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ABSTRACT

The surlace states ol Frenkel excitons in semiinflinmite systems ol multilayer molecular
crystals are investigated theoretically within the framework of the second nearest layer
approximation (SNLA). [t is shown that if the material parameters of crystals satisfy de-
termined conditions they may exhibit {wo kinds ol excitonic surface stales i the system.
This is the main reason for the delicate properties of energy levels as well as superradi-
ant decay rates ol surlace excitons in the crystals. Our calculations are compared with

cexperimental observations i anthracence erystals.
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For a lTong time theories of excitonic surface states m multilayer molecular crystals
have been usually based on the nearest layer approximation (NLA) [1-1] exceptions are
some briel discussions of the sccond nearest layer approximation (SNLA) [5,6]. The
reasons for this arc that the mierlayer mteraction [alls ofl very rapidly with mercasing
separation between layers. and for a long time NLA has been sufficient to explain various
experiments. Theoretically, in the [ramework ol NLA, systems have no surlace staie il
|£2] = |A|, where [{ is the matrix element for transfer of excitation between two nearest
layers, and A, is the difference between energies of the bulk and surface excitons without
taking into account the transfer encrgy between Tayers. 10 |R] << |Aq] there are two (fwo-
fold degenerate) surface states in a symmetric finite system, and one surface state in a
semiinfinite system. As a result. there is only one surface energy level for excitons in these
systems. These surlace stales are localized ai the livst surlace layver ol the system. Tt is also
well known, both theoretically and experimentally, that in reduced dimension systems the
surlace excitons can decay rapidly, so that then liletimes are of aboul picoscecond scales
(sce in Refs. [1,2,8-14] and references therein). The eflects of rapid radiative decay
of excitons are now commonly called the superradiance of excitons, and are related to
the surface stales ol exatons. The main reason [or the suparradiant. radiative decay ol
surface excatons is their mmsiability with respect to the emission ol surlace states due o
the absence of translational symmetry in the direction perpendicular to layers of systems.
Calculations within NLA can also predict only one superradiant radiative decay rate ol
exciton in the above systems. lor a long time, experimental observations have been
in agreement with NLA calculations. [lowever, with the rapid development of advanced
mampulation technologies [or serniconductors and organmce materials we are able Lo observe
delicate structures of elementary excitations near the band edge in the spectrum and their
dynamics. For example, delicale struetures in the refllection and luminescence spectra of
anthracene crystals obscrved by Nozne et al [7] have shown that there are two dillerent,
surface states of excitons. and their energy levels are 25310 & Lem ™! and 23107.2 £ om ™,
and the bulk excitonic energy level is Tocated at 25097arn =" Correspondingly, the energy
dillerences ol the flivst and scecond surlace excitons with respect 1o the bulk one are 4; =
w) — Iy = 213 £ lem™ and dy = wy — Ly = 10.2 £ 0.2cm™ !, respectively, llere
wi(wy) and Fy arce the encrgies of the fivst(sccond) surface exeiton and the bulk one,
respectively. Another remarkable example of these delicate properties is the experimental
observation of Aaviksoo et al [8] of the superradiance of 2D I'renkel excitons in multilayer
organic quantum wells (MOQWs). ITn Rell [8]. by means of a time-resolution technique,
picosecond time scale measurements at low temperature have shown superradiant decays
of = 2 psec for the first surface layer exciton and = 15 + 2 psec for the exciton from the
sccond surface layer. Those delicate structures observed by Nozue et al [7] and Aaviksoo cf,

al [8] cannot be understood in the framework of NLA where calculations can predict only
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one surface energy level and one superradiant radiative decay rate ol that surlace exciton.
Recently, there has been an NLA theory for excitonic surface states in nonsymmetric finite

5]. T such systems, as the two-lold degeneracy no longer exisis, the sysiem

systems [1
may have two different surface states, even in NLA. The theory in Rel. [135]. however,
cannot predict the delicate structures mentioned above. Very recently, we have developed
a sceond nearest layer approximation theory [or exctonic surface siates 1 a symmelric
system [16]. In 1ef. [16] we make the first comprehensive classification of all classes of
states within the NSLA and have successfully applied it to explain the above properties.
In fimte systems within the SNLA we need 1o solve five dillerence equations which are
complicated and not very useful in applications. Moreover, in the experiments carried out
by Nozue at al [7] and Aaviksoo et al [3] the number of layers in the samples are large for
these systems Lo be considered as sermimfliniie. In such sitnations we need 1o consider only
three difference equations instead of five as in Ref. 16, and the application to realistic
situations becormes simpler. We present here a SNLA theory for excitonic surlace siales
[or serniinfinmite systems of molecular crystals and mvestigate the behavior ol the fivst and
second surface states. The main reason for the delicate structures mentioned above can
be understood physically i the ramework of SNLAD Our theory s valid (or molecular
crystals in general, however, we will concentrale on the case ol anthracene crystal becanse
the delicate properties were observed in that material [7,8].

