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Origin of multiplexing capabilities of multifrequency magnetic ratchets
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Through a combination of theory, numerical simulation, and experiment, we investigate the motion of magnetic
beads on the surface of a magnetic ratchet driven by multifrequency fields. Here, we focus on the influence of
static forcing terms, which were not included in previous models, and we derive analytical models that show why
the static forcing terms are responsible for inducing beads of two different sizes to move in opposite directions
on the same ratchet potential. We begin our analysis with the simplest possible forcing model, and we show that
the main effect of the static forcing terms is to delay the phase of flux reversal. From there, we move onto the
full analysis and theoretically derive the phase range for which opposite motion among two different bead types
is achieved. Based on these theoretical results, we conduct experimental investigations that explore the effects
of bead size and static forcing coefficient on the direction of bead motion, which confirm most of the expected
trends. These results shed light both on past experimental work both by ourselves and others, as well as elucidate
the more general multiplexing capabilities of ratchets.
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I. INTRODUCTION

Brownian and deterministic ratchets have attracted consid-
erable attention both as physical models for understanding
biological mechanisms (e.g., molecular motors [1,2]) and
as tools for channeling the flow of material, energy, and
information. The term “ratchet” was originally used to describe
the mechanism by which a gear wheel guides another mobile
component via geometric matching of the spatial features in
two opposing surfaces (i.e., gear teeth). In a more general
sense, ratchet can refer to any time-modulated periodic
potential energy landscape that is used to control various
mobile components (particles) ranging from electrons [3],
spins [4-7], atoms [8-10], as well as molecules, colloidal
particles [11-20], and biological materials [15,17,18,20,21].
Time modulation of the landscape is typically accomplished
with an external electric, optical, magnetic, acoustic, thermal,
or fluidic source field and used to rectify one type of motion
(e.g., external field rotation) into another type (e.g., particle
translation) [15]. A rich display of synchronization has been
observed in these systems resulting from the interplay between
the periodicities of the underlying landscape and the various
modes of excitation (monochromatic, multichromatic, impulse
functions, white noise, etc.). Rectified particle flux in spatially
asymmetric landscapes has been observed in systems such
as colloidal and molecular motion inside asymmetric pores
[13,21] and above asymmetric electric potentials [22,23],
electron and atom motion in quantum ratchets [3,8,24], spin
transport in superconductors [7], and many others. The ratchet
effect has also been observed in landscapes that have time
asymmetry instead of space asymmetry, such as spin vortex
motion [4-6] cold atoms in optical ratchets [9,10], colloidal
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particles in optical lattices [11,25], and superparamagnetic
beads in magnetic lattices [14—16,19].

The work presented here was motivated by recent exper-
imental observations [19,26], which have demonstrated the
possibility of using multifrequency driving fields to achieve
differential motion among two different types of superparam-
agnetic beads exposed to the same ratchet potential. In these
experiments, it was shown that the phase difference between
multifrequency driving fields could be used as a tuning
parameter both to control the direction of bead motion and
also drive beads of two different sizes in opposite directions;
however, the reason why this multiplexing capability is
possible was not known at the time. In our first attempt to
explain this experimental behavior, we derived theoretical
models that could predict the phase-modulated flux reversal
as well as the necessary conditions required to achieve open
trajectories vs closed trajectories; however, we were unable
to identify the origin of the particle separation behavior (i.e.,
how the flux reversal depends on the size of the bead and the
phase difference between the two driving frequencies) [26]. We
speculated that this anomalous behavior could have its origins
in the static forcing terms that were omitted in our simplified
theoretical models; however, at that time these speculations
were not grounded with a solid theoretical analysis.

In this article, we conduct a follow-up analysis which
identifies that the role of the static forcing terms is to delay the
phase at which beads experience flux reversal, and we further
analyze how the flux reversal depends on the bead size, thereby
opening up new insights into the design of more sensitive
and multiplexed bead separation systems. In addition, we
present experimental results which show the correct qualitative
trends. There are some experimental observations that cannot
be explained by our analytical model, such as the presence
of a zero-velocity regime, since our model is based on a
perturbation analysis. In numerical simulations, on the other
hand, a zero-velocity region was found only for magnetic
substrates that had spatial asymmetry in the magnetic pole

©2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.85.041407

OUYANG, TAHIR, LICHTENWALNER, AND YELLEN

distribution of the substrate. The main conclusion of our work
is that static forcing terms are a viable explanation for the origin
of differential motion among different bead types on the same
ratchet. Thus, through the combination of theory, simulation,
and experiment we show that it is possible to enable future
improvements of magnetic separation systems.

