
1C/97/120
http://www.ictp.trieste.iL/"pub_oir

United Nations Educational Scientific and (Cultural Organization
and

International Atomic Energy Agency

INTERNATIONAL CENTRE EOH THEORETICAL PHYSICS

ON THE DELICATE PROPERTIES OF EXCITONIC SURFACE STATES
IN MULTILAYER MOLECULAR CRYSTALS

Nguyen Trung Dan1

Department of Physics, Hue University, 3 Le Loi, Hue, Vietnam2

and
International Centre for Theoretical Physics. Trieste. Italy.

ABSTRACT

The Hiirfa.cc KJ.a.l.es of Erenkel exdt.oiiK in senninfinite KysLenis of TmiHiUiyer molecular

crystals are investigated theoretically within the framework of the second nearest layer

approximation (SNLA). it is shown that if the material parameters of crystals satisfy de-

termined coTidit.ioTiN they nmy exhibit, two kinds of (jxcitoriic Hiirfa.ee states in j.}i<; Kys(.<;in.

This is the main reason for the delicate properties of energy levels as well as superradi-

ri.il 1. decay ra.Les of Kiirface exdt.oiiK in l.}i<; eryst.i-ils. Our caiciilaLioiiK ar<; CGTripared vvitli

experiment,;-).! obKCJi'vations in anLlirricxjne eryst.rils.
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For a. long time theories of excit.onic surface; stales in multilayer molecular cryst.als

have been usually based on the nearest layer approximation (NLA) [1-1] exceptions are

Home brief discussions of the second nearest layer approximation (SNLA) [5,6]. Tlie

n^asons for t.his are l.lial. the; inl.erlayer interaction falls off very rapidly with increasing

separation between layers, and for a long time NLA has been sufficient to explain various

experiments. Theoretically, in the framework of NLA, systems have no surface slate if

ll\ > |A| |, where R is the matrix element for transfer of excitation between two nearest

layers, and A| is the difference between energies of the bulk and surface excitons without

la.king into account ihe transfer energy between layers. Tf |R| < |Ai| there are two (t.vvo-

fold degenerate) surface states in a symmetric finite system, and one surface state in a

semiinfinite system. As a result, there is only one surface energy level for excitons in these

systems. These surface slates are localized at the first surface layer of the system. Tl is also

well known, both theoretically and experimentally, that in reduced dimension systems the

surfa.ee excilons can decay rapidly, so that their lifelimes are of about picosecond scales

(see in Refs. [1,2,8-14] and references therein). The effecls of rapid radialive decay

of excitons are now commonly called the superradiance of excitons, and are related to

ihe surface slates of excitons. The main reason for t.he superra.dia.nl radialive decay of

surfa.ee excitons is their instability with respect t.o t.he emission of surface; Ntat.es due to

the absence of translational symmetry in the direction perpendicular to layers of systems.

Calculations within NLA can also predict only one Hiiperradia.nl. radiative; decay rate of

exciton in the above systems. For a long time, experimental observations have been

in agreement with NLA calculations. However, with the rapid development of advanced

Tna.Tiipiilal.ion technologies for semiconductors and orga.nic materials we are; able to observe

delicate structures of elementary excitations near the band edge in the spectrum and their

dynamics. Fe>r e;xa.mple. dedicate structures in the; re;f1ee:t.ie>n and linnine;se:ence; spee;lra. e>f

ant.hrace;ne cryst.als observeel by Noziie; e;t a.l [7] have; SIIOWTI t.hat. t.here; are t.vvo different,

surface states of excitons. and their energy levels are 25310 ± lem"1 and 25107.2 ± cm'1,

and t.he bulk e;xcitonic energy leve;l is located at. 25097f'm~'. Correspondingly, ihe energy

eliffe;rence;s of the; first an el se;ce)nel surface e;xcitoTis wit.h respect t.e> the; bulk one; are; Si =