Lt us consider a sermiinlinite system composed ol parallel infimice molecular layers
with the interlayver spacing . It is assumed that an excitation in a molecule interacts
with other molecules in the ground state and propagates via dipolar interactions only. The
clectrie field ol a lTayer ol dipoles [alls ofl very rapidly with perpendicular distance [rom
layer. Accordingly, we take into account the first and second nearest layer interactions
only.

The Hamiltonian of the systems can be written as [ 1-4,15,16] -

m#n

where BL?(B??E) is the creation (annihilation) operator of a two- dimensional exciton in
the nth layer with energy £, ( 0 (k) and two-dimensional wave vector l: and M.,... 15 the
malrix clement for the {ransler ol the excitation [rom the nth to the seth layer. In
NLA. M., has two equivalent contributions f£4,, .1, and [2d,, ,_, regarded as the nearest
layer interactions. In SNLA., it has four contributions, i.e.., two of the nearest layer
interactions, and two others S, 40 and Sé,, .2 which are regarded as the sccond nearest,
layer interactions. 2 and S are called the nearest and second nearest layer interaction
pararncters, respeclively. As only the fivst and second nearest layer interactions are taken
into account, il can be assumed that the system consists ol only two surlace lTayers, one

first top-surface layer {called the first layer) with energy ££(£) and one second top-surface



layer (called the second layer) with energy Fa(k). The other layers of the system are given

the same energy £, 55 = L&) and are called internal layers. llere, it should be noted that
E-'.,-i_(\;;_) 15 Lhe energy of the excaton in the nth Tayver ignorimg the transfer encrgy belween
layers.

When the interlayer interactions are taken into account, an excitation can propagate
(rom layer 1o layer. As a result. the excitation belongs 1o the whole systerm rather than o
separate layvers. In this case the eigenfunction of the whole system can be written as

v

Wp =" vulk)BII0 >, (:
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where the envelope functions ¢, (%) are to be determined so that the Schrédinger equation

HIIIE = ;'.Ug_:'\pg_: {5)
is salislicd with wp denoting the cigenenergy ol the whole structure (with 2 = 1), Sub-

stituting 3q. (1) and (2) into Lq. (3) we get the following three difference equations for
the eigenenergy w and the envelope function of the eigenstate i, ( the wave vector k of

the motion in layer plancs is omitted (or brevity [rom now on )

(‘:"'? - Ere,}s‘jh. = R(H‘j?'@.‘f’l + i.f-/:'re—l) + S(;re-{—? + ipre—?)v lor n > 2 {_L)
(w—=LY)pr = Lpa+ Sea. (5)
(w — Fa)ye = Rlpr+p3) + Sea (6)

Eq. (4) is the general dillerence eguation in SNLA, and Fgs. (5) and (6) are boundary
conditions ol the system under consideration. Note that m a [inite systern there are lour
boundary conditions.

Using the standard method of solving dillerence equations [5.15.16] we [irst look [or the

general solution of Eq. (4) in the lorm ol a lincar combination of four lmctions x, x*, &~
and "7, where the function = has the following form
& = expli(p + iv)nd], (7)

and then require that it satisfies the boundary equations. In Fq. (7) p and 5 are real
quantities and their allowed values are to be determined by solving combinations of Liq.
(4) with Eqs. (5.6). The substitution ol the general solution into Fe. (4) and the use of
(T) gives .

w — by = 20 cos[(p + iy)] 4 25 cos[2(p + #v]]. (8)
Hercalier p and 4 are nsed in the unit of the interlayer spacing d. Fq. (8) is a sccond
order cquation in cos(p + 4v). Henee, [or the fixed value of w we have two pairs ol (p, )

satisfving the equation as long as S is finite. This is the first difference between SNLA and
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NLA. The dispersion relation wip, ) of the exciton is determined by nsing the allowed
values of (p.v) in Lq. (8). in general, or in Liqs. (10-12) for each class of state as we do
below. Because w, Fy, B and S are real quantitics, the immaginary part m the right-hand

side of Fq. (8) must vanish, Teading to the following condition for p and ~ :
sin(p) sinh(~ )[R 4+ 45 cos(p) cosh{+)] = 0. (9)

