, and it demonstrates by example how mobile
malware can implement evasive behaviors similar to those
of desktop-class malware. Section 4 proposes our remote
repair architecture for in-network detection of malware and
automatic on-device remediation of the infection. Section 5
presents our specific prototype implementation for Android
and an evaluation of the prototype’s performance using the
evasive malware instances first presented in Section 3. Sec-
tion 6 includes a discussion of the system, its potential ap-
plications, and its current limitations. We conclude in Sec-
tion 7.

2. RELATED WORK
Mobile malware is becoming increasingly commonplace.

While malicious software for these platforms is not new [18–
21], the migration towards a small number of mobile operat-
ing systems and the increasing power of such devices height-
ens the probability of large scale infection. Traynor et al. [41]
observed that even small numbers of compromised and co-
ordinated phones could be used to cause widespread out-
ages. A number of other authors have built advanced proof-
of-concept mobile malware capable of deciphering DTMF
tones [37] and collecting video [43]. Mobile malware in the
wild has already been found to exfiltrate sensitive data [39],
generate calls and text messages to premium numbers [26]
and exhibit traditional botnet behaviors [36].

The industrial and research communities have responded
with a range of solutions. Numerous anti-virus products
have been ported to the most popular mobile platforms [2,9,
17,27]. Others have proposed new platform-based detection
systems based on triggers including service thresholds [8],

low level API calls [7] and anomalous power usage pro-
files [28,30]. These device-only approaches fail for a number
of reasons, including excessive power requirements for tradi-
tional anti-virus system scanning and false positives caused
by untrained benign behavior. Tools such as TaintDroid [16]
and PiOS [15] can identify information flows in applications,
but they require significant manual assistance and do not au-
tomatically identify “malicious” behavior; rather, they iden-
tify the presence of specific information flows (e.g., IMEIs
and IMSIs). Neither approach is currently scalable as a
means of analyzing all available mobile applications.

Traffic attribution and provenance are generally difficult
problems. IP addresses are well known as weak indicators
of the origin of malicious traffic on the Internet. Regular
backscatter traffic measurements indicate wide-spread ad-
dress spoofing [32]. Balasubramaniyan et al. attempt to
solve a similar problem in the larger telephony space [5].
Because cellular networks maintain a cryptographic relation-
ship with each user device, attribution of a specific packet to
an individual device is possible. However, additional steps
must be taken to identify the specific process responsible
for traffic. In the context of virtualized desktop systems,
Srivastava et al. [40] developed a virtual machine introspec-
tion based technique that attributes network traffic to an
executing process for the purpose of implementing firewall
rules. Our work uses an in-kernel approach to identify a
similar correlation between network behaviors and process
execution for the purpose of malware infection remediation.

3. MOBILE MALWARE
Malware has begun to move from desktop computing into

mobile environments. This section briefly considers mobile
malware already deployed, and it then extensively presents
highly capable laboratory samples that we created to demon-
strate both the evasive technologies available to malware au-
thors on Android platforms and the utility of our proposed
remote repair design.

3.1 In the wild
By the first quarter of 2011, over 1000 mobile malware

instances have been discovered in the wild, primarily tar-
geting the Symbian OS for feature phones [31]. Android
is the second most common target, and the most common
smartphone OS victim. Google, the producer of Android
and operator of the official app marketplace, has exercised
its revocation ability at least three times since 2010 [3,11,12].
The malicious behaviors of Android malware include [31]:

• Privilege escalation to root (DroidDream).

• Bots (Drad.A).

• Data exfiltration (DroidKungFu, SteamyScr.A).

• Backdoor triggered via SMS (Bgyoulu.A)

Similarly, jailbroken devices running Apple iOS experienced
a botnet in 2009 [36]. These attacks send and receive traffic
across data or voice channels that can be identified by a
network intrusion detection system as malicious.

Detection of mobile malware prior to its deployment is
as challenging as detection of malware on desktop systems.
Centralized app marketplaces provide an opportunity for
centralized analysis before the marketplace lists an app. Un-
fortunately, marketplaces have at least two deficiencies that



will enable the proliferation of malicious apps. First, mal-
ware authors can write their apps with logic to evade detec-
tion or analysis, as we show below with laboratory malware
samples. Second, the Android platform allows users to in-
stall apps from third-party marketplaces that may make no
efforts to verify the safety of the software that they dis-
tribute. As a result, we naturally expect malware to suc-
cessfully reach client devices.

