
Towards Virtual Shared Memory for Non-Cache-Coherent Multicore Systems

Bharath Ramesh, Calvin J. Ribbens
Center for High-End Computing Systems

Department of Computer Science, Virginia Tech, Blacksburg, VA 24061
Email: {bramesh,ribbens}@cs.vt.edu

Srinidhi Varadarajan
Dell Inc.

Email: Srinidhi Varadarajan@dell.com

Abstract—Emerging heterogeneous architectures do not nec-
essarily provide cache-coherent shared memory across all
components of the system. Although there are good reasons
for this architectural decision, it does provide programmers
with a challenge. Several programming models and approaches
are currently available, including explicit data movement for
offloading computation to coprocessors, and treating copro-
cessors as distributed memory machines by using message
passing. This paper examines the potential of distributed shared
memory (DSM) for addressing this programming challenge. We
discuss how our recently proposed DSM system and its memory
consistency model maps to the heterogeneous node context, and
present experimental results that highlight the advantages and
challenges of this approach.

Keywords-virtual shared memory; cache coherence; memory
consistency models; multicore systems

I. INTRODUCTION

Shared memory thread-based programming (e.g.,
Pthreads, OpenMP) has been the popular programming
approach for intra-node parallelism. However, emerging
node architectures are both highly parallel and increasingly
heterogeneous. Furthermore, these emerging heterogeneous
architectures do not present the programmer with a
cache-coherent view of shared memory at the level of
the individual node. It is not clear what programming
model is best for these node platforms, which feature
multiple traditional processors along with accelerators
or coprocessors. One response to the lack of node-wide
shared memory is to use the message passing model within
a node, essentially viewing each node as a cluster-on-a-
chip. Unfortunately, this means giving up the advantage
of the shared memory that typically is available within
some components of the node. Furthermore, the amount
of memory per core in coprocessors is typically low.
So treating the cores of the coprocessor as nodes of a
mini-cluster, and not fully using the much larger memory
associated with the host or general purpose CPU, severely
limits the size of problems that can be solved. Another
programming option is to completely offload computation
to the accelerator or coprocessor. This allows the code
running on the coprocessor to take advantage of the
programming model that works best for that coprocessor
(e.g., thread-based), but it still requires the programmer to
manage moving data to and from the coprocessor.

PCI express bus

Co-processor

co
m

p
u

te

th
re

a
d

co
m

p
u

te

th
re

a
d

co
m

p
u

te

th
re

a
d

.

Host CPU
m

e
m

o
ry

se
rv

e
r

m
a

n
a

g
e

r

Figure 1. Architectural view of Samhita system consisting of memory
servers and managers executing on the host processor, which provide a
consistent shared address space for compute threads executing on acceler-
ators or coprocessors connected over the PCI express bus.

Many have noted that the shared memory programming
model is easier for most programmers, compared to explicit
message passing in MPI [1]. Furthermore, with the rapid
adoption of multicore and many-core architectures at all
levels of computing—from mobile devices to laptops and
high-end servers—there is is a large and growing ecosys-
tem of shared memory programmers. Thus, we have two
opposing trends. On the one hand, programming conve-
nience and the existence of some shared memory argues
for a shared memory programming model across the en-
tire heterogeneous node. On the other hand, increasingly
parallel and heterogeneous nodes that lack cache-coherent
shared memory are pushing us towards the message passing
programming model.

This is not the first time the computing community has
faced these kinds of conflicting priorities and trends. Almost
since distributed memory clusters first appeared, researchers
have explored ways to provide virtual shared memory, or
distributed shared memory (DSM), over such systems. The
motivation and challenge are very similar to the present case:
programming ease prefers one model, but peak performance
(by some measure) prefers another. The goal of DSM sys-
tems is to provide shared memory semantics over physically
distributed memories. Although the DSM systems proposed
10 or 20 years ago never made a big impact (primarily
due to relatively slow interconnects), it is worth considering
whether the insights and approaches developed in that work
can play a role in our current programming challenge. In

particular, by treating the processing cores of accelerators or
coprocessors as individual cores of a cluster, can we provide
effective virtual shared memory for these heterogeneous
nodes? We have recently been revisiting DSM for clusters
in the light of trends in high-performance interconnects [2].
In this paper we consider how the architecture of Samhita,
our DSM prototype, maps to today’s heterogeneous highly
parallel multicore systems. Our main focus is on systems
such as the Intel Xeon Phi (Many Integrated Core) [3]
family.

