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Abstract This work proposes an automatic method-

ology for modeling complex systems. Our methodology

is based on the combination of Grammatical Evolu-

tion and classical regression to obtain an optimal set

of features that take part of a linear and convex model.

This technique provides both Feature Engineering and

Symbolic Regression in order to infer accurate mod-

els with no effort or designer’s expertise requirements.

As advanced Cloud services are becoming mainstream,

the contribution of data centers in the overall power

consumption of modern cities is growing dramatically.

These facilities consume from 10 to 100 times more

power per square foot than typical office buildings. Mod-

eling the power consumption for these infrastructures

is crucial to anticipate the effects of aggressive opti-

mization policies, but accurate and fast power model-
ing is a complex challenge for high-end servers not yet

satisfied by analytical approaches. For this case study,

our methodology minimizes error in power prediction.

This work has been tested using real Cloud applica-

tions resulting on an average error in power estimation

of 3.98%. Our work improves the possibilities of deriv-

ing Cloud energy efficient policies in Cloud data centers
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being applicable to other computing environments with

similar characteristics.
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1 Introduction

Analytical models, as closed form solution represen-

tations, require specific knowledge about the different

contributions and their relationships, becoming hard

and time-consuming techniques for describing complex

systems. Complex systems comprise a high number of

interacting variables, so the association between their

components is hard to extract and understand as they

have non-linearity characteristics [4]. Also, input pa-

rameter limitations are barriers associated to classical

modeling for these kind of problems.

Otherwise, classical regressions as least absolute shrink-

age and selection operator techniques provide models

with linearity, convexity and differentiability attributes,

which are highly appreciated for describing systems per-

formance. However, the automatic generation of accu-

rate models for complex systems is a difficult challenge

that designers have not yet fulfilled by using analytical

approaches.

On the other hand, metaheuristics are higher-level

procedures that make few assumptions about the opti-

mization problem, providing adequately good solutions

that could be based on fragmentary information [6,

7]. They are particularly useful in solving optimiza-

tion problems that are noisy, irregular and change over

time. In this way, metaheuristics appear as a suitable
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approach to meet optimization problem requirements

for complex systems.

Some metaheuristics, as Genetic Programming (GP),

perform Feature Engineering (FE) that is a particu-

larly useful technique for selecting an optimal set of

features that best describe an optimization problem.

Those features consist of measurable properties or ex-

planatory variables of a phenomenon. FE methods se-

lect adequate characteristics avoiding the inclusion of

irrelevant parameters that reduce problem generaliza-

tion [32]. Finding relevant features typically helps with

prediction; but correlations and combinations of rep-

resentative variables, also provided by FE, may offer

a straightforward view of the problem thus generating

better solutions.

Grammatical Evolution (GE) is an evolutionary com-

putation technique based on GP. This technique is par-

ticularly useful to solve optimization problems and pro-

vides solutions that include non-linear terms offering

FE capabilities that remove analytical modeling bar-

riers. One of the main characteristics of GE is that it

can be used to perform Symbolic Regression (SR) [29].

Also, designer’s expertise is not required to process a

high volume of data as GE is an automatic method.

However, GE provides a vast space of solutions that

may be bounded to achieve algorithm efficiency.

In this work we propose a novel methodology for the

automatic inference of accurate models that combines

the benefits offered by both classic and evolutionary

strategies. Firstly, SR performed by a GE algorithm

finds optimal sets of features that best describe the

system behavior. Then, a classic regression is used to

solve our optimization problem using this set of features

providing the model coefficients. Finally, our approach

provides an accurate model that is linear, convex and

derivative and also uses the optimal set of features. This

methodology can be applied to a broad set of optimiza-

tion problems of complex systems. This paper presents

a case study for its application in the area of Cloud

power modeling as it is a relevant challenge nowadays.

1.1 Motivation

One of the big challenges in data centers is the power-

efficient management of system resources. Data centers

consume from 10 to 100 times more power per square

foot than typical office buildings [30] even consuming as

much electricity as a city [23]. Consequently, a careful

management of the power consumption in these infras-

tructures is required to drive the Green Cloud comput-

ing [11].

Cloud computing addresses the problem of costly

computing infrastructures by providing dynamic resource

provision on a pay-as-you-go basis, and nowadays it is

considered as a valid alternative to owned high perfor-

mance computing (HPC) clusters. There are two main

appealing incentives for this emerging paradigm: firstly,

the Clouds’ utility-based usage model allows clients to

pay per use, increasing the user satisfaction; secondly,

there is only a relatively low investment required for the

remote devices that access the Cloud resources [12].

Besides economic incentives, the Cloud model pro-

vides also benefits from the environmental perspective,

since the computing resources are managed by Cloud

service providers but shared among all users, which in-

creases their overall utilization [5]. This fact is trans-

lated into a reduced carbon footprint per executed task,

diminishing CO2 emissions. The Schneider Electric’s re-

port on virtualization and Cloud computing efficiency [27]

confirms that about 17% of annual savings in energy

consumption were achieved by 2011 through virtualiza-

tion technologies.

However, the proliferation of modern data centers is

growing massively due to the current increase of appli-

cations offered through the Cloud. A single data center,

that houses the computer systems and resources needed

to offer these services, has a power consumption com-

parable to 25000 households [21]. As a consequence, the

contribution of data centers in the overall consumption

of modern cities is increasing dramatically. Therefore,

minimizing the energy consumption of these infrastruc-

tures is a major challenge to reduce both environmental

and economic impact.