u-'i — Eu = 213 ± lem-"1 and 52 = ^-i — •£-'<> = 10.2 ± 0.2cm."1. respectively. Here :

it?i(it?2) a-T)d E() are the; <;nergi<;s of t.he firsl(se;ce)nel) surface; excit.on and the; bulk one,

respectively. Another remarkable example of these delicate properties is the experimental

observation of Aaviksoo et al [8] of the superradiance of 2D Frenkel excitons in multilayer

organic quanlinn wells (MOQW's). Tn Ref. [S]. by means of a. l.iTne-r<;sohil.ion technique,

picosecond time scale measurements at low temperature have shown superradiant decays

of ss 2 psec for the first surface layer exciton and ^ 15 ± 2 psec for the exciton from the

second surface; la.ye;r. Those; <]<;lical.e strue;lure;s observed by Noziie; et. a.l [7] and Aaviksoo e(,

al [8] cannot be understood in the framework of NLA where calculations can predict only



one surface energy level and one siiperradiant. radiative decay rale of l.lial. surfaces excit.on.

Recently, there has been an NLA theory for excitonic surface states in nonsymmetric finite

sysl.ems [15]. Tn such sysl.ems. as the Uvo-fold degeneracy no longer exists, the system

may have l.vvo different, surface stales, even in NLA. The theory in Ref. [15]. however,

cannot predict the delicate structures mentioned above. Very recently, we have developed

a second nearest, layer approximation theory for ex atonic surface NJ.at.es in a symmetric

system [16]. in Ref. [16] we make the first comprehensive classification of all classes of

states within the NSLA and have successfully applied it to explain the above properties.

Tn finite Hyst.enis wit.hin t.Tie SNLA we need to solve five difference equations which are

complicated and not very useful in applications. Moreover, in the experiments carried out

by JNozue at al [7] and Aaviksoo et al [8] the number of layers in the samples are large for

l.liese sysl.eiTis t.o be considered as semiinfinite. Tn such situations we need t.o consider only

three difference equations instead of five as in Hef. 16, and the application to realistic

situations becomes simpler. We present, here a SNLA t.heory for excil.onic surface Ntat.es

for semiinfinite syslems of molecular cryst.als and investigal.e the behavior of t.he first, and

second surface states. The main reason for the delicate structures mentioned above can

be understood physically in the framework of SNLA. Our t.heory is valid for molecular

cryst.als in general, however, we will concentrate on t.he case of anthracene cryst.al because

the delicate properties were observed in that material [7,8].

Let. us consider a semiinfinite system composed of parallel infinite molecular la.yers

with the interlayer spacing d. it is assumed that an excitation in a molecule interacts

with other molecules in the ground state and propagates via dipolar interactions only. The

elect.ric field of a layer of dipoles falls off very rapidly wit.h perpendicular distance from

layer. Accordingly, we take into account the first and second nearest layer interactions

only.

The Ha.miltonia.n of t.he syslems can be writt.en as [ 1-4,15,16] :

ff = E E \^{k)BlnRilS+ £ MUkjBl^l (1)

where B ABn$) is the creation (annihilation) operator of a two- dimensional exciton in

the nth layer with energy En(k) and two-dimensional wave vector k and M.nin is the

mat.rix element, for t.he transfer of t.he excitation from t.he nt.h t.o the mth layer. Tn

NLA. Mmn has two equivalent contributions RSmtV,+ \ and R5m,n-\ regarded as the nearest

layer interactions. In SNLA. it has four contributions, i.e.. two of the nearest layer

int.eract.ionH, and t.wo ot.hers SSm_n+2 <-)T1d 5(fm,vi—2 which are regarded as the second nearest

layer interactions. R and S are called the nearest and second nearest layer interaction

pa.ramel.ers, respectively. As only t.he first and second nearest, layer inl.eracl.ions are l.a.ken

int.o account., it. can be assumed that t.he system consists of only two surface la.yers, one

first top-surface layer (called the first layer) with energy 1£\ (k) and one second top-surface
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layer (called the second layer) with energy E2(k). The other layers of the system are given

the same energy En>-i, = Eu(k) and are called internal layers. Here, it should be noted that

En(k) is the energy of l.he exciton in l.he nt.h layer ignoring l.he transfer energy between

layers.