3.2 Enhanced prototype malware
As seen in desktop security, the success of traditional mal-

ware detection diminishes as malware incorporates strate-
gies designed to evade detection or analysis. While evasions
strengthen the need for post-infection remediation, existing
mobile malware samples have not yet added such complex-
ity. To better illustrate the effectiveness and flexibility of
Airmid, we created laboratory malware instances suggestive
of future malicious developments in the mobile environment.
Each instance combines malicious functionality now occur-
ring in real mobile malware with evasive functionality com-
mon to desktop malware, and embeds the malicious logic
into a benign app. Inserting malware into a benign app and
rehosting the app on a third-party marketplace has become
a common malware distribution strategy. For safety, we cre-
ated our laboratory malware samples without distribution or
propagation functionality.

We created three laboratory mobile malware samples: a
Twitter client that leaks private data (“Loudmouth”), a Face-
book client sync app that dials premium numbers (“2Faced”),
and a mobile bot (“Thor”). Each piece of malware is actu-
ally a maliciously modified open-source Android application.
Our malware requires no additional permissions from the un-
modified applications, which are listed in Table 1. All sam-
ples include evasive techniques and exceed the capabilities
of mobile malware currently in the wild.

3.2.1 Loudmouth
Our first malware instance, Loudmouth, combines:

• Malicious mobile functionality: Data exfiltration.

• Evasive functionality: Malware analysis environment
detection.

• Benign host app: Twitter client.

The principal malicious functionality of Loudmouth is data
exfiltration, a powerful attack in a mobile context. As users
embrace the functionality of smartphones, they place signif-
icant personal data on their devices. Even basic feature
phones store contact lists, messages, and call databases.
GPS-enabled devices can leak location information, turn-
ing a mobile device into a tracking system. Such data is
useful for criminal activities.

Loudmouth appears to the user as a benign Twitter client.
We augmented the Nanotweeter [34] codebase with just 143
lines of new, malicious code. The app provides the expected
usual functionality, but it also leaks private information to
a server owned by the attacker (here, us) during use. It
steals Twitter account credentials, the phonebook database,
and the most recently available GPS location. When ac-
tive, Loudmouth creates malicious network traffic that con-
tains private data and is transmitted to the malware author’s
server.

Desktop-class malware is commonly analyzed by execut-
ing the malware within a virtualized or emulated environ-
ment. Malware authors have hence begun to include checks
for analysis environments, and the malware alters its behav-
ior so that it does not exhibit malicious functionality during
analysis [13, 22]. Mobile malware does not yet contain such
sophistication; however, should application marketplaces be-
gin to verify apps via runtime analysis, then mobile malware
authors may begin to include checks for analysis environ-
ments. We implemented multiple checks in Loudmouth.

To thwart dynamic analysis, Loudmouth contains sev-
eral checks to determine its environment, and it hides all
malicious behavior when run on an emulator or a devel-
oper phone. The Android platform provides straightforward
methods of detection. Loudmouth first queries the “brand”,
“device”, and “model” Java environment variables and com-
pares their values against a whitelist of known consumer
phones. The malware then checks for the Radio Interface
Layer (RIL) library, the Google Maps application, and any
DRM system components. These three components are ei-
ther supplied by hardware device manufacturers or are pro-
prietary, and hence none are distributed with the emulator
or with developer phones. These restrictions are actively
enforced even for third-party distributions of the operating
system [42]. Loudmouth can thus determine whether the
phone is emulated or a physical device, as well as specific
details of the phone. To the best of our knowledge, we are
the first to investigate and implement these techniques in
mobile phones.

3.2.2 2Faced
Our second malware instance, 2Faced, combines:

• Malicious mobile functionality: Premium number di-
aler.

• Evasive functionalities: Log sanitization and a hidden
native process.

• Benign host app: Facebook sync.