The management of energy-efficient techniques and

aggressive optimization policies requires a reliable pre-

diction of the effects caused by the different procedures

throughout the data center. Server heterogeneity and

diversity of data center configurations difficult to in-

fer general models. Also, power dependency with non-

traditional factors (like the static consumption and its

dependence on temperature, among others) that affect

consumption patterns of these facilities may be devised

in order to achieve accurate power models.

These power models facilitate the analysis of several

architectures from the perspective of the power con-

sumption, and allow to devise efficient techniques for

energy optimization. Data center designers have col-

lided with the lack of accurate power models for the

energy-efficient provisioning and the real-time manage-

ment of the computing facilities. Therefore, a fast and

accurate method is required to achieve overall power

consumption prediction.

The work proposed in this paper makes substantial

contributions in the area of power modeling of Cloud

servers taking into account these factors. We envision

a powerful method for the automatic identification of
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fast and accurate power models that target high-end

Cloud server architectures. Our methodology considers

the main sources of power consumption as well as the

architecture-dependent parameters that drive today’s

most relevant optimization policies.

1.2 Contributions

Our work makes the following contributions:

– We propose a method for the automatic generation

of fast and accurate models adapted to the behavior

of complex systems.

– Resulting models include combination and correla-

tion of variables due to the FE and SR performed

by GE. Therefore, the models incorporate the op-

timal selection of representative features that best

describe system performance.

– Through the combination of GE and classical regres-

sion provided by our approach, the inferred models

have linearity, convexity and differentiability prop-

erties.

– As a case study, different power models have been

built and tested for a high-end server architecture

running several real applications that can be com-

monly found in nowadays’ Cloud data centers, achiev-

ing low error when compared to real measurements.

– Testing for different applications (web search en-

gines, and both memory and CPU-intensive appli-

cations) shows an average error of 3.98% in power

estimation.

The remainder of this paper is organized as follows:

Section 2 gives further information on the related work

on this topic. Section 3 provides the background algo-

rithms used for the model optimization. The methodol-

ogy description is presented in Section 4. In Section 5 we

provide a case study where our optimization modeling

methodology is applied. Section 6 describes profusely

the experimental results. Finally, in Section 7 the main

conclusions are drawn.

2 Related Work

A complex system can be described as an intercon-

nected agents system exhibiting a global behavior that

results from agents interactions [8]. Nowadays, the num-

ber of agents in a system grows in complexity, from

data traffic scenarios to multisensor systems, as well

as the possible interactions between them. Therefore,

infering the global behavior, not imposed by a central

controller, is a complex and time-consuming challenge

that requires a deep knowledge of the system perfor-

mance. Due of these facts, new automatic techniques

are required to facilitate the fast generation of models

that are suitable for complex systems presenting a large

number of variables.

The case study presented in this work exhibits high

complexity in terms of number of variables and pos-

sible traditional and non-traditional sources of power

consumption. This issue demands the following review

of the state-of-the-art.

In the last years, there has been a rising interest in

developing simple techniques that provide basic power

management for servers operating in a Cloud, i.e. turn-

ing on and off servers, putting them to sleep or us-

ing Dynamic Voltage and Frequency Scaling (DVFS)

to adjust servers’ power states by reducing clock fre-

quency. Many of these recent research works have fo-

cused on reducing power consumption in cluster sys-

tems [1], [35], [15], [20].

In general, these techniques take advantage of the

fact that application performance can be adjusted to

utilize idle time on the processor to save energy [13].

However, their application in Cloud servers is difficult

to achieve in practice as the service provider usually

over-provisions its power capacity to address worst case

scenarios. This often results in either waste of power or

severe under-utilization of resources. Thus, it is critical

to quantitatively understand the relationship between

power consumption, temperature and load at the sys-

tem level by the development of a power model that

helps in optimizing the use of the deployed Cloud ser-

vices.

Currently the state-of-the-art offers various analyti-
cal power models. However, these models are architecture-

dependant and do not include the contribution of static

power consumption, or the capability of switching the

frequency modes (DVFS). The authors develop linear

regression models that present the power consumption

of a server as a linear function of its CPU usage [22], [28].

Some other models can be found where server power

is formulated as a quadratic function of the CPU us-

age [24], [34]. Still, as opposed to ours, these models do

not include the estimation of the static power consump-

tion (which has turned to have a great impact due to

the current server technology).

Bohra et al. [9] propose a robust fitting to calcu-

late their model that takes into account the correla-

tion between the total system power consumption and

component utilization. Our work follows a similar ap-

proach but also incorporates the contribution of the

static power consumption, its dependence on tempera-

ture, and the effect of applying voltage and frequency

scaling techniques.
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Interestingly, one key aspect in the management of

a data center is still not very well understood: control-

ling the ambient temperature at which the data cen-

ter operates. Data centers operate in a broad temper-

ature range from 18◦C to 24◦C but some can be as

cold as 13◦C [10,25]. However, due to the lack of ac-

curate power models, the effect of ambient tempera-

ture on the power consumption of the servers has not

been clearly analyzed, preventing the application of op-

timization models to save energy. On the contrary, the

experimental work presented in this paper has been per-

formed in ambient temperatures ranging from 18◦C to

25◦C. The range selected follows nowadays’ practice of

operating at higher temperatures [17] and close to the

limits recommended by ASHRAE. Although this prac-

tice obtains energy savings in the cooling expense [14],

the lack of a detailed power model prevents to apply

optimization policies.

In our previous work, we have applied the benefits

of Particle Swarm Optimization algorithms (PSO) to

identify an analytical model that provides accurate re-

sults for power estimation [2]. PSO simplifies the power

model by significantly reducing the number of prede-

fined parameters and variables used in the analytical

formulation. However, as a parameter identification mech-

anism, this technique does not provide an optimal search

of the features that best describe the system power per-

formance, so additional features could be incorporated.