Samhita provides virtual shared memory by separating
the concept of serving memory from that of consuming
memory for computation. At the highest level, Samhita’s ar-
chitecture consists of memory server(s) and compute servers.
This maps well to a typical heterogeneous architecture (see
Figure 1), which has one or more general purpose host
processors associated with a large memory, and one or more
multicore coprocessors, all connected by a high-speed bus.
The host processors can execute the memory servers, using
their memory as the backing store for the global virtual
address space. Compute threads can run on the cores of
the coprocessor, with the coprocessor’s memory used for
caching copies of the global address space. Our current
Samhita implementation supports the Infiniband switched
fabric as the high-performance interconnect. In the scenario
of a heterogeneous node, the PCI Express bus connects the
host processor to the accelerator or coprocessors.

A critical component of any DSM is the memory consis-
tency model presented to the programmer. Shared-memory
programmers are used to the extremely strong consistency
provided by true shared-memory hardware. For perfor-
mance reasons, DSM’s typically weaken the consistency
model in some way. We have proposed regional consis-
tency (RegC) [4], a new memory consistency model that
is nearly as strong as hardware shared memory, but allows
for performant implementations on physically distributed
memory systems. RegC allows existing threaded codes to
run on distributed memory clusters with only trivial code
modifications.

The goal of this paper is to consider the possibility of
using a DSM such as Samhita as a design starting point for
providing shared memory semantics across the components
of a heterogeneous platform. We do this by first showing
how Samhita’s architecture and RegC maps to the hetero-
geneous host/coprocessor context, and then with a series
of experiments that highlight the performance issues and
tradeoffs that need to be addressed. These experiments use
our current implementation of Samhita, with multiple nodes
of an Infiniband cluster playing the roles of the components
of a single accelerated node. In other words, rather than
having a single PCI Express bus between our host and
coprocessor(s), we have the Infiniband fabric between cluster
nodes (which means Infiniband cards and links, a switch, and
a PCI Express bus on each side of every communication).

So in one sense, our experiments are quite pessimistic,
e.g., an implementation of Samhita directly onto the Intel
Xeon Phi (currently being investigated) could reduce the
communication costs substantially.

The rest of the paper is organized as follows. We present
an overview of Samhita and the RegC model in Section II.
We then present previously unpublished performance results
for Samhita/RegC in Section III. Related work is presented
in Section IV. We conclude and discuss future work in
Section V.

II. OVERVIEW OF SAMHITA AND REGIONAL
CONSISTENCY MODEL

Samhita views the problem of providing a shared global
address space as a cache management problem. This is done
by separating the notion of serving memory and consuming
memory for computation. Samhita is architected with com-
pute servers, memory servers, and a manager. The memory
servers are responsible for serving the memory required
for the shared global address space. The manager is re-
sponsible for memory allocation, synchronization and thread
placement. The compute servers are where the individual
compute threads execute. In our current implementation of
Samhita, which targets clusters, each of the components runs
on individual cluster nodes (although multiple components
can run on the same node as well). In the case of a
heterogeneous system, the manager and memory server run
on the host processor while the compute threads execute on
the accelerators or coprocessors.

Samhita divides the shared global address space into
pages. Each compute thread1 has a local software cache
through which it accesses the shared global address space.
Samhita uses demand paging to populate the local caches.
To reduce the number of misses for applications that exhibit
spatial locality, we use cache lines of multiple pages. We
also use anticipatory paging or prefetching to exploit spatial
locality. The prefetching strategy used by Samhita is simple.
When a cache miss is detected Samhita places a request for
the missing cache line and an asynchronous request for the
adjacent cache line. Since all operations in Samhita occur at
the granularity of a page, the impact of false sharing can be
significant. To reduce the impact of false sharing, Samhita
supports a multiple-writer protocol. If a cache becomes full
the eviction policy used is biased towards pages that have
been written to.