Premium number dialer applications are examples of historic
malware that once targeted dial-up Internet users. These
attacks resulted in revenue for the owners of the premium
numbers, as users had little chance of refuting their expen-
sive phone bills [10]. These attacks have recently seen a
resurgence on mobile devices [26].

2Faced is a new generation of the premium number dialer.
It is a Facebook contact sync app that dials premium num-
bers late at night when the mobile device is not in use. The
attacker can generate revenue until the user of the device
notices these hidden calls. It creates detectable, malicious
telecom traffic to the premium numbers.

Our malware instance includes two evasive actions de-
signed to prolong its existence on infected devices. First,
it evades early detection from a vigilant user by removing
its entries from the device’s call logs. Even observant users
will be unable to detect malicious activity, maximizing both
the financial loss for the user and the gain for the attacker.
Second, the actual malicious dialer functionality is hidden
in an ARM executable (2facedsrv) installed by 2Faced into
the device’s local storage. We evade detection via static app
analysis by distributing 2facedsrv inside the image resources
of 2Faced, though the executable could also be retrieved re-
motely. The native process is only 14 lines of code, and its



Table 1: Summary of permissions requested by sample mobile malware.
Permissions Loudmouth 2Faced Thor
Network access � � �
Coarse location � �
GPS location �
Read contacts �
Write contacts �
Call phone �

extraction and invocation from 2Faced requires fewer than
100 lines of code in the Java-based portion of 2Faced. This
delivery method has recently been observed in the iKee.B
iPhone botnet [36].

Native processes are particularly useful to a malware au-
thor. Here, 2facedsrv is able to execute its malicious be-
havior because it is launched with the same permissions as
the Java-based parent 2Faced. Notably, it is not terminated
when the user exits the parent application, but rather runs
until the device reboots. After a reboot, it then restarts
when 2Faced is relaunched. Native ARM processes are not
listed in Android’s default interface, so only the most ob-
servant and expert users might detect it by reviewing a full
process list.

3.2.3 Thor
Our third and final malware instance, Thor, combines:

• Malicious mobile functionality: Bot client.

• Evasive functionality: Persistence across reboot.

• Benign host app: Weather display.

Our last malware sample demonstrates how current desktop
malware can become equally dangerous in mobile environ-
ments. We ported to Android an existing Windows-based
botnet client [25], which we refer to as Thor (1,353 lines of
code). Its original functionality included system command
execution, local file access, and denial-of-service (DoS) at-
tacks using HTTP, UDP, and TCP SYN floods. For safety
reasons, our port removed its propagation functionality and
pointed its command-and-control (C&C) connection to ma-
chines under our control. We added the bot client abilities to
MyWeather [33], an open-source weather application. When
executing, it generates a malicious network footprint con-
taining both C&C and attack traffic.

Unlike the previous malware instances, Thor is installed
as a service separate from MyWeather. The service is im-
mediately active and restarts on every boot of the device. It
first connects to two different predefined IRC channels used
as the main control channel for the botnet. After connect-
ing, Thor waits for one of our commands, including data
exfiltration or DoS.

Mobile bot clients can be used for targeted attacks against
the cellular network. By using the GPS location, the botnet
can target specific base stations or regions for attack. Bot
clients with additional capabilities can potentially augment
these location-based denial-of-service attacks with both voice
and text message traffic, making attacks more effective. In
large numbers, such compromised devices can bring down
large portions of the cellular network [41].

4. ARCHITECTURE
We expect that malware such as that presented in Sec-

tion 3 will ultimately be successfully installed on unwitting

mobile devices regardless of protective measures taken to
prevent their spread. Automated remediation provides op-
portunities to repair infected systems. Here, we describe the
design of our proposed remote repair system, Airmid, which
implements the detection, attribution, and remediation of
malware infections in mobile environments.

4.1 Threat model & design principles
Airmid detects and responds to malicious software exe-

cution on cellular and mobile devices. This is a straight-
forward threat model encompassing two primary types of
attack. First, we expect attackers to successfully install mal-
ware on mobile devices via a variety of usual mechanisms,
such as drive-by downloads or automated propagation, and
by mobile-specific techniques, including distribution on of-
ficial and third-party app marketplaces. Second, attackers
can subvert the correct execution of a benign app by exploit-
ing a security defect in the app’s design or implementation.
Both attacks result in undesirable software execution on the
targeted device, possibly with root access.