The work presented in this paper outperforms pre-

vious approaches in the area of power modeling for en-

terprise servers in Cloud facilities in several aspects:

– Our approach consists on an automatic method for

the identification of an accurate power model par-

ticularized for each target architecture. We propose

an extensive power model consistent with current

architectures.

– The proposed methodology takes into account the

main power consumption sources resulting in a mul-

tiparametric model to allow the development of power

optimization approaches. Different parameters are

combined by Feature engineering assuring that the

optimal set of features is considered.

– Optimal features are included in a classical regres-

sion resulting in a specific model instance for ev-

ery target architecture that is linear, convex and

derivable. Also the execution of the resulting power

model is fast, making it suitable for run-time opti-

mization techniques.

3 Algorithm description

3.1 Grammatical Evolution

As previously stated, we work on FE to obtain mathe-

matical expressions that represent different power con-

sumption contributions. These expressions, or features,

are derived from the combination of previously collected

experimental parameters (in our case of study, they cor-

respond to processor and memory temperatures, fan

speeds, processor and memory utilizations, processor

frequencies and voltages). We deal with a kind of SR

problem to select the relevant features. SR tries to si-

multaneously obtain a mathematical expression while

including the relevant parameters to reproduce a set of

discrete data. Besides, GP has proven to be effective in

a number of SR problems [33]. However, GP presents

some limitations like bloating of the evolution (exces-

sive growth of memory computer structures), often pro-

duced in the phenotype of the individual. During the

last years, variants to GP like GE appeared as a simpler

optimization process [26]. In our approach, GE allows

the generation of a new set of optimized features by ap-

plying SR. This feature generation is achieved thanks to

the use of grammars that define the rules for obtaining

mathematical expressions. More concretely, we will use

grammars expressed in Backus Naur Form (BNF) [26].

A BNF specification is a set of derivation rules, ex-

pressed in the form:

<symbol>::=<expression>

The rules are composed of sequences of terminals

and non-terminals. Symbols that appear at the left are

non-terminals while terminals never appear on a left

side. In this case we can affirm that <symbol> is a

non-terminal and, although this is not a complete BNF

specification, we can affirm also that <expression> will

be also a non-terminal, since those are always enclosed

between the pair < >. Therefore, in this case the non-

terminal <symbol> will be replaced (indicated ::=) by

an expression. The rest of the grammar must define the

different alternatives.

A grammar is represented by the 4-tuple N,T, P, S,

being N the non-terminal set, T is the terminal set, P

the production rules for the assignment of elements on

N and T , and S is a start symbol that should appear in

N . The options within a production rule are separated

by a “|” symbol.

Figure 1 represents an example of a grammar in

BNF, designed for symbolic regression. The final ob-

tained expression will consist of elements of the set of

terminals T . These have been combined with the rules

of the grammar, as explained previously. Also, gram-

mars can be adapted to bias the search of the relevant
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N = {EXPR, OP, PREOP, VAR, NUM, DIG}

T = {+, -, *, /, sin, cos, exp, x, y, z,

0, 1, 2, 3, 4, 5, (, ), .}

S = {EXPR}

P = {I, II ,III ,IV ,V ,VI}

I <EXPR> ::= <EXPR><OP><EXPR>

| <PREOP>(<EXPR>)

| <VAR>

II <OP> ::= + | - | * | /

III <PREOP>::= sin| cos | exp

IV <VAR> ::= x | y | z | <NUM>

V <NUM> ::= <DIG>.<DIG> | <DIG>

VI <DIG> ::= 0 | 1 | 2 | 3 | 4 | 5

Fig. 1 Example of a grammar in BNF format designed for
symbolic regression

features because there is a finite number of options in

each production rule.

Regarding both the structure and the internal op-

erators, GE works exactly like a classic Genetic Algo-

rithm (GA) [3]. GE evolves a population formed by a set

of individuals, each one constituted by a chromosome

and a fitness value. In SR, the fitness value is usually

a regression metric like Root Mean Square Deviation

(RMSD), Coefficient of Variation (CV), Mean Squared

Error (MSE), etc. In GE, a chromosome is a string

of integers. In the optimization process, GA operators

named selection, crossover and mutation are iteratively

applied to improve the fitness value of each individ-

ual. In order to compute the fitness function for every

iteration and to extract the mathematical expression

given by an individual, a decoding process is applied.

We refer the reader to [16] to understand the different

GA operators. In the following, we explain through an

example the decoding process performed in GE, since

it clearly explains how better features are automati-

cally selected. Let us suppose that we have the BNF

grammar provided in Figure 1 and the following 7-gene

chromosome:

21-64-17-62-38-254-2

According to Figure 1, the start symbol is S={EXPR},

hence the decoded expression will begin with this non-

terminal:

Solution = <EXPR>

Now, we use the first gene of the chromosome (also

called codon, equal to 21 in the example) in rule I of

the grammar. The number of choices in that rule is 3.

Hence, a mapping function (the modulus operator) is

applied:

21 MOD 3 = 0

and the first option is selected <EXPR><OP><EXPR>. The

selected option substitutes the decoded non-terminal.