When the interlayer interactions are taken into account, an excitation can propagate

from layer to layer. As a. result, l.he excitation belongs to the whole system rather than to

separate layers, in this case the eigenfunction of the whole system can be written as

where the envelope functions ••pn(k) are to be determined so that the Sciirodinger equation

=usVs (3)

is satisfied with ujf. denoting the eigenenergy of the whole Htruct.ure (with h = 1). Sub-

stituting Eq. (1) and (2) into Eq. (3) we get the following three difference equations for

the eigenenergy to and the envelope function of the eigenstate ipn ( the wave vector k of

l.he Tnol.ion in layer planes is omitted for brevity [rorn now on ) :

r n - 2 ) , '("• •'•'• > ^ (4)

(5)

(6)

Eq. (4) is l.he general difference equation in SNLA, and Eqs. (5) and (6) ar<; boundary

conditions of the system under consideration. Note that in a. finite system there are four

boundary conditions.

Using l.he standard method of solving difference equations [5.15.16] we first look for l.he

general solution of Eq. (4) in l.he form of a linear combination of four functions x. x*, x~l

and x"'1. where the function :r has the following form

x = exp[i{p + i-)-)nd\, (7)

and then require that it satisfies l.he boundary equations. Tn Eq. (7) p and 7 are real

quantities and their allowed values are to be determined by solving combinations of Eq.

(4) with Eqs. (5.6). The substitution of the general solution into Eq. (4) and the use of

(7) gives :

u-Ea = 211 cos[(p + i-y)] + 2S cos[2(j> + i-y)]. (8)

H<;reafter p and 7 are used in the unit of l.he interlayer spacing d. Eq. (8) is a second

order equation in COS(;J + ij). Hencx;, for the fixed value of u! we have two pairs of (^,7)

satisfying the equation as long as S is finite. This is the first difference between SNLA and
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NLA. The dispersion relation ^ (^ ,7 ) of t.Tic: exciton is determined by using t.Tic: allowed

values of (p, 7) m ^ 1 - (^)- m general, or in Eqs. (10-12) for each class of state as we do

below. Because u,1, E(h R and S are real quantities, the imaginary part, in the right-hand

wide of Eq. (8) must, vanish, leading l.o the following condition for p and 7 :

siTi(p)siTili(7)[R + 45a)n(p)«)s}i(7J] = 0. (9)

Substitution of the general solution inlo the difference equation (4) and the use of Eq.

(9) leads to the following possibilities :

• Case (i) : p ^ 0. 7 = 0, and t.Tic: eigenenergy is given by

u; = E0 + 2Ri:m(p) +25«)s(2pJ, (10)

• Case (ii) : 7 ^ Q,p = nj (j inleger), and t.Tic: eigenenergy is given by

u = K0 + ( - l ) J 2Rcosh(7 ) + 25'cosh(27), (11)

• Case (iii) : R -\- 45 cos(p) cosh(7) = 0. and the eigenenergy is given by

) + 25cos(2]j)cosh(27). (12)

In our previous paper [16] we have proved that there are two classes of band states

and t.Tiree classes of surface: Ntat.es depending upon the ratio | RjAS\ and a. classification of

states is necessary, in [16] we only deal with a model, symmetric finite system. However,

t.Tic: classification presenl.ed in that paper is based on t.Tic: eigenenergy equal.ions (10-12),

wliicTi apply t.o both semiinfinile as well as symmetric finite systems. Therefore, we use

this classification here and concentrate on the three classes of surface states.