Samhita is implemented as a user-level system requiring
no modifications to the operating system kernel. It depends
only on standard system libraries. To reduce communication
overhead, Samhita interfaces directly with the interconnec-
tion network. To support multiple interconnection networks
the communication protocol is abstracted as the Samhita

1Each Samhita compute thread is actually a process, but we use the term
thread throughout.

Communication Layer (SCL). The current implementation
of Samhita supports Infiniband switched fabric using the
OpenFabrics Alliance [5] verbs API. SCL presents Samhita
with a direct memory access communication model instead
of a serial protocol. This enables SCL to map easily to the
RDMA model of Infiniband.

Samhita keeps the shared global address space consistent
using regional consistency (RegC) [4]. The RegC consis-
tency model has two primary goals: to enable existing shared
memory code to be easily ported to Samhita with trivial code
modification, and to allow for a performant implementation
of the consistency model. To achieve these goals, RegC
explicitly distinguishes between modifications (stores) to
memory protected by synchronization primitives and those
that are not. This allows implementations to use different
update mechanisms to propagate changes made to memory
protected by synchronization primitives and those that are
not. The details of the model are beyond the scope of this
paper.

The idea behind the regional consistency model is to
divide an application’s memory accesses into two types of
regions—consistency regions and ordinary regions. Memory
accesses made in a consistency region (e.g., critical sections)
are protected by mutual exclusion variables. Any memory
access made outside of consistency regions occur in an
ordinary region. Our current implementation of RegC in
Samhita uses page granularity for updates made in ordinary
regions and fine grain (data object level) updates for memory
modifications made in consistency regions. To enable fine
grain updates we need to track modifications made by indi-
vidual stores performed by the application in a consistency
region. To do this we use the LLVM compiler framework [6].
We instrument the application by inserting a function call
before any store performed in a consistency region. We
use static analysis of the application code to determine
which stores are performed in a consistency region. Our
experimental evaluation has shown that the overhead of
this store instrumentation technique is negligible for most
applications.

Samhita presents the programmer with APIs for memory
allocation, synchronization and thread creation. These APIs
are very similar to that presented by Pthreads [7] making it
trivial to port existing threaded code to run on a cluster using
Samhita. Samhita offers mutual exclusion locks, condition
variable signaling and barrier synchronization as synchro-
nization primitives. Samhita performs memory consistency
operations whenever the application performs a synchro-
nization operation to ensure that the shared global address
space is consistent. This increases the cost associated with
synchronization for Samhita. The cost of synchronization is
directly affected by the amount of data that is moved during
a synchronization operation. This amount depends on the
level of false sharing amongst the computation threads.

The level of false sharing is directly related to how

for (i = 0; i < N; ++i) {

 sum = 0;

 for (j = 0; j < M; ++j) {

 for (k = 0; k < S; ++k) {

 rsum = 0;

 for (l = 0; l < B; ++l) {

 *am(k,l) = r * (*am(k,l));

 rsum += *am(k,l);

 }

 sum += M_PI * rsum;

 }

 }

 LOCK(lock);

 gsum += sum;

 UNLOCK(lock);

 BARRIER_WAIT(barrier);

}

Figure 2. Computational kernel of the micro-benchmark code used in the
experiments, reflecting local allocation. For global allocation, array indices
are a function of thread id. For global strided allocation, the k loop take
strides of num threads.

memory is allocated by the runtime system. Samhita uses
three strategies to allocate memory to reduce both false
sharing and the cost to allocate memory. The strategies
differ based on the size of the allocation request. The first
strategy is used for small allocations. It allocates memory
from arenas that are associated with each thread. This
allocation is handled locally by the thread, hence removing
the cost associated with communicating with the manager
for these allocations. This also reduces the amount of
false sharing amongst computation threads when a large
number of small allocations are performed. When the size of
the allocation request crosses a configurable threshold, the
second allocation strategy is used. The allocator contacts the
manager for the allocation, which then allocates it from a
shared zone. For large allocations the third strategy is used—
the Samhita allocator directly strides the allocation request
across multiple memory servers for reducing hot spots.