As a consequence, the current expression is the follow-

ing:

Solution = <EXPR><OP><EXPR>

The process continues with the next codon, 64, which is

used to decode the first non-terminal of the current ex-

pression, namely, <EXPR>. Again, the mapping function

is applied to rule I:

64 MOD 3 = 1

and the second option <PREOP>(<EXPR>) is selected. So

far, the current expression is:

Solution = <PREOPR>(<EXPR>)<OP><EXPR>

The next gene, 17, is now taken for decoding. At this

point, the first non-terminal in the current expression

is <PREOP>. Therefore, we apply the mapping function

to rule III, which also has 3 different choices:

17 MOD 3 = 2

and the third option exp is selected. The resulting ex-

pression is

Solution = exp(<EXPR>)<OP><EXPR>

Next codon, 62, decodes <EXPR> with rule I:

62 MOD 3 = 2

Value 2 means to select the third option, <VAR>. The

resulting expression is:

Solution = exp(<VAR>)<OP><EXPR>

Codon 38 decodes <VAR> with rule IV:

38 MOD 4 = 2

selecting the third option, non-terminal z:

Solution = exp(z)<OP><EXPR>

Non-terminal <OP> is decoded with codon 254 and rule

II:

254 MOD 4 = 2

This value selects the third option, terminal *:

Solution = exp(z)*<EXPR>

The last codon, decodes <EXPR> with rule I:

2 MOD 3 = 2

Value 2 selects the third option, non-terminal <VAR>.

So far, the current expression is:

Solution = exp(z)*<VAR>
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At this point, the decoding process has run out of codons.

That is, we have not arrived to an expression with ter-

minals in all of its components. In GE, the solution to

this problem is to reuse codons starting from the first

one. In fact, it is possible to reuse the codons more

than once. This technique is known as wrapping and

mimics the gene-overlapping phenomenon in many or-

ganisms [18]. Thus, applying wrapping to our example,

the process goes back to the first gene, 21, which is used

to decode <VAR> with rule IV:

21 MOD 4 = 1

This result selects the second option, non-terminal y,

giving the final expression of the phenotype:

Solution = exp(z)*y

As can be seen, the process does not only perform pa-

rameter identification like in a classic regression method.

In conjunction with a well-defined fitness function, the

evolutionary algorithm is also computing an optimized

set of features as mathematical expressions by combin-

ing the set of parameters that best fits the target sys-

tem. Thus, GE is defining the optimal set of features

that will derive into the most accurate power model.

3.2 Least absolute shrinkage and selection operator

Tibshirani proposes the least absolute shrinkage and se-

lection operator algorithm (lasso) [31] that minimizes

residual summation of squares according to the sum-

mation of the absolute value of the coefficients that are

less than constant.

The algorithm combines the favourable features of
both subset selection and ridge regression like stability,

and offers a linear, convex and derivable solution. Lasso

provides interpretable models shrinking some of the co-

efficients and setting others to exactly zero values for

generalized regression problems.

For a given non-negative value of λ, the lasso algo-

rithm solves the following problem:

min
β0,β

 1

2N

N∑
i=1

(yi − β0 − xTi β)2 + λ

p∑
j=1

|βj |

 (1)

where:

– β: vector of p components. Lasso algorithm involves

the L1 norm of β

– β0: scalar value.

– N : number of observations.

– yi: response at observation i.

– xi: vector of p values at observation i.

– λ: non-negative regularization parameter correspond-

ing to one value of Lambda. The number of nonzero

components of β decreases as λ increases.

At the end, we combine the use of GE that generates

the set of relevant features with lasso that computes the

coefficients and the independent term in the final linear

model.

As a result, our GE+lasso framework solves our op-

timization problem that targets the generation of accu-

rate power models for high-end servers.

4 Devised Methodology

The fast and accurate modeling of complex systems

is a relevant target nowadays. Modeling techniques al-

low designers to estimate the effects of variations in

the performance of a system. Complex systems present

non-linear characteristics as well as a high number of

potential variables. Also, the optimal set of features

that impacts the system performance is not well known

as many mathematical relationships can exist among

them.

Hence, we propose a methodology that considers all

these factors by combining the benefits of both GE al-

gorithms and classical lasso regressions. This technique

provides a generic and effective modeling approach that

could be applied to numerous problems regarding com-

plex systems, where the number of relevant variables or

their interdependence are not known.

Figure 2 shows the proposed methodology approach

for the optimization of system modeling problem. De-

tailed explanations of the different phases are summa-

rized in the following subsections.

4.1 GE feature selection

Given an extensive set of parameters that may cause an

effect on system performance, FE selects the optimal set

that best describes the system behavior. Also, this tech-

nique, which is provided by GE, avoids the inclusion of

irrelevant features while incorporating correlations and

combinations of representative variables.

The input to our approach consists of a vector of

initial data that includes the entire set of variables xn
extracted from the system.

y = g1(x1, x2, x3, . . . , xn) (2)

All these parameters are entered in the GE algorithm

to start the optimization process.
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Fig. 2 Optimized modeling using GE+lasso methodology.

Each individual of the GE encodes its own set of

candidate features f1, f2, f3, . . . , fm. The candidate fea-

tures follow the rules imposed by a BNF grammar al-

lowing the occurrence of a wide variety of operations

and operands to favor building optimal sets of features.

Figure 3 shows an example of a BNF grammar for this

approach.

<list_features> ::= <feature>

| <feature>;<list_features>

<feature> ::= (<feature><op><feature>)

| <preop>(<feature>)

| <var>

<op> ::= + | - | * | /

<preop> ::= exp | sin | cos | ln

<var> ::= x[0] | x[1] | x[2] | x[3]

| x[4] | x[5] | ... | x[n]

Fig. 3 Grammar in BNF format. x variables, with i = 0 . . . n,
represent each parameter obtained from the system.