Substitution of the general solution into the difference equation (4) and the use ol Eq.
(9) leads to the following possibilities :

e Case (1) : p # 0.v =0, and the cigenencrgy is given by
w = Fo+ 2R cos(p) 4 25 cos(2p). (10)
e Case (ii) : v # 0,p = mj (j integer), and the cigenenergy is given by
& = Fu+ (<1 P 2R cosh(+) + 28 cosh(24), ()
e Case (iii) : K+ 45 cos(p) cosh(v) = 0. and the cigenenergy is given by
w = Iy + 242 cos(p) cosh(~) + 2.5 cos(2p) cosh(2+). (12)

In our previous paper [16] we have proved that there are two classes of band states
and three classes ol surface states depending upon the ratio |R/45| and a classilication of
states is necessary. In [16] we only deal with a model. symmetric finite system. llowever,

the classification presented in that paper is based on the cigenenergy equations (10-12),
which apply to both semunlinite as well as symmetric inile systems. Therelore, we nse
this classification here and concentrate on the three classes of surface states.

Encrgically, [tom Fes. (10-12) we have live classes ol states [16]: (p, p")- and (p,~)-
band states (BS), (v7.~7)-. (v7.~7")- and (p. ~)-surlace states (85). depending upon the
ratio [f2/15]. Llere, it should be noted that the energy region extended by the eigenenergy
[unction w in Fq. (10} is the band energy, and the corresponding states must be classilicd
as the band states. lior brevity. let us look at I'igs. la and 1b, which are the energy
schemes for systems with [£2/15]| < | and |£2/45| > 1, respectively. It can be clearly seen
(rom Fig. Ta that in the band encrgy region Bl there are two values p and p’ corresponding
to one value of eigenenergy w. Consequently, the corresponding states in this region are
clagsified as the (p, p')-BS. Similarly. states belonging to B2 are classified as (p,+)-BS. In
Rell [6] Mahan and Obermair discussed only one class of states which are just the (p, p')-
BS above. This class of states appears if the condition [£2/15| < | holds. Therefore, if
we consider only the (p. p/)-BS we do not have enough information about the band stafes

ol the systems. Tn Fig. 1h (with |R/4S5] = 1) there is only one band encrgy region B2 of

(p,¥)-BBS. Regarding the surface states, we have three classes 1 S1 is the energy region of
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class (v7,7'7)-55 as in this region. corresponding to one value of w (given by Eq. (11)),
there are two values of v and ~" with the same integer value of j satisfving the sign rule
(—1)7 Sign{ R)Sign(S) = —1 (sign mule 1). Similarly, we classily stales corresponding lo
cnergy regions 82 and 83 are classes of (77, 7'77)-85 and (p, v)-58. respectively. Tn the case
of class (v7,75)-SS, 7 and ' must satisfy the sign rule 2 as (—1)/(—1)" = —1. ln I'igs.
Ta and 1b, the quantities £y = 2(|R| —|5]), 2 = 2(|R|+]5]) and Q,, = (R* +85%)/4]5].

Now let us investigate the surface states of the system. I'irst, we determine the allowed

states, i.e.. the allowed values of (p,v) (called allowed values) defined in liq. (7) as well
as the envelope funciions ol cigenstales ¢, . We then consider the behaviour of the surlace
states and evaluate the delicate structures related to the surface states. I'rom the general
solution of the difference equation, it is easy to establish the following forms of the envelope

[unctions lor three surlace classes as [ollows

O (_,}.. J‘ _,}._! J ) — (_ J_} Ty [ e 4+ afl E_—'ﬁ.’:.-’ } : ( 13)
L {,-U, \ ﬁ.’:f,]"‘r ) — ( ] } w s ¢TI 4 { 1 )re " 0:; (._:—'.l's.’;.-"' : (I 4)
enlpy) = [ az cos(pr) + a sin(pn) }(;_'””": (15)

where a;{al) are coefficients of envelope functions which must be determined.