The rest of this article is organized as follows: In Sec. II,
we derive several theoretical models of increasing complexity,
starting with the simplest model and moving to the most
realistic one. In Sec. III, we present analytical and numerical
simulation results which reveal the influence of the static
forcing terms in delaying the phase of flux reversal. We
describe the experimental methods in Sec. IV, and present the
experimental results in Sec. V which show general agreement
with the trends predicted by theory. We conclude with a short
summary in Sec. VI and identify open questions.

II. THEORETICAL MODEL

Though some of this analysis has been presented in our
prior works [26], for the sake of completeness we summarize
the key points that govern the equations of motion of a su-
perparamagnetic bead in a time-modulated periodic potential
energy landscape. Through this discussion, we will highlight
the origin of both the dynamic and static forcing terms, and
show how their relative magnitude can be modulated.

Our experimental system consists of a square lattice of
identical circular micromagnets with diameter d,, and period
d, which are uniformly magnetized along the x direction.
Square array patterns are chosen primarily for experimental
convenience, since it allows the direction of magnetization to
be controlled more easily within the two-dimensional (2D)
plane. The most accurate description of the substrate pole
distribution would consist of treating each uniformly mag-
netized micromagnet as having equivalent magnetic charges
that vary sinusoidally around the micromagnet’s perimeter
according to o= M -t = |M]|cos 6, where o is the magnetic
pole density, M is the remanent magnetization, 7 is the surface
normal of thin magnetic disks, and 6 is the angle relative to the
positive x direction. For simplification, we can approximate
each micromagnet as having its magnetic pole distribution
concentrated at its poles. Additionally, since we apply our
external fields along the x and z directions, the symmetry
along the y direction allows us to further simplify this system,
in which case we ignore the charge density variation along
the y direction. Conceptually, this charge distribution would
be consistent with an array of infinitely long magnetic bars
that are magnetized along their minor axes, as shown in
Fig. 1. Although this pole distribution is not exactly the
same as a square lattice of circular micromagnets, it allows
for analytically tractable solutions to be obtained in one
dimension.

When represented in Fourier space, the line charge array
has a pole distribution of

ME) =240 ) cos(ngy), 1)

n=odd

where we use the shorthand notation &, = 2wx/d, d/d,, = 2
in which the magnet diameter is half of the period length,
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FIG. 1. (Color online) Schematic of the potential energy land-
scape of the bead exposed to a periodic array of micromagnets
(approximated as a 1D array of infinitely long bar magnets) and
external time-varying fields applied along the x and z directions.
The bead is shown as a circle. The magnetization direction of the
micromagnets is along the short axis.

and Ao is the magnetic line pole strength. From Eq. (1),
the magnetic scalar potential of the substrate can be solved
through separation of variables in Cartesian coordinates, and
the magnetic field distribution is determined by taking the
negative gradient of the scalar potential, leading to

Hap = —2o Y e"{% sin(n&,) + 2 cosné)}l.  (2)
n=odd

In addition to the static fields of the substrate, we also apply
time-varying external driving fields, given by

He = Hext{% sin(w,1) + 2 sin(w.1 + ¢)}, A3)

where w, and w, are the external driving frequencies along
the x and z directions, respectively, and ¢ is the ¢+ = 0 phase
difference between the two driving fields.

Superparamagnetic beads exposed to this potential energy
landscape are modeled as point dipoles, which is a reasonable
approximation when the field does not vary strongly across the
particle’s volume. The dipole moment of the bead is given by

Hp — Ky

VH = 7VH, )
Mp+ 20y

m=3
where V is the bead’s volume, H is the total field at the bead’s
center, and p, and uy are the magnetic permeabilities of
the bead and fluid, respectively. Since the surrounding fluid is
water, we assume [y ~ [io, Whereas the bead’s permeability is
givenby 11, = wo(1 + x) and yx is the magnetic susceptibility,
which depends on the bead’s material properties. Using
these assumptions, the force on a point dipole exposed to
the micromagnetic ratchet and external time-varying fields
is determined to be the sum of terms that are space-time
dependent, and terms that are only spatially dependent:

F(&ct) = ot - VY Hi = Fyeet) + Fo(E). (5

The space-time-dependent terms arise from the external
field’s contribution to magnetizing the bead, whereas the
purely space-dependent terms arise due to the substrate’s
contribution both to magnetizing the bead and providing the
force through its field gradient.
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The equations of motion for micrometer-sized colloidal
particles (low Reynold’s number) can be approximated by
overdamped first order dynamics, in which the friction

£, = wp [ Z ne= " {cos(né,) sin(wy 1) — sin(n&,) sin(w.r + @)} +

n=odd

where @y = 2o X Ao Hext (271 8)? /9n is a characteristic fre-
quency that depends on the external system and bead prop-
erties, and 8 = a/d represents the ratio of the bead radius,
a, relative to the lattice period, d. Here, we assume that the
bead’s vertical position remains one bead radius above the
substrate, since the force in the z direction is usually downward
(attractive toward the substrate) and thus the z forces can be
omitted, leading to a one-dimensional (1D) forcing model. In
the following analysis we replace &, with & since we are only
concerned with the motion in one dimension. Equation (6)
indicates that the relative strength of the static forcing terms
(time independent) can be modulated by controlling the ratio
of the substrate magnetization relative to the external field,
which is explored here numerically and experimentally.