This grammar provides the operations +, −, ∗, /
and preoperators exp, sin, cos, ln. The space of solu-

tions is easily modified by incorporating a broader set of

relationships between operands to the BNF grammar.

The output of the GE stage consists of a matrix that

includes all the candidate features provided by individ-

uals. Each individual output vector has its own set of m

candidate features that intends to minimize the fitness

function provided for the system optimization.

z = g2(f1, f2, f3, . . . , fm) (3)

4.2 Lasso generic model generation

Modeling procedures usually intend to interpret sys-

tems’ behavior. They have the purpose of acquiring

additional knowledge from the final models once these

have been derived. Linearity, convexity and differentia-

bility offered by lasso classic regression helps modeling

to be a more explanatory and repeatable process. In

addition, whereas GE is able to find complex symbolic

expressions, GE does not perform well in parameter

identification, mainly because the exploration of real

numbers is not easily representable in BNFs. Due to

these facts, we have included lasso algorithm in our

methodology in order to manage the coefficient gener-

ation of the system model.

As can be seen in Figure 2, each individual of the GE

provides a set of candidate features to lasso. This clas-

sical regression is in charge of deriving the optimized

model for each individual by solving the following equa-

tion.

z = a1f1 + a2f2 + a3f3 + · · ·+ amfm + k (4)

Lasso offers the set of optimized coefficients (a1, a2,

a3, . . . , am, k) for each individual that minimizes the

fitness function. This process provides the goodness of

each individual. All this information feeds back the GE

algorithm to generate the next population of individu-

als through selection, crossover and mutation, creating

a loop. The loop continues executing until it completes

the number of generations defined by the GE. This pro-

cess results in the set of models that best fits system

performance.
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4.3 Fitness evaluation

As our main target is to build accurate models, our

fitness function includes the error resulting in the es-

timation process. The fitness function presented in 5

leads the evolution to obtain optimized solutions thus

minimizing Root Mean Square Error or RMSD.

F =

√
1

N
·
∑
n

en2 (5)

en = |P (n)− P̂ (n)|, 1 ≤ n ≤ N (6)

Estimation error en represents the deviation between

the measure given by system monitoring P , and the es-

timation obtained by the model P̂ . n represents each

sample of the entire set of N samples used to train the

algorithms.

5 Case Study

In this section we describe a particular case study for

the application of the devised methodology presented in

Section 4. The problem to be solved is the fast and accu-

rate estimation of the power consumption in virtualized

enterprise servers performing Cloud applications. Our

power model considers heterogeneity of servers, as well

as specific technological features and non-traditional

parameters of the target architecture that affect power

consumption. Hence, we propose our modeling tech-

nique that considers all these factors by combining the

benefits of both GE algorithms and classical lasso re-

gressions.

Firstly, a GE algorithm is applied to extract those

relevant features that best describe power consump-

tion sources. Features may also include correlations and

combinations of representative variables due to FE per-

formed by GE. Then, the lasso algorithm takes the op-

timal set of features in order to infer an expression that

characterizes the power behavior of the target architec-

ture of a Cloud server. As a result, we derive a highly

accurate, linear and convex power model, targeting a

specific server architecture, that is automatically gen-

erated by our evolutionary methodology.

We apply our methodology described in Section 4 to

real measures gathered from a high-end Cloud server

in order to infer an accurate power model. Also, we

provide an experimental scenario for various workloads

with the purpose of building and testing our methodol-

ogy.

5.1 Data compilation

Data have been collected gathering real measures from

a Fujitsu RX300 S6 server based on an Intel Xeon E5620

processor. This high-end server has a RAM memory of

16GB and is running a 64bit CentOS 6.4 OS virtualized

by the QEMU-KVM hypervisor. Physical resources are

assigned to four KVM virtual machines, each one with

a CPU core and a 4GB RAM block.

The power consumption of a high-end server usually

depends on several factors that affect both dynamic and

static behavior [2]. Our proposed case study takes into

account the following 7 variables:

– Ucpu: CPU utilization (%)

– Tcpu: CPU temperature (Kelvin)

– Fcpu: CPU frequency (GHz)

– Vcpu: CPU voltage (V)

– Umem: Main memory utilization (Memory accesses

per cycle)

– Tmem: Main memory temperature (Kelvin)

– Fan: Fan speed (RPM)

Power consumption is measured with a current clamp

with the aim of validating our approach. CPU and main

memory utilization are monitored using hardware coun-

ters collected with perf monitoring tool. On board sen-

sors are checked via IPMI to get both CPU and mem-

ory temperatures and fan speed. CPU frequency and

voltage are monitored via cpufreq-utils Linux package.

To build a model that includes power dependance with

these variables, we use this software tool to modify

CPU DVFS modes during workload execution. Also

room temperature has been modified in run-time with

the goal of finding non-traditional consumption sources

that are influenced by this variable.

5.2 Experimental workload

We define three workload profiles (i) synthetic, (ii) Cloud

and (iii) HPC over Cloud as they emulate different uti-

lization patterns that could be found in typical Cloud

infrastructures.

5.2.1 Synthetic benchmarks

The use of synthetic load allows to specifically stress

different server resources. The importance of using syn-

thetic load is to include situations that do not meet the

actual real workloads that we have selected. Thus, the

range of possible values of the different variables is ex-

tended in order to adapt the model to fit future work-

load characteristics and profiles. Lookbusy1 stresses dif-

1 http://www.devin.com/lookbusy/
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ferent CPU hardware threads to a certain utilization

avoiding memory or disk usage. The memory subsys-

tem is also stressed separately using a modified version

of RandMem2. We have developed a program based on

this benchmark to access random memory regions in-

dividually, with the aim of exploring memory perfor-

mance. Lookbusy and RandMem have been executed,

in a separated and combined fashion, onto 4 parallel

Virtual Machines that consume entirely the available

computing resources of the server.