At this point we wish 1o stress thal in their famous paper [3] Koster and Slater
predicted that there are only two classes of surface states, one is characterized by fwo
pure imaginary values, { (7,5)-55 ). and the other is characterized by one complex value
ol wave vectors [ (p.v)- 89 ). However, as can be proved analytically [rom Fqs. (10-12)
and clearly seen from l'igs. la and 1b, there are three classes of surface states and in
cases ol two classes, (7,77 )- and (77,4'7)-55, besides two pure imaginary values ol wave
veclors (v, 4], we have o use integer values 7 (and ') 1o deseribe the surface states.
In these cases, the integers j and 3’ play an important role in the forms of sign rules 1
and 2 above. Another argument ol Noster and Slater s that they predicled the encergy
levels of states belonging to (v,~')- and (p.~)-SS are always located in opposite sides of

v
the band energy. This means that, if the energy levels of (~

¢, ~)-SS are above the top of
band cnergy, then the energices of (p, ~)- 8S are below the bottom ol band energy, and vice
versa (see I'ig. 3 in Ref. [3]). As can be seen clearly from I'igs. la and Lb, {(vj,+'f')- and
(p,¥)-5S are always located on opposite sides of band energy, but (v7.+'7)- and (p. +)-SS

5] were [ormally based

arc on the same side. In [act, the argument ol the authors in Rel. |
only on the eigenenergy equation Liq. (10). They did not have any concrete conditions
like the Fq. (9) above,

Substituling the envelope [imctions into boundary equations, c.g.. Fgs. (5

5,6}, with

the use of Ligs. (10- 12) we obtain equations which can determine the allowed values



ol our systems (called state cquations). Numerically solving these stale equations of
all classes, we obtain some conclusions about the number of surface states as well as
their characienistics depending not only on the absolute values but also on the signs of
paramcters B, 5, Ay = iy — Fyp and Ay, = Fy — Fy as lollows:
(a). [£2] > |A|| : no surface states
(b). JAL] > |R] > |Az] « one surlace state.

bl. Sign(S) = Sign(A,) : surface state belong to (vj. ') or (p,v)-SS.

b2, Sign(S) = —Sign{A)) : surface state belong to (vj,+'j")-SS.
(c). |A] > |A;] > |R] @ two surlace stafes.

cl. Sign(S) = Sign(A,) ¢ surface states belong to (v7.~')- and/or (p.v)-SS.

c2. Sign(S) = —Sign(A) : surface states belong to (7, 37)-SS.

The surface encrgy levels are below (above) the botiom (top) of band encrgy 105 >
0{< 0) in cases (bl) and (cl), and vice versa in cases (b2) and (c2). Note that the number
ol surface stales ol the systems may be changed depending upon the material parameters.
The ratios of [R| to [Aq] and |Ay| decide the number of surlace states, while the signs of
S and A play an important role in determining the class of surface states, as well as the
location ol surface encrgy levels comparing with the band energy ones. In the cases (a)
and (b) the physics is the same as in NLA. The new, and delicate properties come [rom
case (c) in which the surface states are distingnished as the first and second ones. The
lirst. surlace states have energies higher (lower) than those ol second ones il surface states
are above (below) the top (bottom) of the band energy. The first and second surface
states may belong to the same class of states, but they may also belong to two different
classes.

Once we have the allowed values of states, we can get the eigenenergy from Liqgs.
(10-12). and then nse the boundary equations and the normalizalion requirement |U]? =
Sonlenl? = 1 1o determine the cocllicients g, af. The envelope functions ol all classes
are then determined. The behaviour of the first and second surface states is described
in Fig. 2 with the parameters corresponding 1o anthracene crystal [8,16,17], 1.c. Ay =
—204em™", Ay = —bem™', R = —bem™" and § = —0.623crn~". As can be cdearly seen
from I7ig. 2. the first surface states (in this case belonging to (p.~)- SS) are strongly
localized in the fivst surlace layer, and the amplhitude ol the envelope funciions 1s very
small at the second surface layer, and nearly equal to zero in the remaining part of systems.
The envelope function of the second state (in this case - (v7.+'7)-SS ) behaves as a damped
oscillation. Tis amplitude is very small at the livst Tayer, has a maximum at the sccond
and is damped oscillating into layers far from the face of the system. The behaviour of
the first and second surface states described above is very useful in understanding why
the lirst and sccond surlace excitons show the dillerent radiative decay rates observed by