In this threat model, the correct functioning of our pro-
posed prototype system then depends on several reasonable
assumptions holding true. We assume the existence of the
following:

• A protected software layer on the device lower than the
level at which the malware executes. Our remediation
design includes on-device software that, if subverted,
will result in unsuccessful recovery. Reasonable candi-
date layers include the kernel (if kernel-level malware
can be prevented) and a hypervisor (if virtualized en-
vironments can be created on a mobile device). For
our prototype implementation, we chose to operate at
the kernel level and harden the kernel appropriately.

• A communication channel between the network and
each device, even if the channel is intermittently con-
nected. Our cooperative design sends signals from net-
work detection systems to software agents on infected
systems, and we expect that these signals will ulti-
mately reach any device. While the permanent ab-
sence of a communication channel prevents remedia-
tion, it likewise prevents malice from spreading beyond
the device.

• Detectable malicious behavior in the network. We
chose to use network-based attack detection rather than
on-device detection to avoid the costly process of tra-
ditional signature-based malware detection. In mobile
environments, the storage, computation, and power
costs of malware detection may be prohibitive, and
moving detection into the network avoids those costs
altogether.

We have no ability to prevent device owners from root-
ing or jailbreaking their devices and then overwriting the



Figure 1: High-level workflow of automated remote repair. (1) An infected device sends or receives malicious
data or voice communication detected by network sensors deployed within a provider’s network. (2) The
provider notifies an Airmid server of the offending traffic. (3) The server transmits an authenticated message
to the protected client-side Airmid software on the infected device. (4) The software attributes the malicious
network traffic to a responsible process, and initiates remediation actions.

Airmid software. Reflashed devices simply will not bene-
fit from automated repair of infections and may simply be
denied service by their provider should malicious traffic be
detected (as currently happens).

4.2 Remote repair
Our remote repair design consists of a server-based infec-

tion detection system and an on-device attribution and re-
mediation system that cooperate to automatically identify
and repair infected devices. The network-based detection
system has a broad view of a provider’s entire network: it
can observe behaviors correlated across multiple devices that
would not be meaningful to any single device, such as a dis-
tributed denial-of-service attack or exfiltrated data all trans-
mitted to the same server. The on-device software permits
detailed, real-time inspection of device state and the ability
to effect changes that restore benign operation. The server
automatically initiates remediation of infected devices via
an authenticated communication channel. Airmid’s cooper-
ative design allows these strengths to be combined: broad
network perspective, detailed device knowledge, and effec-
tive attack response.

During an active infection, Airmid operates as shown in
Figure 1. Depending upon the nature of the specific infec-
tion, an infected device sends and receives malicious data—
such as propagation traffic, command-and-control, and ex-
filtrated data—and generates calls or text messages to high-
cost recipients. A network sensor (which could be using
data sources including DNS blacklists, patterns of known
botnets [23] or other technique) monitoring data and tele-
com networks (1) identifies infected devices based upon these
malicious traffic patterns. It notifies (2) the Airmid server
of the offending devices and traffic, and the server sends
the alerts across the authenticated channel to each infected
device (3). The on-device software receives the alert (4), in-
spects the kernel’s internal state to attribute the malicious
network traffic to a particular process or service, and then
initiates one or more remediation actions against that pro-
cess.

The Airmid on-device software executes from within a

trusted, low layer on the device, such as a hardened kernel
or hypervisor. It has two responsibilities: attribute traffic
to malware, and repair the infection. Attribution is closely
tied to a particular mobile operating system’s implementa-
tion, so we defer the presentation of our Android-specific
analysis to Section 4. Once it has identified software on a
device responsible for whatever network behaviors triggered
the detection system, the software executes repair actions
to disable malicious activity or to remove malware entirely.
We employ the following recovery options, loosely ordered
from least likely to create side-effects to most likely:

• Process termination.

• On-device traffic filtering.

• App update.

• Device update.

• File removal.

• Factory reset.