III. THEORETICAL RESULTS

Due to the complexity of Eq. (6), we begin by analyzing
several limiting cases, and then build up to the complete
analysis. In the following discussion, we will analyze the
flux reversal properties as a function of the phase difference,
static forcing terms, bead properties, and external driving
frequencies.

Case I. Ay < Hex. This approximation implies that the
static forcing terms are negligible and here we start by
considering only the first dynamic term in Eq. (6), leading
to the following simplified dynamic model:

é = wé{cos(.f) sin(wyt) — sin(§) sin(w,t + @)}, (7

where o = wye *"#. When the external driving frequencies
w, and w, are much smaller than the characteristic frequency
wy, the bead’s motion approaches the adiabatic limit, and a
direct analytical relationship can be obtained for the bead’s
velocity by setting Eq. (7) to equal zero [26], leading to
tan(g) = el (®)
sin(w,t + @)
A comparison of the analytical result (8) with numerical sim-
ulations of Eq. (7) using high resolution finite time difference
technique shows the validity of the adiabatic assumption (see
Fig. 2). In the example simulation of Fig. 2, the driving
frequencies are assumed to be an odd integer ratio (in this
case, w, = 7 and w, = 7 /3), which is a necessary condition
for an open trajectory [26]. We also show that the direction of
motion switches at phases that are integer multiples of 7 /3.
The first question we address is why flux reversal occurs
when the initial phase is an integer multiple of n7w, /w,. To
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coefficient is assumed to be Stoke’s drag on a sphere.
Using dimensionless spatial coordinates, the velocity is given
by

D D (= myen R sin(nsx)cos(msx)]

X =odd m=odd

(6)

answer this question, we first look at the system properties
when ¢ # nww, /w,. Letus consider the simulation conditions
provided in Fig. 2. Since Eq. (8) is a periodic function,
we can restrict our attention to one mutual time period,
illustrated in Figs. 2(c)-2(e), from which it is clear there are
three equal-length time segments of duration 7 = 7 /w, . The
function is single valued everywhere except at the end points
of each time segment, t = nT, where £ can assume the values
of either 0 or 7. By inspection of Fig. 2(d) (where ¢ < 7/3)it
is clear that the first two segments are closed (meaning that the
bead returns to its original position after the time interval). The
closed intervals occur for t € 0...T,and t € T ...2T. The
last segment is an open monotonically increasing trajectory,
occurring in the interval of ¢+ € 2T ...3T. This behavior can
also be deduced mathematically from Eq. (8) by analyzing the
solutions for £ in the limits of t = O*,T~,T+,2T~,2T*,3T,
where the superscripts (+,—) indicate that limits are taken
from the right or left side, respectively. By contrast, an
inspection of Fig. 2(d) (where ¢ > m/3) reveals that the first
and third intervals are closed, but the second interval is open
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FIG. 2. (Color online) The comparison of numerical simulations
(black dashed lines) with analytically computed trajectories (red solid
lines) from Eq. (8) are shown to be in good agreement using initial
phase differences of (a) ¢ = 0.3 and (b) ¢ = 0.47. The direction of
motion switches at ¢ = /3. Parts (c) and (d) depict the bead motion
of (a) and (b), respectively, over one mutual time period. Part (e)
shows the bead motion is a closed trajectory at the phase transition
point of ¢ = 7/3.
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and monotonically decreasing. The direction of motion as a
function of the initial phase can be determined by taking the
time derivative of Eq. (8), yielding

Wy cos(wyt) sin(w,t + @) — w, sin(w,t) cos(w,t + @)

§= sin?(w, t) + sin?(w,t + @)

)

7 cos(2tm)sin2T 7w /3 + @) — (7/3) sin(2T ) cosRTw /3 + ¢) > 0 for ¢ < m/3,
7 cos(1tm)sin(1T7 /3 + @) — (7r/3) sin(1T ) cos(1Tw /3 + ¢) <0 for ¢ > m/3,

which shows the correct direction of motion for a given
initial phase. This analysis is also true for any time point
within the interval, which reveals that the open segments are
monotonically increasing (or decreasing). When ¢ = 7 /3, on
the other hand, we observe the open and closed time segments
merge together at a critical point satisfying tan(§) = 0/0, and
in this case the bead’s composite trajectory is now closed [see
Fig. 2(e)]. This analysis can be conducted for the other initial
phases, where it is observed that the position of the open
segment and its direction of motion will alternate with each
increasing phase multiple of /3. Furthermore, this analysis
can be generalized to other frequency ratios.