Energically, from Eqs. (10-12) we have five classes of HJ.at.es [16]: (p,p')~ and (^,7)-

band slates (BS), (jj-.j'j)- • (jj-.Jfjf)- aT|d (p. 7)-siir[ac:.<; KJ.at.<;s (SS). depending upon t.Tic:

ratio \R/AS\. Here, it should be noted that the energy region extended by the eigenenergy

['•unction u! in Eq. (10) is t.Tic: band energy, and t.Tic: corresponding slates must be: classified

as the band states. For brevity, let us look at Figs, la and lb , which are the energy

schemes for systems with |^ /1S ' | < 1 and |Yi!//15| > 1, respectively, it can be clearly seen

from Fig. la t.Tial in t.Tic: band energy region B'l t.Tiere are two values p and p' corresponding

to one value of eigenenergy LO. Consequently, the corresponding states in this region are

classified as the ( J J , J / ) - B S . Similarly, states belonging to 132 are classified as ( JJ ,7) -13S. in

Ret". [6] Mali an and Obermair discussed only one class of slates which are just the (p, p')-

13S above. This class of states appears if the condition |^ /1S ' | < 1 holds. Therefore, if

we: consider only t.Tic: (p. ;/)-BS we: do not. have enough infoi'malion about t.Tic: band stales

of t.Tic: syslems. Tn Fig. 1b (wit.Ti |R/4,S'| > 1) t.Tiere is only one: band energy region B2 of

(]j,7)-13S. Regarding the surface states, we have three classes : Si is the energy region of



cla.ss (7J,77j)-SS as in this region, corresponding l.o one value of u! (given by Eq. (VI)),

there are two values of 7 and 7' with the same integer value of j satisfying the sign rule

(—I}7 Si(jn( R)Sign(S) = — I (sign rule 1). Similarly, we classify NJ.at.es corresponding l.o

energy regions S2 and S3 are classes of (7-j, 77j')-SS and (p,7)-SS. respectively. Tn t.lie case

of class (7J,7'j ')-SS, j and / must satisfy the sign rule 2 as ( —1):'( —1)J' = —1. In Figs.

la. and 1b, l.he <.|iianl.il,ies 9^ = 2 ( | f t | - |S ' | ) , il2 = 2(|ft| + |5|) and ilm = (R2+ SS'i)/4\S .

Now let us investigate the surface states of the system. First, we determine the allowed

states, i.e.. the allowed values of 0v7) (called allowed values) defined in Eq. (7) as well

a.s I.lie envelope functions of eigensl.a1.es y?rt.We then consider t.lie behaviour of t.lie surfa.ee

states and evaluate the delicate structures related to the surface states. From the general

solution of the difference equation, it is easy to establish the following forms of the envelope

functions for three Nurface cla.sses as follows :

(13)

v < ("14)

<pn(p, 7) = [ a 3 cos(/m) + 0:3 sin(;m) ] c"""'. ("15)

where OH(OQ are coefficients of envelope functions which must be determined.

At. t.liis point we wish t.o sl.ress that in their famous paper [5] Kost.er and Slater

predicted that there are only two classes of surface states, one is characterized by two

pure imaginary values, ( (7,77)-SS ). a.nd t.lie ol.}i<;r is chara.cl.erized by on<; complex value

of wave vectors ( (p.j)- SS ). However, as can be proved analytically from Eqs. (10-12)

and clearly seen from Eigs. l a and lb , there are three classes of surface states and in

ca.ses of two classes. (7J ,7 ' j ) - a.nd (7j ,7 ' j ' ) -SS, besides two pure imaginary values of wave

vectors (7 ,7 ' ) , we have l.o use integer values j (and j') t.o describe t.lie surface Hl.at.es.