III. PERFORMANCE EVALUATION

To evaluate the performance of Samhita and the regional
consistency model we are primarily interested in two im-
portant components that contribute to the runtime of an
application—compute time and synchronization time. We
present the results from micro-benchmarks and two appli-
cation kernels, Jacobi and molecular dynamics based on the
codes from the OmpSCR [8]. The performance evaluation
has been carried out on up to six nodes interconnected
using quad data rated (QDR) Infiniband switched fabric.
Each node is a dual quad-core 2.8GHz Intel Xeon (Penryn
Harpertown) with 8GB of main memory. All experiments
are conducted using one node acting as a memory server
and one as the manager.

The micro-benchmark (see Figure 2) allocates a fixed
amount of data (S rows of doubles, each of length B) per

compute thread. An inner compute loop executes M times
and does two floating point operations per data element per
iteration. At the end of this inner loop we update a global
sum protected by a mutex variable, which is followed by
a barrier synchronization. In this way, the amount of data
per thread can be varied via S and B; and the amount
of computation per data element (relative to the frequency
of synchronization operations) can be varied using M . An
outer iteration repeats the computation N times. We use
N = 10, 000 and B = 256 for all experiments reported in
this paper.

Since data layout and the potential for false sharing are
important to the performance of any cache-based shared
memory system, the micro-benchmark also allows us to
vary the memory allocation and work distribution strategy.
The allocation is performed either locally or globally. Local
allocation means that each thread allocates the memory that
will hold its data. Note that this memory is still drawn from
the global address space, is served by the memory servers,
etc. The Samhita memory allocator ensures that there will
be no false sharing among compute threads who do their
own local allocation in this way. Global allocation means
that only one thread does a single large shared allocation,
with each compute thread then working on its own share
of that data. Hence, global allocation has a greater risk
of false sharing (within a page or within a cache line)
among compute threads than local allocation. There are
two variations of work distribution and data access for the
global allocation case. In the first variation, during the inner
compute loop all the data that is accessed in each iteration is
contiguous, i.e., S rows of length B, all stored contiguously.
We refer to this variation as simply “global” allocation.
In the second access pattern variation, the data in each
iteration of the inner loop data is stored contiguously for
a block of length B, but the next block accessed is strided
based on the processor id. In other words, each compute
thread accesses S rows of length B, but the rows assigned
to the threads are interleaved. These two global allocation
variations correspond to block or round-robin allocation of
rows of a matrix, for example. Obviously, the potential for
false sharing in the “global strided” case is the highest of the
three approaches. In our performance evaluation we evaluate
how false sharing amongst threads affects compute time and
synchronization time in our system. We also evaluate how
the amount of data accessed in the ordinary region affects
both compute and synchronization time.

The API provided by Samhita is very similar to that of
Pthreads [7]. In fact, all our benchmarks share the same code
base, with memory allocation, synchronization and thread
creation expressed as macros. These macros are processed
using the m4 macro processor. This illustrates how existing
shared memory code can run using Samhita/RegC with
trivial code modification

In Figures 3, 4 and 5 we compare normalized compute

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 16 32

C
o

m
p

u
te

 t
im

e
 (

n
o

rm
a

li
z
e

d
)

Number of cores

compute time (normalized) local allocation

pth, M=100
pth, M=1000

pth, M=10000
smh, M=100

smh, M=1000
smh, M=10000

Figure 3. Normalized compute time vs. number of cores. The compute
time is normalized with the equivalent 1-thread compute time for Pthreads.
The number of inner iterations M is varied, M = {100, 1000, 10000}.
The memory for each thread is allocated locally.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 4 8 16 32

C
o

m
p

u
te

 t
im

e
 (

n
o

rm
a

li
z
e

d
)