We note that the above analysis is only applicable in
the adiabatic limit (i.e., when the characteristic frequency is
sufficiently large or the driving frequencies are sufficiently
small) such that the bead always remains at a local potential
energy minima. In order to characterize the deviation from the
adiabatic limit, we plot the numerically calculated trajectory
using the following driving frequencies: (i) w, = 0.01wy, (ii)
wy = 0.1wj, and (iii)) w, = wj, from which it is clear that
higher driving frequencies lead to an overall time delay in the
transition from the closed segment to the open segment, or
vice versa (Fig. 3), however the general direction of motion
does not change.

Case II. Ao/ Hexe = O(1). Returning to our original equa-
tion, we now include the first static forcing term leading to the
result

§ = wy{cos(§) sin(w, 1) — sin(§) sin(w.1 + ¢) + y sin(26)},
(1)

where y = 2¢ P )/H. is the static forcing coefficient.
Here, our goal is to employ a combination of numerical
simulations and perturbation analysis to explore the effect
of the static forcing coefficient y on the bead’s trajectory.
Using similar parameters as in case I (i.e., v, = 7w, w, = 7 /3,
¢ = 0.47), we present numerical simulations that reveal how
the bead’s trajectory changes as a function of y, shown in
Fig. 4. For low values y < 0.3, the shape of the trajectory
changes but the overall direction of motion remains the same
(solid black lines in Fig. 4). Conversely, for high value y > 0.3,
the open and closed segments switch locations, and the overall
bead trajectory is now in the opposite direction [blue (dashed)
lines in Fig. 4]. We also observe that the open segment is no
longer monotonically increasing. This phenomenon indicates
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As a simplifying example, we take the simulation con-
ditions of Fig. 2 (o, = 7, w, = 7 /3), and analyze the sign
of the numerator of Eq. (9) during the open segment for
the ¢ < /3 and ¢ > m/3 phases, respectively. Here, we
analyze just one time point near the left side of the open
segment:

(10)

that the presence of a static forcing term can conceivably be
used to induce two differential motions in two bead types (i.e.,
those that experience different static forcing terms on the same
ratchet potential).

A qualitative explanation of this flux reversal behavior can
be obtained by inspection of the time-varying potential energy
landscape, shown in Fig. 5. Since adiabatic conditions are
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FIG. 3. (Color online) The black (solid) lines represent the
numerically simulated trajectory for w, = 0.01w}, oy = 0.1, and
o, = wj, and is compared against the red (dashed) lines which
represent the analytical solutions for the conditions (a) ¢ < 7/3,
(b)p =m/3,and (c) ¢ > /3.
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FIG. 4. (Color online) Numerically simulated bead trajectory as
a function of increasing y. The black (solid) lines show that for
low values of y the bead moves in the same direction as the y =
0 simulations of Fig. 3, which is depicted as the red (thicker gray)
line. The blue (dashed) lines show that for high values of y, the open
and closed segments switch and the bead now moves in an opposite
direction, thereby demonstrating the influence of static forcing terms
on the phase-dependent flux reversal.

assumed, the bead remains trapped at the local potential energy
minima (indicated by the blue or black circles in Fig. 5).
Clearly, the bead with a large static forcing term (y = 0.5)
remains trapped in a local potential energy minima at time ¢ =
1.67 /w,, which prevents it from escaping to the closest global
energy minimum unlike the other bead with a smaller static
forcing term (y = 0.2). The local potential energy minima
merges with a different global energy minima at a later time
point, causing the bead with a larger static forcing term to move
in the opposite direction of the bead with the smaller static
forcing term. This effect is clearly visualized in the animation
provided in the Supplemental Material [27], which is presented
for ¢ = 0.47. In contrast, we also present Supplemental
Material [27] (with ¢ = 0.37 and ¢ = 0.57, respectively),
in which case all the beads move in the same direction.