In these cases, the integers j and / play an important role in the forms of sign rules 1

a.nd 2 above;. Another argument, of Koster a.nd Slat.er is t.hat. t.hey predicted t.lie energy

levels of states belonging to (7,7 ' )- and (p. 7)-SS are always located in opposite sides of

the band energy. This means that , if the energy levels of (7. 7')-SS are above the top of

band energy, then the energies of (p. 7)- SS are below t.lie bott.om of band energy, and vice

versa (see Eig. 3 in Ref. [5]). As can be seen clearly from Eigs. la and lb . ( 7 ^ , 7 ' / ) " an<^

(p,7)-SS are always located on opposite sides of band energy, but (7,7. 7'j)" a n < i (P-7')"^^

ar<; on t.lie same Hide. In fact, t.lie argument, of t.lie aut.hors in Ref. [5] were formally ba.sed

only on the eigenenergy equation Eq. (10). They did not have any concrete conditions

like t.he Eq. (9) above.

Substituting the envelope fnnct.ions int.o boundary <;quat.ioTiK, e.g.. Eqs. (5,6), wit.h

the use of Eqs. (10- 12) we obtain equations which can determine the allowed values
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of our systems (called stale equations). Numerically solving t.hcse; slate: equations of

all classes, we obtain some conclusions about the number of surface states as well as

llieir e;harac:.tc:rislic:s depending not, only on t.Tic: a.bse)lule; values but, also on t.Tic: signs of

pa.ramc:le;rs R. S, Ai = Eo — Ei and A2 = £o — ^2 <-)S follows:

fa). I if! I > |A | | : no surface states

(b). |Ai | > \R\ > |A2 | : one surface stale.

bl . Sign(S) = Sign(A\) : surface state belong to (7,7. 7 ' / )- o r Gv7)-SS.

b2. Sign(S) = —Sign(A\) : surface state belong to (O'j, V y ) " ^ -

(c). |Ai | > |A2 | > |R| : two surface; stakes.

c l . Sign(S) = Sign(A\) : surface states belong to (7,7. 7 ' / )- and/or (p. 7)-SS.

<:2. Sign(S) = — Sign(A\) : surface states belong to (O'j, V y ) " ^ -

The: surfaces e;nc:rgy levels are below (above;) t.Tic: boltom (lop) of band energy if S >

Of < 0) in cases f bl) and (cl), and vice versa in cases (b2) and fc2). Note that the number

of surface; slates of t.Tic: syslenis may be; changed depending upon the material parameters.

TTic: ralios of | R.\ t.o |Ai | and IA2I decide; t.Tic: number of surface slates, while the; signs of

S and A| play an important role in determining the class of surface states, as well as the

location of surface; e;nergy le;vels comparing wit.Ti t.Tic: band c:ne;rgy one;s. Tn t.Tic: e;ase;s (a.)

and (b) t.Tic: physics is the; same; as in NLA. The new, and dedicate propc:rtic:s come from

case fc) in which the surface states are distinguished as the first and second ones. The

first surfae;e stale;s have; e;nergie;s higher (lower) than t.Tiose; of se;ce)nel one;s if snrfac:e; stale;s

are above (below) the top (bottom) of the band energy. The first and second surface

states may belong to the same class of states, but they may also belong to two different

e;lasses.

Once we have the allowed values of states, we can get the eigenenergy from Eqs.

(10-12). and the;n use: t.Tic: boundary equations and the; normalization re;quire;me;nt \^\l =

J2n I'rn-\2 = ' li° determine; the; e;oe;ffie;ic:nls f.v.;. a ' . TTic: e;nvc:lopc: liinct.ionK of all c:lasse;s

are then determined. The behaviour of the first and second surface states is described

in Fig. 2 wit.Ti t.Tic: parameters corresponding to ant.Tirac:.<;nc: c:rystal [8,16,17], i.e;. Ai =

— 204f"m,~', A2 = — (j(;m,~l. R = —5cm~' and S = — 0.62.;K.™~' . As c:an be: c:le;a.rly se;e;n

from Tig. 2. the first surface states fin this case belonging to (p. 7)" ^ ) a r e strongly

loc:a.lize;d in t.Tic: first surface; la.ye;r. and t.Tic: amplitude: of t.Tic: envelope; fune:.tienis is vc:ry

small at the second surface layer, and nearly equal to zero in the remaining part of systems.