Aaviksoo et al [8] as well as the differences between the surface and bulk energy levels as



in the experiment of Nozue el al [T]. One can sce that the fivst excitonic surface stales
are strongly localized at the first surface layers, and nearly vanish over the other parts
ol the systems. Therelore, these stales can radiatively decay emitiing a radiation ficld
ontside the systems with a large osallator strength due 1o coherent superposition ol the
transition dipole moments at each layer. lts strongly localize behaviour at the first layer

the mam reason lor the large encrgy diflerence between the flivst surlace stale and the
band (propagation) one. The second states are less radiative than the first ones because
the oscillating behaviour of the envelope function partially cancels out the transition
dipolemoment ol cach Tayer. This oscillation behaviour also makes the energy level of
second states similar to that of band states or the propagation ones.

We are now in a position to evaluate quantitatively the delicate structures of energy
levels as well as of the superradiance ol surlace exctons in an anthracene crysial. We
choose the material parameters corresponding to the crystal as mentioned above A, =
—204em=" Ay = —6em™', R = —dern™', and § = —0.625¢rn~". The discussion above
aboul the behavionr ol livst and second surlace stailes s apphicable 1o 1he system. There
are two surface energy levels in both systems. Once we have set of the material constants
A1, Ag, R, 5 we then solve the stale equalions 1o gel these allowed values, and the
cigenencergies. The envelope luncltions gy, of allowed surlace stales can also be obtained
(7 = 1.2 indicates the first and second state). The radiative decay rates of i - state exciton
can be expressed 1 term ol the clectrie dipole moment of the total system f_j: =3 i
and the envelope functions obtained analytically above. The transition dipole moment
ii per unit layver depends on the wave vector and the coherent range of the excitation

the plane. Here, however, we assume the constant g both [or the first and sccond
surface excitons and for each layer because the radiative decay of exciton with the in-
planc wavevector nearly equal 1o zero 1s dominani. Then the relative magnitude of the
radiative decay rates imvolves only the envelope lunctions ol the fivst and sccond surlace

excitons 2y, and wy, [16,18] :

N |_fj| |2 _ 11()(L-x/1!-\}2| Z'.l'i. L'r'9l_.1ri,|2 _ | Z'."i- L.r'9|_~?'1|2 (16)

B - |.ﬁ2|2 Lol L7 /u)?| 3, 020 | > 90|

lHere. I'/(I';) is the radiative decay rate of the first (second) surface exciton. £* is the

coherent length ol the two-dimensional exciton, T'g 1s the radiative decay rate ol a single
molecule and wu is the size of a unit cell. Numerical calculations with material parameters

of anthracene we obtain p = 1.79335 and v = 2.8941 for the first state (p.-j-'\}—SS)

giving 8 = 204 1dem ™', and ~ = 0.53517 and 4" = 1.7094 giving éy = 9.45em™" lor

the second one (-}-‘j,-}-";‘,i\}—S% and 1 /I'y = 7.6. As already mentioned above the values
& =213 £ Tem™" and 8, = 10.2 £ 0.2arn~" were observed by Nozue et al [7], and the
difference in radiative decay rates Ty /Ty ~ 8 was observed by Aaviksoo et al [8]. Using

1

the anthracene parameters as L* = 7004, 'y = 2 x 108sec™! and u = TA, the values



ol radiative liletimes for the fivst (73 = 1/T1) and sccond surlace excitons (T, = 1/T3)
can be estimated to be of an order of 1 picosecond and 10 picosecond, respectively. We
neglect the nonradiative channels which is justified becanse the obscrved dephasing rate s
ol the same order of magmitude as the estimated radiative decay rate for the livst surlace
exciton.

Al this pomt there arises a guestion about the role of 5 as we already know the
importance of £? in conditions under which surface states may appear in systems. Let us
consider S = 0 in the case {vj,4'7)-SS. The following argument is valid for all classes.
Substituting the envelope function (13) into Fq. (6). we obtain an cquation ol the form
Aypy =011 5 = 0. In this case if Ay # 0 then 3 = 0 then from Liq. (3) (with 5 = 0)
= | = 0 then from 15q.(6) (with & = 0) = vy = 0. and then from Liq. (1) (with & = 0)
we have g, = 0 [or all n. Therclore, Ay must be equal Lo zero 105 = 0. Tn other words il
Ay £ 0 then S # 0. Because of that, if we need to understand the delicate structures due
1o the diflerence beiween the fivst and sccond surlace Tayers, we should take imto acconni,
the scecond nearest Tayver imteraction, 1.e., the SNLA.