On the other hand, real workload of a Cloud data

center is represented by the execution of Web Search,

from CloudSuite3, as well as by SPEC CPU2006 mcf

and SPEC CPU2006 perlbench [19].

5.2.2 Cloud workload

Web Search characterizes web search engines, which are

typical Cloud applications. This benchmark processes

client requests by indexing data collected from online

sources. Our Web Search benchmark is composed of

three VMs performing as index serving nodes (ISNs)

of Nutch 1.2. Data are collected in the distributed file

system with a data segment of 6 MB, and an index of 2

MB that is crawled from the public Internet. One of this

ISNs also executes a Tomcat 7.0.23 frontend in charge of

sending index search requests to all the ISNs. The fron-

tend also collects ISNs responses and sends them back

to the requesting client. Client behavior is generated

by Faban 0.7 performing in a fourth VM. Resource uti-

lization depends proportionally on the number of clients

accessing Web Search. Our number of clients configura-

tion ranges from 100 to 300 to expose more information

about the application performance. The four VMs use

all the memory and CPU resources available in each

server.

5.2.3 HPC over Cloud

In order to represent HPC over a Cloud computing in-

frastructure, we choose SPEC CPU2006 mcf and perl-

bench as they are memory and CPU-intensive, and CPU-

intensive applications, respectively. SPEC CPU2006 mcf

consists on a network simplex algorithm accelerated

with a column generation that solves large-scale minimum-

cost flow problems. On the other hand, a mail-based

benchmark is performed by SPEC CPU2006 perlbench.

This program applies a spam checking software to ran-

domly generated email messages. Both SPEC applica-

tions are run in parallel in 4 VMs using entirely the

available resources of the server.

2 http://www.roylongbottom.org.uk
3 http://parsa.epfl.ch/cloudsuite

Instead of restricting the use of synthetic workloads

only for training the algorithms, and limiting the use

of real Cloud benchmarks exclusively for testing, we

have used both workloads for the two purposes. This

procedure provides automation for the progressive in-

corporation of additional benchmarks to the model.

For each run of the combined GE+lasso approach,

we randomly select 50% of each data set (synthetic,

Web Search, SPEC CPU2006 mcf and perlbench) for

training and the remaining 50% for testing stage. This

technique validates the variability and versatility of the

system, by analyzing the occurrence of local minima in

optimization scenarios.

6 Experimental results

As we stated in section 5, tests have been conducted

gathering real data from our Fujitsu server. Our exper-

iments present high variability for the different features

compiled from the server.

– CPU operation frequency (Fcpu) is fixed to f1 =

1.73 GHz, f2 = 1.86 GHz, f3 = 2.13 GHz, f4 =

2.26 GHz, f5 = 2.39 GHz and f6 = 2.40 GHz;

thus modifying CPU voltage (Vcpu) from 1.73 V

to 2.4 V.

– Room temperature has been modified in run-time,

from 17◦C to 27◦C. Therefore, temperatures of CPU

and memory (Tcpu and Tmem) range from 306 K

to 337 K, and from 298 K to 318 K respectively.

– CPU and memory utilizations (Ucpu and Umem)

take values from 0% to 100% and from 0 to 0.508

memory accesses (cache-misses) per CPU cycle re-

spectively.

– Finally, due to both room temperature, and CPU

and memory utilization variations, fan speed values

(Fan) range from 3540 RPM to 7200 RPM.

Data have been split into training and testing sets.

Training stage performs feature selection and builds

the power model according to our grammar and fitness

function. Next, the testing stage examines the power

model accuracy. The algorithm proposed by our method-

ology is executed completely 20 rounds using the same

grammar and fitness function configuration. For each

run, we randomly select 50% of each data set for train-

ing and 50% for testing stage, thus obtaining 20 final

power models. This procedure validates the variability

and versatility of the system, by analyzing the occur-

rence of local minima in optimization scenarios.
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6.1 Algorithm setup

6.1.1 GE setup parameters

We use GE to obtain a set of candidate features that

best describe our optimization problem. To obtain ade-

quate solutions we tune the algorithm using the follow-

ing parameters:

– Population size: 250 individuals

– Number of generations: 3000

– Chromosome length: 100 codons

– Mutation probability: inversely proportional to the

number of rules, 1/4 in our case.

– Crossover probability: 0.9

– Maximum wraps: 3

– Codon size: 256

– Tournament size: 2 (binary)

As we strictly seek for simple combination of fea-

tures, our proposed BNF grammar only provides the

operations +| − | ∗ |/. The space of solutions is easily

increased by incorporating more complex relationships

between operands to the BNF grammar. Figure 4 shows

the BNF grammar proposed for this case study.

<list_features> ::= <feature>

| <feature>;<list_features>

<feature> ::= (<feature><op><feature>)

| <var>

<op> ::= + | - | * | /

<var> ::= x[0] | x[1] | x[2] | x[3]

| x[4] | x[5] | x[6]

Fig. 4 Grammar in BNF format. x variables, with i = 0 . . . 6,
represent processor and memory temperatures, fan speed,
processor and memory utilization percentages, processor fre-
quency and voltage, respectively.

6.1.2 Lasso setup parameters

We use the lasso algorithm to obtain a set of candidate

solutions with low error, when compared with the real

power consumption measures in order to solve our op-

timization modeling problem. Lasso setup parameters

are the following:

– Number of observations: 100

– λ regularization parameter: Geometric sequence of

100 values, the largest just sufficient to produce zero

coefficients.