Following the same procedure as in case I, under adiabatic
assumptions we can derive an analytical relationship between
the static forcing terms and the phase-induced flux reversal
by setting Eq. (11) to equal zero, leading to the following
expression:

cos(&) sin(w, 1) — sin(§) sin(w,t 4+ ¢) + y sin(2€) = 0. (12)

Due to the strong nonlinearity of Eq. (12), it is not possible
to derive a complete solution; however, perturbation analysis
can be used to analyze the system properties near the critical
point where flux reversal takes place (i.e.,t = 2,¢ = 7/3,& =
7 /2). Using the following change of variables, ¢ = /3 +
¢, t =241, and &€ = &)+ ¢, where ¢, 7, and ¢ are small
perturbations that can be either positive or negative, we find
after simplification

cos(&o + &) sin(w ) + sin(§y + ) sin <g + 9")

+ y sin(2&; + 2¢) = 0. (13)
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FIG. 5. (Color online) Bead motion in a time-varying potential
energy landscape. The blue (dashed) lines where y = 0.2 and the black
(solid) lines where y = 0.5, depict the potential energy landscape for
the time points: (a) t = 1.6 /w,, (b)t = 1.87 /w,,and (¢c) t =27 /w,,
using the simulation parameters w, = 7w, w, = /3, ¢ = 0.47, and
wy = 50w,. The blue (open) circle and the black (closed) circle
represent the numerically simulated locations of the y = 0.5and y =
0.2 beads, respectively, at these three time points. The local potential
energy barrier traps the bead with y = 0.5 at time point (b) and causes
it to move in the opposite direction of the bead with y = 0.2.

The position § = /2 is analyzed because the bead
must eventually transition through this point during the open
segment, and the slope at this point indicates the direction
of overall motion. Using the small angle approximation, we
derive the following relationship:

T 4
&= T+<p Qy +mt) ", (14)

which indicates that the bead reaches the position §y = /2
at a delayed time of T = —3¢ /7. When we analyze the slope
near this critical time, we find that

de m 1

— = (15)

dt 32y —3¢)
which reveals that the slope will change based on the value
of y. When y < 3¢/2, the direction of motion is positive,
whereas when y > 3¢/2, the direction of motion is negative.
Thus, y = 3¢/2 represents a direct analytical relationship
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¢

FIG. 6. (Color online) A separation window is presented to
compare the direction of motion of a bead with and without static
forcing terms. The red (shaded) regions indicate the phase and forcing
conditions in which a bead having static terms moves in the opposite
direction of one that does not. The white (unshaded) regions represent
the conditions in which both beads move in the same direction. The
black (solid) line is the analytically calculated separation boundary
derived from Eq. (15).

of a bifurcation in the direction of the bead’s motion. In
Fig. 6, we provide a numerically computed phase diagram
that compares the two cases (with and without static forcing
terms) as a function of the phase ¢. The red (shaded) regions
depict the conditions in which the bead with static forcing
terms moves in the opposite direction of one with no static
forcing terms, whereas in the white (unshaded) regions both
beads (those with vs without static forcing terms) move in
the same direction. Additionally, we show that our analytical
result y = 3¢/2 adequately predicts the boundary of the
separation window, particularly for low values of y, where
the perturbation analysis is more accurate.

Case Ill. Full analysis. We now extend to the full analysis
with the goal of determining how the phase-induced flux
reversal depends on the relative bead size, 8, and thereby
determine the experimental conditions for which two different
bead types can move in opposite directions on the same ratchet
potential. From Eq. (6) it is clear that 8 has the effect of
changing the relative magnitude of the higher order forcing
terms (both dynamic and static terms). For smaller beads
(i.e., smaller B), the higher order terms decay less slowly
than for the larger beads, requiring the inclusion of more
terms to accurately model the substrate potential and forces
on the bead. Additionally, the ratio of the static terms will
also change relative to the dynamic terms, since the first static
term is proportional to e 78, whereas the first dynamic term
is proportional to e=>™#. Thus, the static forcing terms are
expected to have a more pronounced effect on small beads
(i.e., small B).

Using the assumption of an adiabatic limit by setting Eq. (6)
to equal zero, we use the same perturbation analysis as in case I1
to solve for the location of the bead near the critical switching
point. The result yields

_ A(mt/3+ ¢)

) 16
ntB+C (16)
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FIG. 7. (Color online) A size-dependent separation phase dia-
gram is presented for Ao/ Hex = 1. The red (shaded) regions indicate
the conditions in which a bead will move in the opposite direction
of an infinitely large bead (i.e., one that has no static forcing terms),
whereas in the white (unshaded) regions the two beads will move
in the same direction. The shaded regions with 8 < 0.1 represent
beads which are too small to move across the substrate and instead
exhibit closed trajectories with zero time average velocity. An inset is
presented to show the velocity vs phase behavior of the two 2.7 and
4.5 um beads, which were tested experimentally, and are presented
as dotted and dashed lines, respectively. The black (solid) lines are
analytically derived separation boundaries of Eq. (19).

where A, B, and C are constants that depend on the bead size,
B, given by

A=Y Y Qj+DfG.B),

(17a)
j=0
B=) (=1 Qj+1D’f(.B) (17b)
j=0
P N DN SO N Y IGNY:)
C=g_° g( DG+ T (470

where f (j,B) = cosh(4jrB) — sinh (47 B) and g (j,n,B) =
cosh[8(n — j)mB] —sinh [8 (n — j) wP].