Number of cores

compute time (normalized) global allocation

pth, M=100
pth, M=1000

pth, M=10000
smh, M=100

smh, M=1000
smh, M=10000

Figure 4. Normalized compute time vs. number of cores. The compute
time is normalized with the equivalent 1-thread compute time for Pthreads.
The number of inner iterations M is varied, M = {100, 1000, 10000}.
The memory for each thread is allocated globally.

time per thread between Pthreads (up to 8 threads) and
Samhita (up to 32 threads). We normalize the runtime with
the equivalent 1-thread compute time for the Pthreads im-
plementation. This experiment compares the compute time
between Pthreads and Samhita and how the compute time
of Samhita varies with respect to Pthreads depending on the
amount of computation performed in the inner loop, and
how it is affected by false sharing.

Figure 3 compares the normalized compute time for
Pthreads and Samhita as we vary both the number of
compute threads and the amount of computation performed
in the inner loop, with the data allocated locally. The figure
shows that the normalized compute time for Pthreads and
Samhita are very similar. In the absence of false sharing
the time spent in computation for Samhita is very similar to
the equivalent Pthread implementation, even for a relatively

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 32

C
o

m
p

u
te

 t
im

e
 (

n
o

rm
a

li
z
e

d
)

Number of cores

compute time (normalized) global allocation strided access

pth, M=100
pth, M=1000

pth, M=10000
smh, M=100

smh, M=1000
smh, M=10000

Figure 5. Normalized compute time vs. number of cores. The compute
time is normalized with the equivalent 1-thread compute time for Pthreads.
The number of inner iterations M is varied, M = {100, 1000, 10000}.
The memory for each thread is allocated globally, but access using strides.

small amount of computation (small M).
Figure 4 compares the normalized compute time when

the data is allocated globally. The figure shows that when
the amount of compute performed is low the added penalty
incurred by Samhita due to false sharing and other over-
heads is noticeable. However, as we increase the amount
of compute this cost is amortized and the amount of time
spent in computation by Samhita is very comparable to
Pthreads. This underlines the fact that even if there is some
false sharing the penalty can be amortized by the amount of
computation performed by the application.

Figure 5 compares the normalized compute time when the
data is allocated globally and the access pattern is strided,
which increases the amount of false sharing among threads.
We see that when the amount of computation performed is
relatively small there is a higher penalty compared to the
global allocation case. However, once again this cost can be
amortized by increasing the amount of compute performed
over the data that is shared among the compute threads.

Figures 6, 7 and 8 compare the compute time per thread
for the Samhita implementation as we vary the amount of
data accessed in the ordinary region versus the number
of computation threads. Figure 6 clearly shows how the
computation time increases with the amount of work and
amount of data accessed in the ordinary region, as expected.
However, compute time per thread does not increase as the
number of threads increases. This once again underlines
the fact that when there is no false sharing the Samhita
implementation does not incur any additional penalty.

Figure 7 shows the same trend as local allocation, with
the amount of time spent in computation increasing as the
amount of data accessed in the ordinary region increases.
Due to modest false sharing, the compute time per thread
does grow slowly as the number of compute threads in-

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32

C
o

m
p

u
te

 t
im

e
 (

in
 s

e
c

o
n

d
s

)

Number of cores

compute time vs #cores for local allocation

S = 1 S = 2 S = 4 S = 8

Figure 6. Compute time vs. number of cores. The number of rows of
doubles allocated is varied, S = {1, 2, 4, 8}, for a fixed M = 1000. The
memory for each thread is allocated locally.