Decision logic within the software component will select an
action based upon the nature of the offending network traf-
fic, the identity of the attributed process, and that process’
privilege level.

4.3 Authenticated communication
The Airmid software executes attribution and recovery

when signaled by the network intrusion detection system.
The communication channel carrying these signals clearly
must be secured to prevent illicit triggering of operations
that change a device’s state. Airmid authentication aug-
ments initial UMTS authentication in a cellular network,
as shown in Figure 2. It extends the scope of authentica-
tion from the device and network to the Airmid device and
server components, reusing existing network functionality
and secret keys. This has three benefits: first, no additional
secrets need to be shared or updated for this authentica-
tion, as one private key manages both authentication types.
Second, the difficulty of integration into existing networks



Figure 2: Authentication flow: the Airmid authentication extends existing UMTS authentication. The device
and network are mutually authenticated after UMTS authentication and all further traffic is encrypted using
a session key. Airmid extends this authentication process to create a secure channel between the Airmid
server and the process running on the mobile phone.

is reduced, as no additional authentication servers are re-
quired. Third, the approach provides the same guarantees
as existing UMTS authentication and can be upgraded at
the same time if needed.

The final step of UMTS authentication completes the mu-
tual authentication and sets a session key used for encryp-
tion. Airmid extends this authentication process.2 All traf-
fic is encrypted through the existing session key, which guar-
antees a secure connection through the cellular network. At
this point the Mobile Switching Center (MSC) notifies the
Airmid server of the newly authenticated device. The server
then requests UMTS Authentication Vectors (AV) from the
Home Location Register (HLR), the device storing the long-
term credentials for traditional telephony authentication.
These AVs consist of the RAND, XRES and AUTN val-
ues, which are the randomly generated user challenge, ex-
pected user response, and the authentication token respec-
tively. The Airmid server then forwards its values of RAND
and AUTN to the device. Through these values the device
component verifies the server’s knowledge of the secret key

2We encourage readers interested in more information about
UMTS authentication procedures to read either the stan-
dards document [1] or Traynor et al. [41].

and generates its response based on its key. This response
allows the Airmid server to verify that the device is aware of
the secret key, hence, completing mutual authentication. If
the server or device are unable to prove their knowledge of
the shared secret, then the authentication fails. The session
key K(a), which is never sent over the air, is then used for
encryption. Cryptographic algorithms used in UMTS are
similarly used for Airmid authentication and encryption.

5. IMPLEMENTATION
Our prototype implementation is separated into two com-

ponents: passive network analysis and signaling within the
network, and remediation logic that responds to these sig-
nals on the device. To emulate sensors within the cellular
network, we built a packet sniffer that analyzes network traf-
fic from an HTC Dream mobile phone running Android 1.6.
A secure communication channel is established between the
sensor and the kernel when a sensor needs to issue remedia-
tion commands to an infected device, whereupon the device
performs various actions to remediate the infection.



Figure 3: Airmid’s on-device component resides within a hardened Android kernel. In particular, all kernel
extensions are statically linked into the kernel so that its loadable module support can be disabled.

5.1 Network component
Our prototype network component includes both an at-

tack detection system and the Airmid server communicating
with infected devices. For detection, we used Snort, an off-
the-shelf network intrusion detection system. We wrote our
Airmid server in Python using the packet creation library
Scapy [6]. As a mobile device communicates with foreign
network assets, Snort analyzes incoming and outgoing traf-
fic. When it flags traffic as malicious, it notifies the Airmid
server which subsequently initiates authenticated two-way
communication with the suspect device. It sends to the de-
vice a remediation message that provides the device’s port
number from the attack alert. This information is used by
the Airmid on-device software to determine which processes
and applications are acting maliciously. The device’s soft-
ware decides which remediation strategies are appropriate
and relays how the infection was remediated to the sensor.