Like in case II, the bead reaches the position & = /2
at a delayed time of t = —3¢ /. Thus, when we analyze the
slope near this critical time point, we find that the bead velocity
corresponds to the following relationship:

de Ag
— = (18)
dt C—3¢B

We thus conclude that the bifurcation defining the boundary
of the separation window is given by

C
=—. 19
=3z 19)

Figure 7 presents the separation window for a range of bead
sizes (here denoted by different values of 8) compared with
a fictitious infinitely large bead whose static forcing terms are
negligibly small. The analytical and numerical solutions are in
strong agreement. The inserted figure presents a comparison of
the velocities of a 2.7 um bead vs a 4.5 um bead [denoted by
black (dotted) and black (dashed) lines, respectively], which
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are studied experimentally in Sec. IV. The results indicate that
the prior experimental observations of opposite motion be-
tween two different bead types may have its origin in the influ-
ence of purely static forcing terms in the equations of motion.

IV. EXPERIMENTAL METHODS

A. Substrate fabrication

To create a permanent magnetization within the array, we
developed high coercivity magnetic substrates, which are less
susceptible to remagnetization in fields above 20 Oe than those
used in our prior works. The fabricated magnetic thin film
consists of a multilayer stack of 20 alternating layers of 9 A
Pt and 8 A Co, with a 50 A Ti base layer to improve adhesion,
which is shown to resist remagnetization in external fields
exceeding 100 Oe [28] The magnetic lattice was fabricated
by conventional photolithographic lift-off technique using thin
film deposition via molecular beam epitaxy (MBE) at the MBE
Thin Film Deposition Service Center at North Carolina State
University. In all experiments, the diameter of the magnets
were dy = 5.0 um with lattice period d = 8.0 um.

B. Magnetic field control

The external field apparatus used to apply the multi-
frequency fields is described in our prior works [14,15].
Briefly, two 6-cm-diameter solenoid coils with iron cores were
arranged opposite of the chip to provide external uniform field
along the x direction. An additional identical solenoid was
placed below the chip to provide external uniform field along
the z direction. An image of our experimental apparatus is
provided in Fig. 8. In these experiments, the external magnetic
fields were applied by passing electrical current through
the solenoids. The fields were measured with a handheld
Gaussmeter (Mz-201, Ming Zhe Tech) and we verified that
the field variation was only a few percent across the chip. In
all experiments, we applied a fixed frequency of 0.5 Hz (where

FIG. 8. (Color online) Experimental setup. (a) The sample is
placed beneath an objective and two solenoid coils are positioned
on either side of the chip to provide uniform fields in the x direction.
An additional vertically oriented solenoid placed below the sample
provides uniform field in the z direction. Image (b) depicts the
microarray substrate on a glass slide. Image (c) depicts a microscopy
image of a mixed suspension of 2.7 and 4.5 um superparamagnetic
beads resting on the microarray. The scale bar is 40 pum.
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w, = 21 f,) to the horizontal coils and a fixed frequency of
1.5 Hz (where w, = 2 f) to the vertical coil. The fields were
controlled with a dual axis current controller (Cyberresearch
card) and programmed with LABVIEW.

C. Experimental system

Magnetic beads with a mean diameter of 2.7 (Dynabeads
M-270) and 4.5 (um) (Dynabeads M-450) were purchased
from Invitrogen Inc. The bead suspension is confined by
a Secure-Seal spacer (9 mm in diameter and 0.12 mm in
depth, Invitrogen Inc.) that was attached to the prepatterned
magnetic substrate. All the experiments are performed at room
temperature and the stock bead solution was diluted 100 fold
with deionized water, having a viscosity of = 0.01 P.