In conclusion we have investigated theoretically the delicate properties of excitonic
surface states within the SNLA theory m semiinlimiie multilaver molecular erystals. We
have [ound that there exist two kinds of exatonmice surlace states 1 crysials which have
material parameters satisfyving |A | > |Aq| > |£2]. This is the reason for the delicate
properlies ol energy levels as well as the superradiant decay rates of surface excitons. The
experimental observations of energy levels and the superradiance of surface excitons in
anthracene can be understood by the same equal footing. l'urthermore, the semiinfinite

model presented in this communication scems 1o be uselul in applications.

Acknowledgments
I am deeply grateful to Professor L5, llanamura for his guidance in studying this sub-
ject. [ would also like to thank Dr. Y. Nozue, Dr. Y. Segawa for valuable discussions
and Prol. P.N. Butcher for a eritical reading ol the manuscript and lor his encouragment..
This work was done within the framework of the Associateship Scheme of the Interna-
tional Centre for Theoretical Physics, Trieste, Italy. I'inancial support from the Swedish
International Development Cooperation Agency 1s acknowledged. This work was partially

supported by the National Research Programme on Basics Sciences.

9



6.

8.

9

10.

References

. Sugakov, V. L, Sov. Phys. Solid State 5, 1964, 1607 ; 14, 1973, 1711,

Tovsenko, V. 1., Chem. Phys. Lett. 68, 1979, 483.
stern, LS. and Green, M. F., J. Chem. Phys. 56, 1973, 2507.

Ueba, 11. and Ichimura, S., J. Phys. Soc. Jpn. 41. 1976, 1975; Ueba, 11., J. Phys.
Soc. Jpn, 43, 353 (1977).

Koster, G. I'. and Slater, J. €., Phys. Rev. 95, 1954, 1167.

Mahan, (i. D. and Obermair, (., Phys. Rev 183, 1969, 1982,

. Nozue, Y., Kawaharada, M. and Goto, T., J. Phys. Soc. Jpn 56, 1987, 2570.

Aaviksoo, Ya., Lippmaa, Ya. and Recinotl. T., Opl. Specirsk. 62, 1987, 706; J.
Lumin. 37. 1987, 313.

9. Agranovich, V. M. and Dubovskr, O. AL, JETT Letiers, 3, 1966, 223

Hanamura, K., Phys. Rev. B38, 1988, 1228,

. Andreani, L.C'., Tassone, I, and Bassani, ., Solid State Commun. 77, 1990, 611.
. Fidder, H. and Wiersma, ). AL, Phys. Rev. Lett. 66, 1991, 1501

. Tokihiro, T., Manabe, Y. and Hanamura, F., Phys. Rev. 47, 1993, 2019,

1. Suzuura, 11., Tokihiro, I'. and Ohta, Y., Phys. Rev. B49, 1991 13441.

5. Nguven Ba An and [lanamura, [2., Mod. Phys. Lett. B9, 1995, 1609; J. Phys.

Conden. Matter 8, 1996, 2273,

3. Nguven Trung Dan and [lanamura, I°., Phys, Rlev. B54, 1996, 2739,

7. Philpoti, M. R.. Adv. in Chem. Phys. XXTIIL 1973, 226; J. Chemn. PPhys. 58, 1973,

388; Tullet, J. M., Iottis, Ph. and Philpott, M. ., Adv. in Chem. Phys. LIV,
1983, 305.

. Hanamura, K., m Oplical Swilching in Low-Dimensional Sysicin Ed., by Haug, H.

and Banyai, L., Plenum Press, New York, 1939, p. 203.



Figure Captions

I'ig.1 Lnergy scheme of states with [#2/15] < 1. (a) : # = —1.2cm™ ! and § = —.6am~10.
(b) : £ = —3em ™! and § = —0.623cm™t. (ase (i) : energy « as function of p,

solid curve; Case (i) w as [unction of 4, dash-doticd curves. Curves (4) and (-)
correspond to (—1)/Sign(12)Sign(S) = +1 and —1, respectively. Case (iii) : w as

[unction ol p, dasched curve.

Fig.2 Behaviour of the envelope [unction of the fivst (solid curve) and sccond (dashed

curve) surface states in system [l with the same parameters as A, = —201em™!,

Ay = —bem ™!, = —3em ™ and 5§ = —0.625cm 7L,
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