The envelope function of the second state (in this case - (7;;. 7'j )-SS ) behaves as a damped

oscillation. Tts ampliluele; is very small at. t.Tic: first la.ye;r, has a maximum at the; sc:e:ond

and is damped oscillating into layers far from the face of the system. The behaviour of

the first and second surface states described above is very useful in understanding why

t.Tic: first and se;ce)nel surface; e;xcitons show the; different, radialive dee;ay rates observed by

Aaviksoo et al [8] as well as the differences between the surface and bulk energy levels as
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in t.Tic: experiment, of Nozuc el. al [7]. OTIC can sex; that the; first, exe:it.e>Tiie: surface; sta.le;s

are strongly localized at the first surface layers, and nearly vanish over the other parts

of t.Tic systems. Therefore;, these SUII.CN can radiat.ively dee:a.y CTnil.l.ing a. radiation field

outside l.Tic Kyst.<;nis with a. larg<; OHcillator NJ.r<;Tigl.Ti dn<; t.o coherent superposition of t.Tie

transition dipole moments at each layer. Its strongly localize behaviour at the first layer

is l.Tic main re;ason for l.Tic large energy difference bel.vveen 1.1K; first NTirface slate; and t.Tie

band (propagation) one. The second states are less radiative than the first ones because

the oscillating behaviour of the envelope function partially cancels out the transition

dipolemollient of each la.yer. This oseilla.t.ion behaviour also makes 1.1K; energy level of

second states similar to that of band states or the propagation ones.

We are now in a position to evaluate quantitatively the delicate structures of energy

levels as well a.s of the superradia.Tice of surface; excitons in an aTil.hra.cene crystal. We

choose the material parameters corresponding to the crystal as mentioned above A | =

— 204cm~' A2 = — 6r.™~', R = —bc:rn~\ and S = — 0.625f'm~'. The discussion above

about t.Tie behaviour of first and second surface; slates is applicable to the; system. There;

are two surface energy levels in both systems. Once we have set of the material constants

Ai , A2. R, S we; t.hen se>lve t.Tie st.al.e ee.|ual.ions t.e> get. the;se a.llenveel value;s, and t.Tie

eigene;Tiergie;s. The emvelope functions <p{.n of a.llenveel surfa.e;e slates can also be; obl.aine;d

(i = 1. 2 indicates the first and second state). The radiative decay rates of i - state exciton

e:an be; exprcHseel in le;rm of t.Tie elee:t.rie: elipe>le; memiemt e>f t.Tie t.oi.a.l system P:t = Y^r,.fr'in

and the envelope functions obtained analytically above. The transition dipole moment

ft per unit layer depends on the wave vector and the coherent range of the excitation

in the; plane;. Here;, Tiowe;ver, we; assume; the; e;onsla.nt fi be>l.h for t.Tie first, a.nel see:ond

surface excitons and for each layer because the radiative decay of exciton with the in-

plane; wave;ve;e;le)r TIearly e;enia.l t.e> z.ere> is dominant. Them the; relat.ive ma.gniluele; of t.Tie

radiat.ive ele;e:a.y ra.le;s involves OTI 1 y t.Tie emvelope fune;lie)ns of the; first, a.nel se;e:e)nel surfa.e;e;

excitons ^in and ^2« [16,18] :

p 2

2

Here. lM'lY) is the radiative decay rate of the first (second) surface exciton. L* is the

e;ohe;re;nl lemgt.Ti e>f the; twe)-dime;Tisiona.l e;xe:iton, Y'o is the; radiative; dee:a.y rat.e; of a. single;

molecule and it is the size of a unit cell. Numerical calculations with material parameters

of anthracene we obtain p = 1.79335 and 7 = 2.89-11 for the first state f ( J J , 7 ) - S S )

giving 8-L = 204.14cm-', and 7 = 0.53517 and 7' = "1.7094 giving S2 = 9.45cm"1 for

the second one (7J;7',;)-SS) and Y\jY-2 = 7.6. As already mentioned above the values