5.2 Device component
Our threat model considers a device’s kernel to be the

trusted computing base, so provenance and remediation ac-
tions run in kernel-mode. We modified the Linux kernel
version 2.6.29 to include our prototype implementation. We
hardened the kernel against direct compromise by disabling
its ability to dynamically load kernel modules. Our mod-
ifications required approximately 1,200 lines of C. When
the device is booted, a separate kernel thread is launched
to perform infection provenance and remediation. When a
message is received from an authenticated Airmid server,
the device: determines provenance of the offending traffic,
determines and enacts a remediation strategy, and relays
the device’s decision to the network sensor. We now discuss
the implementation of the provenance mechanism that lever-
ages Android’s existing application sandboxing techniques
as well as implementation details for the remediation strate-
gies. Figure 3 offers a high-level overview of this component.

5.2.1 Infection provenance
When a user installs an application on a mobile device,

Android generates a unique Linux user ID that persists for
the application’s lifetime [4]. All files owned by the appli-

cation are also assigned this user ID. Given a user ID, we
can find the Android package file (.apk) of the application
as well as configuration files and native binaries dropped by
the application both at install-time and runtime.

When a device receives a remediation signal from a net-
work sensor, the device crawls two kernel data structures:
inet_hashinfo, which contains port usage information, and
task_struct, which contains process information. While
inet_hashinfo contains port information only for TCP con-
nections, the technique itself is general and could be ex-
tended to perform provenance on UDP-based traffic. The
port number sent to the device by the network sensor is
mapped to an open socket by iterating through inet_hashinfo.
We then look for this socket in the list of task_structs to
find the process that holds said socket. A visualization of
this process is shown in Figure 4. From the task_struct,
we then extract the user ID, u, of the malicious process and
crawl the disk to find all files owned by this application.

5.2.2 Remediation strategies
Depending on the value of u, the user ID identified in the

previous step, the Airmid software initiates one or more of
the following repair actions: creation of kernel-protected lo-
cal firewall rules to block the malicious traffic, termination
of processes running under u, removal of the application
package (apk) owned by u, and removal of all files owned
by u. If u < 10000, then it is a system user ID correspond-
ing to a core service whose benign functionality may have
been subverted. Airmid will only block the malicious traffic
by creating appropriate firewall rules. If u ≥ 10000, then
u is an application user ID. Airmid will terminate all pro-
cesses running with ID u and will remove the application
package owned by u. We identify applications for removal
by parsing the file containing all installed application pack-
ages and the user IDs given to them Android at install-time
(/data/system/packages.xml). Finally, Airmid scans the
list of running processes to see if any native ARM processes
are executing with user ID u. If so, it scans the full storage
of the device to purge all files owned by u.

To firewall malicious traffic, the client interfaces with the
Android kernel’s netfilter [35] hooks to provide lightweight
packet filtering. We add rules that prohibit traffic destined



Figure 4: Traversal of data structures to perform malicious traffic provenance of the mobile device.

Table 2: Average Command Execution Time (95%
confidence interval)

Command Mean (μs) C.I. (μs)
Factory Reset 1504 ± 38
Device Status (Process List) 2991 ± 48
Process Termination 6537 ± 1423
File Removal 6115 ± 31
Device-Side Filtering Rule 7149 ± 826
Application Removal 9174 ± 1123

for the IP addresses actively in use by processes owned by
u. Additional provenance checks determine all active IP ad-
dresses if more than one process is running under u. To pre-
vent observation or alteration of rules from userland, Airmid
does not register its rules with ip_tables but rather main-
tains its own shadow ip_tables data structure.

5.3 Performance evaluation
We characterize the overheads associated with the Airmid

architecture through a performance analysis. We measured
each operation 100 times and provide 95% confidence inter-
vals.

We measured each of the operations discussed in Sec-
tion 4.2 and recorded very modest overheads for all proposed
functions. Table 2 summarizes our experiments. While
seemingly surprising, the factory reset function takes the
least time with an average of 1504 μs (±38μs). However, a
factory reset can be performed simply by deleting a single
configuration file (data.img). The most expensive opera-
tion, application removal, requires the most time with an
average of 9174 μs (±1123μs). This result was also some-
what expected as it includes the costs of both process ter-
mination and deletion of multiple files.

These results demonstrate the lightweight nature of Air-

mid. Unlike more traditional anti-virus architectures, which
require regular scanning of all of the contents of the phone
(an operation taking on the order of 10s of seconds), our
approach attributes malicious behavior directly to an appli-
cation and allows a targeted response to be implemented.
This makes our approach more conscious of the power con-
straints associated with mobile devices.