– λ regularization parameter: 1 · 10−4

6.2 Training stage

We have performed variable standardization for every

feature (in the range [1, 2]) to assure the same prob-

ability of appearance for all the variables and to en-

hance the GE symbolic regression. Experiments with

more than 4 features do not provide better values for

RMSD. Hence, we have bounded their occurrence to

a maximum of 4 by penalizing higher number of fea-

tures in our fitness evaluation function. This also facili-

tates the generation of simpler models, which are faster

and easy to be applied, in order to be used for real-

time power optimizations. Table 1 shows phenotypes

of each feature combined with the coefficients provided

by lasso that are obtained for 20 complete executions of

our methodology algorithm. Fitness results, that corre-

spond to the RMSD between measured and estimated

power consumption (see Equation 5), are shown in Ta-

ble 2 for the training stage. Both Table 1 and Table 2

present the results for the best model of each execution.

As can be seen in Table 1, power model solutions

combine features that correspond to a single variable

with others that merge a combination of several param-

eters. On the one hand, there are single variable features

that appear in up to 50% of the power model solutions.

This shows that there are linear dependencies with cer-

tain parameters, as Ucpu, Tpcu, and Tmem that are

consistent regardless of the workload that is used for

training and testing. On the other hand, variables as

Vcpu, Fcpu and Umem are seldom treated as a feature

in the model solutions. However, they systematically

appear when combined with other variables. These re-

sults show how there exist input parameters that are

not relevant for the modeling or they are correlated to

other features, and their inclusion could decrease the

model accuracy. Model training for run 10 shows the

lowest RMSD error of 0.1067.

6.3 Model testing

At this stage, we analyze the quality of the models that

we have simultaneously tested for the 20 complete exe-

cutions of our methodology algorithm. Results are also

analyzed particularly for the testing data that corre-

sponds to each benchmark dataset in order to verify the

estimation reliability of the models for different work-

loads. Table 2 shows testing average error percentages

particularized for the different benchmark data sets.

These values have been obtained according to the fol-

lowing formulation:

eAVG =

√√√√ 1

N
·
∑
n

(
|P (n)− P̂ (n)| · 100

P (n)
)

2

, 1 ≤ n ≤ N(7)



Enhancing Regression Models for Complex Systems using Evolutionary Techniques for Feature Engineering 11

Table 1 Power models obtained by combining GE features and lasso coefficients for 20 executions

Run a1 · f1 + a2 · f2 + a3 · f3 + a4 · f4 + K
1 0.288 · Tcpu

+ 0.127 · (((Tcpu*Ucpu)-Umem)*Fan)
+ 0.220 · (Fan*Tmem)
+ -0.450 · Fan + 1.043

2 0.173 · Ucpu
+ 0.438 · Tcpu
+ -0.209 · Fan
+ 0.070 · (Tmem/(Umem/(Fan*Tmem))) + 0.636

3 0.256 · (Fan/(Ucpu/Tmem))
+ 0.346 · Ucpu
+ -0.694 · (Fan/Tcpu) + 1.151

4 -0.376 · Tmem
+ -0.033 · ((((Fan/Tcpu)/(Fcpu+Fcpu))/((Fan/(Vcpu+Umem))/Ucpu))*Fan)
+ 0.606 · ((Fan/((Umem+(Fan+(Fcpu/Fcpu)))*(Fan/Ucpu)))+(Fan+Tmem))
+ 0.786 · ((Fcpu-(Fcpu+Fan))/Tcpu) + 0.810

5 0.181 · Ucpu
+ 0.254 · (Fan*Tmem)
+ 0.378 · Umem
+ -0.345 · (((Umem+Umem)*Fan)/Tcpu) + 0.939

6 0.483 · (Ucpu-Fan)
+ 0.030 · ((Tmem+Fan)*((Fan-(Tmem/((Ucpu+Vcpu)+(Fan+Fan))))*(Fan*Fan)))
+ 0.220 · Tmem
+ 0.430 · (Tcpu/Ucpu) + 0.402

7 0.506 · Tcpu
+ 0.195 · ((Ucpu/(Vcpu+(Tmem-Umem)))*Vcpu)
+ -0.319 · Fan
+ -0.199 · (((Fan+Umem)*((Umem-Tmem)/Tcpu))*Fan) + 0.704

8 0.084 · (Ucpu/Vcpu)
+ 0.473 · Tmem
+ 0.499 · (Ucpu/(Ucpu*(((Fcpu-Vcpu)+Tmem)/Tcpu)))
+ -0.019 · (Fan-(((Fan+Vcpu)*Tcpu)*((Ucpu*Tmem)-(Vcpu-Fcpu)))) + 0.046

9 0.927 · Ucpu
+ -0.380 · Fan
+ 0.232 · (((Tmem*((Fan+Umem)-Ucpu))+(Tcpu-(Ucpu*Umem)))-Ucpu)
+ 0.180 · Tcpu + 0.365

10 -0.073 · Tmem
+ 0.106 · (((Tmem+Fan)*Fan)-Umem)
+ 0.194 · (Ucpu+Tmem)
+ 0.437 · (Tcpu-Fan) + 0.665

11 -0.117 · (Tmem*(Ucpu-(Tmem*Fan)))
+ 0.317 · Ucpu
+ 0.377 · (Tcpu-Fan) + 0.810

12 -0.070 · Umem
+ 0.174 · Ucpu
+ 0.647 · (Tcpu/Tmem)
+ 0.647 · Tmem + -0.318

13 0.291 · (Tmem+Fan)
+ -0.409 · (Fan/Tcpu)
+ 0.234 · Tcpu
+ 0.423 · (Ucpu/(Tmem+Umem)) + 0.442