Si = 213 it If-m,"1 and S2 = 10.2 ± §.'lcm~x we;re e)T>se;rve;d T>y Nozue; el. a.l [7], and t.Tie

difference; in radiative; ele;e:a.y ra.le;s F i / r 2 ~J S was observeel T>y Aavikse>o el. a.l [8]. Using

the anthracene parameters as L* = 700A, l\j = 2 x 108.se":c~1 and u = 7A, the values
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of radiative lifetimes for t.Tic: first, (7"i = "I /P i ) fi.n<] second surfa.ee: excitons (T2 = I/T2)

can be estimated to be of an order of 1 picosecond and 10 picosecond, respectively. We

neglect t.Tic: nonra.diative clia.nnc:ls which in jnst.ific:<1 because the observed dephasing rate: is

of the same order of magnitude as t.Tic: estimated radiative decay rate for the first surfa.ee:

exciton.

At, this point there arises a question about, the role of S as we already know t.Tie

importance of R in conditions under which surface states may appear in systems. Let us

consider S = 0 in the case (7J,7'j)-SS. The following argument is valid for all classes.

Substituting the envelope function (13) int.o Eq. (6). we obt.ain an equation of t.Tic: form

A2^2 = 0 if S = 0. In this case if Ay ^ 0 then ^ = 0 then from Eq. (5) (with S = 0)

=>• ̂ i = 0 then from Eq.(6) (with S = 0) =>• ̂  = 0. and then from Eq. (1) (with S = 0)

we: have ^n = 0 for all n. Therefore. A2 must, Tx; equal to zero if S = 0. ^T\ ot.Tier words if

A2 ^ 0 then S ^ 0. Because of that, if we need to understand the delicate structures due

t.o t.Tic: difference between t.Tic: first and second surface layers, we should take int.o account

t.Tic: second nearest layer inl.eracl.ion. i.e., the SNLA.

In conclusion we have investigated theoretically the delicate properties of excitonic

surface: Ntat.es within the SNLA t.Tieory in semiinfinitc: multilayer molecular cryst.als. We

}iav<; found that t.Tiere <;xist. two kinds of <;xc:.itonic surface: st.atc:s in crystals which liave

material parameters satisfying |A| | > |Ay | > \R\. This is the reason for the delicate

properties of energy levels as well as t.Tic: superradianl. decay rates of surfa.ee: excitons. The

experimental observations of energy levels and the superradiance of surface excitons in

anthracene can be understood by the same equal footing. Eurthermore, the semiinfinite

model presented in this com mini icat.ion H<;<;TVIS to be: iiN<;fnl in applie:ations.
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Figure Captions

Eig.l Energy scheme of states with |Yf!//15| < 1. (a) : R = —1.2cm."1 and S = — .6CJ?I~ 1 0.

(b) : R = — 5cm" 1 and S = — 0.625cm"1 . Case (i) : energy u> as function of p ,

solid curve; Ca.se (ii): u! a.H [inic.J.ioTi of 7, <la.sh-doU.ecl curveK. Cnrv<;s ( + ) a.n<] (-)

correspond to ( —1) JSign(R)Sign(S) = + 1 and — 1 , respectively, ("ase (iii) : u; as

[inicl.ioTi of p, da.K<;lie<] <:nrv<;.

Fig.2 B<;liavionr of l.lie envelope [inicl.ioTi of l.h<; fii'KJ. (solid <:nrv<;) and K<;COTI<1 (<la.sh<;d

urve) surface states in system 11 with the same

2 = — 6cm"1., R = — 5cm" 1 and S = —0.625cm"1.

curve) surface states in system 11 with the same parameters as A | = —20-lr.m"1,
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