D. Video tracking and trajectory analysis

A LEICA DM LM microscope (Leica Microsystems) with
40x objective in bright field mode was used to image the
experimental system. The experiments were recorded with
a QIMAGING Retiga 2000R fast camera, and SimplePCI
software (QCAPTURE PRO) was employed to record the tra-
jectory of multiple beads simultaneously. IMAGE-PRO software
(MediaCybernetics) was used for the postprocessing of the
bead trajectories. We use a frame rate of five frames per second
in order to capture the long-time average of bead trajectories
over a large area. This was sufficient for capturing the details
of the bead’s motion, which had relatively small velocities,
Vo = Fo/6mrna ~ 10 um/s. Videos of the bead trajectories
were taken at different phases and different external field
amplitudes. From the videos, we analyzed the mean velocity
and standard deviation of all the beads in each video. Beads
that were smoothly moving to the right or left were recorded as
having a dimensionless velocity of 41 and —1, respectively.
Near the phase-modulated transition point, the beads velocities
were averaged and the results are provided in Fig. 9.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 9 presents the time-averaged velocity of the beads
as a function of the phase difference between the two driving
fields, and for the three field strengths, 25, 50, and 100 Oe,
respectively. The external field strength has the effect of
change of the ratio Ao/ Hey, thereby allowing the static forcing
coefficients to be adjusted. Figure 9(a) depicts the data for
the 2.7 um beads, and Fig. 9(b) for the 4.5 um beads. The
experiments revealed that the beads experienced flux reversal
near the predicted phases of 7 /3, 27 /3, and 7. Reference
lines at the phases of 60° and 120° are provided to highlight
the delay in the phase shift of flux reversal. We observed
that the phase delay of flux reversal increases as the field
strength decreases, which is qualitatively consistent with the
theoretical predictions on the influence of static forcing terms.
Additionally, we verified that the phase delay was larger for
the smaller beads, which again corresponds to the predicted
theoretical trends. For example, the centers of the zero velocity
for the 2.7 um beads were (d) ¢ = 5°, 65°, and 124.5° for
He = 100 Oe; (e) ¢ =9°,69°, and 129.5°, for Hey, = 50 Oe;
and (f) ¢ =12.5°, 72°, and 132" for Heq = 25 Oe. The
center of the zero-velocity region for the 4.5 um beads was

041407-7



OUYANG, TAHIR, LICHTENWALNER, AND YELLEN

(a)
1 || il

; | 100 Oe

04 - IJI
A | |

17 } s00e [T

0 jIJ‘ |1 !ll

s |

ettt

i | | 250e || ]

0 | T

Hd S B

0 20 40 60 80 100 120 140 160 180
(b)
R 1000e |
ol | ]
| 1 I

- ! '

1 E————
o] L soe |

i | I

_1.iJ= L4

1 Al !

oLl [ 4 || 250e
-1 i _\_:.—_il:

0 20 40 60 80 100 120 140 160 180
¢ (degree)

PHYSICAL REVIEW E 85, 041407 (2012)

— phase shift

0

y

60 62 64 66 68 70 72 74 76 78 80
(@)

" er— — phase shift

0

AL

1

0

-1

60 62 64 66 68 70 72 74 76 78 80
¢ (degree)

FIG. 9. (Color online) Experimental data is presented for the velocity of (a) 2.7 and (b) 4.5 um beads as a function of the external driving
field strength. Parts (c) and (d) present a magnified view of (a) and (b), respectively, near the phase m /3. The blue (solid gray) line is the
simulated curve of a 2D point pole and the black (dotted) line is the analytical curve derived from the perturbation analysis. The arrows in parts
(c) and (d) are provided to indicate the phase center of the zero-velocity region. These results show a minor shift in the phase center between
the two bead types, and a more pronounced shift as a function of the driving field strength.

(a) ¢ =4°,64.5°, and 123.5° for Hexy = 100 Oe, (b) ¢ = 8.5°,
68.5°, and 128.5° for He = 50 Oe, and (c) ¢ = 11°, 71.5°,
and 131°, for Hey = 25 Oe.

These results indicate that there is a region of approximately
1° where the two beads (2.7 and 4.5 pum beads, respec-
tively) will experience differential motion. The Supplemental
Material [27] shows the two cases in which either the big
bead moves at the expense of the small bead or vice versa.
The experimental window of separation was smaller than that
predicted by theory in part due to the empirical discovery
of a zero-velocity region that was not predicted in our
perturbation analysis. The lack of agreement between theory
and experiment could have a number of origins, including (1)
oversimplification of the system as a 1D array of line poles; (2)
the negligence of thermal motion, which may have prevented
the beads from remaining in a local energy minima; or (3)
oversimplification of the dipole forcing equation, since the
beads are not in a region of uniform magnetic field where the
dipole assumption is most accurate.

In order to explore these possible causes, we numerically
simulated the motion of beads across several types of two-
dimensional magnetic substrates, including (i) 2D array of
point poles, (ii) 2D array of square magnets, and (iii) 2D array
of circular magnets. First, we simulated the bead motion by
including thermal fluctuations; however, since the potential

energy of the bead is many orders of magnitude larger than
kg T, the thermal effects were negligible and did not explain
the origin of the zero-velocity region. We found that regardless
of the initial position, the beads moved toward the centerline
of the magnets (y = 0), which provides justification for the
simplified 1D line pole model.