14 0.093 · (Ucpu+(Ucpu+(Tmem*Tmem)))
+ -0.019 · ((Tcpu-((Tmem*Fan)-Vcpu))-Vcpu)
+ -0.081 · (Tmem+Umem)
+ 0.462 · Tcpu + 0.526

15 -0.004 · Fcpu
+ 0.380 · (Ucpu/(Umem+Fan))
+ 0.054 · (Tmem*(Tmem+Fan))
+ 0.454 · Tcpu + 0.347

16 -0.010 · Fan
+ -0.155 · (((Fan/Tmem)-(Tmem/Ucpu))*Fan)
+ 0.282 · Ucpu
+ 0.417 · Tcpu + 0.393

17 0.242 · (Fan*(Tmem/Ucpu))
+ 0.396 · (Tcpu-Fan)
+ 0.001 · Fcpu
+ 0.344 · Ucpu + 0.508

18 0.448 · Tmem
+ -0.178 · Umem
+ -0.221 · (((((Tcpu/(Vcpu/(Fcpu-Vcpu)))-Ucpu)+Fan)/Tmem)-(Tcpu-(Tmem-(Tcpu+Fan))))
+ 0.100 · (Umem/Fan) + 0.271

19 0.134 · Ucpu
+ 0.241 · (Tmem*Fan)
+ 0.066 · Ucpu
+ -0.403 · ((Fan-Tcpu)/Umem) + 0.653

20 -0.433 · (((Fan-(Ucpu+Umem))/Fan)-(Tcpu+Fan))
+ -0.295 · Umem
+ -0.102 · Fan
+ 0.235 · (((Tmem-Umem)-Ucpu)+Fan) + 0.184
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Table 2 RMSD and Average testing error percentages for 20 executions

Run Train (RMSD) Validation (RMSD) Synthetic (%) mcf (%) perlb (%) WebSearch (%) Total (%)
1 0.1069 0.1068 3.985 4.097 4.463 4.147 4.173
2 0.1068 0.1067 3.984 4.099 4.463 4.110 4.164
3 0.1070 0.1068 3.995 4.110 4.504 4.145 4.189
4 0.1070 0.1071 4.007 4.085 4.469 4.155 4.179
5 0.1069 0.1069 3.991 4.106 4.494 4.113 4.176
6 0.1071 0.1068 3.988 4.085 4.459 4.153 4.171
7 0.1070 0.1072 3.995 4.042 4.462 4.101 4.150
8 0.1071 0.1072 3.994 3.996 4.559 4.101 4.162
9 0.1072 0.1072 4.033 3.884 3.990 4.059 3.991
10 0.1067 0.1072 4.052 3.894 3.969 4.031 3.986
11 0.1073 0.1075 4.023 3.926 3.963 4.063 3.994
12 0.1071 0.1076 4.098 3.896 3.951 4.030 3.994
13 0.1070 0.1070 4.073 3.939 4.173 4.243 4.107
14 0.1072 0.1072 4.088 3.935 4.174 4.184 4.096
15 0.1071 0.1070 4.083 3.922 4.161 4.246 4.103
16 0.1071 0.1070 4.060 3.937 4.164 4.217 4.095
17 0.1079 0.1057 3.951 4.136 4.208 4.056 4.088
18 0.1081 0.1060 3.981 4.171 4.180 4.050 4.095
19 0.1082 0.1060 3.953 4.190 4.224 4.212 4.145
20 0.1082 0.1059 3.974 4.205 4.178 4.074 4.108

where P is the power measure given by the current

clamp and P̂ is the power estimated by the model phe-

notype. n represents each sample of the entire set of N

samples.

Total average error for the testing dataset shows

lowest error of 3.98% (as shown in Table 2). Best test-

ing error corresponds to the solution with lower training

error. Solutions can be broken down for those samples

that belong to different tests, achieving testing errors

of 4.052%, 3.894%, 3.969% and 4.031% for synthetic,

SPEC CPU2006 mcf, SPEC CPU2006 perlbench and

WebSearch workloads respectively. This fact confirms

that our methodology works well for our scenario, ex-

tracting optimized sets of features and coefficients that

are consistent even for 20 runs with random selection

of both training and testing dataset.

Our methodology application shows very accurate

testing results for all of the whole executions ranging

from 3.98% to 4.18%. The obtained results are robust,

as they have been obtained for a heterogeneous mix

of workloads so the power models are not workload-

dependant. According to these results, we can infer

that our methodology is effective for performing fea-

ture selection and building accurate multi-parametric,

linear, convex and differentiable power models for high-

end Cloud servers. This technique can be considered as

a starting point for implementing energy optimization

policies for Cloud computing facilities.

7 Conclusions

This paper has presented a novel work in the field of FE

and SR for the automatic inference of accurate models.

Resulting models include combination and correlation

of variables due to the FE and SR performed by GE.

Therefore, the models incorporate the optimal selection

of representative features that best describe the target

problem while providing linearity, convexity and differ-

entiability characteristics.

As a proof of concept, the devised methodology has

been applied to a current computing problem, the power

modeling of high-end servers in a Cloud environment.

In this context, the proposed methodology has shown

relevant benefits with respect to state-of-the-art ap-

proaches, like better accuracy and the opportunity to

consider a broader number of input parameters that can

be exploited by further power optimization techniques.
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