6. DISCUSSION
The concept of automating remote infection identification

and local device repair raises natural questions over the or-
ganizational control of remediation and the security of the
required on-device software.

6.1 Airmid control
Airmid provides a powerful architecture to respond to the

growing problem of mobile malware. While we believe that
this approach can help the vast majority of individual users,
we recognize that there exist numerous parties that may not
trust a cellular network provider to perform these opera-
tions. For instance, phones used by members of government
agencies or employees of a rival company may not wish to
outsource their malware remediation. We do not intend Air-
mid to be a “one size fits all” solution and discuss how such
systems can be deployed in reality.

Our architecture is general enough such that the functions
described in this paper can be implemented by a separate en-
tity or cloud service. Many companies already require data
traffic from their corporate phones to be proxied via VPN
through their network.3 Such entities could simply deploy

3We note that the Blackberry BES provides VPN service
and offers to limit the applications allowed to run on mo-
bile devices. Our architecture is more flexible and does not
derive its protections from the explicit specification of ap-



an Airmid-speaking service in their network and then con-
figure their devices (e.g., by changing keying material on
the device) to only accept commands from that server. In-
dividuals not wanting such control could similarly alert the
provider, perhaps through an out-of-band resource such as a
web interface or when the device/service plan is purchased.
We leave the debate over opt-in/opt-out strategies to the
policy community, but note that a range of economic incen-
tives could be provided to sway customers towards the use
of Airmid regardless of the chosen approach.

Airmid does not tie a device’s security to arbitrary cel-
lular providers. For instance, when traveling abroad, mo-
bile phones running the modified Airmid kernel would be
able to receive roaming telephony and data service as nor-
mal without providing their “visited” network with control
over Airmid’s functionality. We believe that this approach
is necessary as laws potentially protecting customers from
abuse by their provider domestically are unlikely to apply
internationally. While this means that misbehaving roaming
devices are more likely to simply be denied service by their
visited network (as is currently the practice), we believe that
this tradeoff is ultimately more secure.

Lastly, the guarantees provided by Airmid are only as
good as the detection mechanisms used by the network sen-
sor. For instance, policies enacted against traffic from or
destined for known malicious domains or bots are likely to
be effective. However, a system relying on an IDS reporting
any “anomalous” traffic will produce false positives. Accord-
ingly, these mechanisms must be selected carefully. We leave
this selection to future work, where we intend to observe and
further characterize the network traffic of large amounts of
mobile malware.

6.2 Device hardening
The correct operation of our architecture requires that the

device is able to protect the Airmid software. We chose to
do this in our proof of concept implementation by harden-
ing the stock Android Linux kernel through steps including
disabling dynamic loading of kernel modules. Given that
a significant proportion of traditional malware abuses this
mechanism and that mobile devices generally do not take
advantage of this capability, we believe that this is a first
strong step in preventing kernel compromise. However, we
recognize that deploying Airmid on real systems may require
additional hardening. An increasingly popular approach is
the use of virtualization. While a number of virtualization
solutions are evolving for mobile devices [29], we believe that
such mechanisms are relatively expensive and may them-
selves not yet be ready for widespread deployment. As our
threat model indicates, it is necessary to identify a protec-
tion layer with reasonable tradeoffs in which Airmid can
run. We believe that our approach is reasonable given cur-
rent mechanisms, but note that best practices for device
hardening are still an active research area.

7. CONCLUSION
As mobile devices begin to see an increasing volume of

malicious applications, the ability of application markets to
identify and remove such applications in a timely manner
will be lost. We respond to this problem by developing
Airmid, an automated system for the remote remediation

plications.

of mobile malware. Upon the detection of malicious traf-
fic, the cellular network interacts directly with the source
device to identify the provenance of that traffic. The de-
vice can then perform remediation ranging from filtering
the offending traffic to uninstalling the application. We
then demonstrate that Airmid has very low overhead. In
so doing, we demonstrate that the detection and removal of
malicious applications can scalably be outsourced to cellu-
lar providers and applications markets, ultimately providing
faster responses to infection.
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