Interestingly, a zero-velocity region was found in numerical
simulations only when the substrate magnetization was spa-
tially asymmetric. For example, no zero-velocity region was
found for substrates (i) and (ii) with equally sized magnets
and gaps (dn/d = 0.5); however, when the experimental
parameters were simulated (5 wm magnets on an 8 um
period), a zero-velocity region was observed. Due to the
spatial asymmetry of the circular magnets, the zero-velocity
region was present in all simulated cases. The width of the
zero-velocity region was independent of the driving frequency,
which implies that this result occurs even in the adiabatic
limit, and was found to predict the correct experimental trends
with bead size and field strengths. Although there were minor
differences among the three cases, the basic dynamic behavior
was approximately the same and is more or less independent
of the curvature of the magnets. Only spatial asymmetry was
required to produce the correct results. Thus, in Fig. 9 we plot
the numerical simulations obtained for a 2D point pole array
[shown by the blue (solid) line] using spatial asymmetry of a
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5 um magnet on an 8 um period, wherein the fitting parameter
(substrate magnetization, with Ao = 7.5 Oe) was chosen to
best match the experimental data of the 2.7 um beads. Using
perturbation, on the other hand, the zero velocity was never
observed even for spatially asymmetric substrates [shown for
comparison as the black (dotted) line in Fig. 9]. Interestingly,
the phase shift from the perturbation analysis underpredicts
the phase shift in numerical simulations. At present, we do
not have a good explanation for why the perturbation analysis
both fails to predict the presence of a zero-velocity region and
underpredicts the phase shift, though it is likely due to the
limitations of the asymptotic analysis.

Though numerical simulations could explain the presence
of the zero-velocity region, the empirical separation window
was still much smaller than was predicted by simulations
(see Fig. 9). Specifically, for the experimental comparison of
4.5 pum beads with 2.7 um beads, the numerical simulations
predict a 3°-5° separation region, whereas in experiments we
only observed a 1° separation region. One possible cause of this
discrepancy is the oversimplification of the magnetic moment
of the beads, which were assumed to be a point dipole defined
by the field at the particle center. Since the 4.5 um beads
are roughly the same size as the magnets, the point dipole
assumption breaks down when the field is highly nonuniform
across the particle’s volume. In other words, the fields and field
gradients at the particle center are likely to be substantially
lower than the volume-averaged fields of the 4.5 um beads.
This effect could have increased the static forcing terms of the
4.5 pum beads and would explain the smaller experimentally
obtained separation window.

There could be several other reasons for the discrepancy
between theory and experiment including time variation of the
magnetization of the substrate, such as minor oscillation of
the magnetization, adhesion, and other static or kinetic friction
terms of the beads relative to the substrate. It is worth noting
that the line pole model is a better description for experiments
of bead motion on iron garnet films, in which the alternating
up and down domains within the film are arranged in an array
of parallel lines. In that case, opposite motion of two different
bead types was observed [19].

Despite these challenges, the general experimental trends
support the basic theoretical argument that static forcing terms
can delay the phase at which beads experience flux reversal.
The general scaling relationships for different bead sizes and
field strengths are also consistent with this theory. Finally,
the numerical simulations suggest that the best separation
resolution can be achieved in a spatially symmetric lattice,
which suggests that future experimental improvements can be
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realized to achieve opposite motion of two bead types on an
array of micromagnets.

VI. CONCLUSION

Here, we use theory, simulation, and experiment to inves-
tigate the role of static forcing terms on the phase-induced
flux reversal of beads in a multifrequency ratchet. Starting
from the simplest theoretical model, we explore how flux
reversal depends on the phase difference between two odd
integer ratio driving frequencies, and we demonstrate that the
addition of a static forcing term acts to delay the phase at which
flux reversal is observed. We provide analytical results using
perturbation analysis that captures the relationship between
the static forcing terms and the phase of flux reversal, and
we use the derived relationship to produce a theoretical
separation window for two bead types that have different
static forcing terms. Next, we extend this analysis to a
more realistic model that indicates the possibility of moving
two different bead types in opposite directions on the same
ratchet. The perturbation analysis was able to qualitatively
predict the correct trends of our experiments, including the
scaling relationships with the bead size and the ratio between
dynamic and static forcing terms. However, the perturbation
analysis failed to explain the existence of a zero-velocity
region, which was discovered both in experiments and in
numerical simulations. The zero-velocity region was observed
in numerical simulations only when the magnetic substrate
was spatially asymmetric. Moreover, the scaling relationship
of the width of the zero-velocity region was correctly predicted
by the numerical simulations (i.e., the width increased with
decreasing bead size and decreasing external field strength).
These results serve to explain the prior experimental work on
the motion of beads above field-modulated iron garnet films,
and it also serves as a guide for future enhancements in our
experimental system, including (i) the use of more symmetric
substrate potentials and (ii) smaller beads relative to the
magnet size. In conclusion, we have developed a framework for
studying particle motion in multifrequency ratchets that shows
the role of static forcing terms in the multiplexing capabilities
of chip based magnetic separation systems. These results may
also lead to insights on general ratchet behavior in other fields
of physics.
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