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 32

C
o

m
p

u
te

 t
im

e
 (

in
 s

e
c

o
n

d
s

)

compute time vs #cores for global allocation

S = 1 S = 2 S = 4 S = 8

Figure 7. Compute time vs. number of cores. The number of rows of
doubles allocated is varied, S = {1, 2, 4, 8}, for a fixed M = 1000. The
memory for each thread is allocated globally.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8 16 32

C
o

m
p

u
te

 t
im

e
 (

in
 s

e
c

o
n

d
s

)

compute time vs #cores for global allocation strided access

S = 1 S = 2 S = 4 S = 8

Figure 8. Compute time vs. number of cores. The number of rows of
doubles allocated is varied, S = {1, 2, 4, 8}, for a fixed M = 1000. The
memory for each thread is allocated globally, but accesses using strides.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8

C
o

m
p

u
te

 t
im

e
 (

in
 s

e
c

o
n

d
s

)

Number of rows of data (S)

compute time vs ord rgn size for P=16

local
global

global strided

Figure 9. Compute time vs. number of rows of doubles allocated. Compute
time for local, global allocation and global allocation with strided access
are compared for S = {1, 2, 4, 8} for M = 1000, P = 16 and B = 256.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 4 8

S
y

n
c

h
ro

n
iz

a
ti

o
n

 t
im

e
 (

in
 s

e
c

o
n

d
s

)

Number of rows of data (S)

synchronization time vs ord rgn size for P=16

local
global

global strided

Figure 10. Synchronization time vs. number of rows of doubles allocated.
Synchronization time for local, global allocation and global allocation with
strided access are compared for S = {1, 2, 4, 8} for M = 1000, P = 16
and B = 256.

creases. However, comparing Figure 6 and 7, we see that
the penalty is not significant.

Figure 8 shows a similar trend for global strided allo-
cation. However, due to the access pattern which increases
false sharing, we see that there is a higher penalty incurred
in the compute time. This penalty increases as the amount
of data increases, which results in higher data false sharing.

Figure 9 compares the compute time for the Samhita
implementation for 16 compute threads, with respect to
the number of blocks S assigned to each compute thread.
When the number of blocks is one there is no difference
in the access pattern between and global and global strided
allocations. We see that as the size of the ordinary region
grows, the compute time increases as expected, and the
penalty incurred in compute time increases based on the
amount of false sharing.

Figure 10 compares the synchronization time for Samhita

 0.000976562

 0.00390625

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

1 2 4 8 16 32

s
y

n
c

ro
n

iz
a

ti
o

n
 t

im
e

 (
lo

g
 s

c
a

le
)

Number of cores

synchornization time vs #cores

pth_local
pth_global
pth_stride
smh_local

smh_global
smh_stride

Figure 11. Synchronization time (log scale) vs. number of cores.
Synchronization time for Pthreads and Samhita are compared for local,
global allocation and global allocation with strided access. M = 100,
B = 256 and S = 2 are kept fixed.

for the 16-thread run, again varying S, the number of blocks
per thread. The evaluation shows that when there is no false
sharing (local allocation) the increase in synchronization
cost is hardly noticeable. False sharing does have an impact
on synchronization since during synchronization there is
increased data movement. However, Samhita’s synchroniza-
tion operations move only the minimum amount of data
required, so that even with increased false sharing the
increase in synchronization cost is not dramatic.

Figure 11 compares the synchronization time between the
Samhita and Pthread implementation, varying the number
of threads for M = 100 iterations of the inner loop.
The figure shows that Samhita does incur an increased
cost for synchronization. However, this is expected as the
synchronization operations in Samhita perform memory
consistency operations which are expensive, unlike Pthreads
which performs only synchronization. The graph also shows
that Samhita’s synchronization overhead is not exceptionally
high when compared to Pthreads, and the increase with the
number of threads is not dramatic.

Figure 12 compares strong scaling speed-up between the
Pthreads and Samhita implementation of the Jacobi applica-
tion kernel. This kernel corresponds to the Jacobi iteration
for solving the linear system corresponding to a discrete
laplacian. The memory access pattern for this kernel is
representative of many computations with a nearest neighbor
communication pattern, i.e., the update at a given grid point
depends on previous values at a some small number of near
neighbors. The Pthreads and Samhita implementation use a
mutex variable to protect a global variable and require three
barrier synchronization operations in each outer iteration.
We see that the Samhita implementation shows good speed-
up up to 16 processors. And within a node Samhita tracks
the Pthread implementation very well.

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 8 16 32

S
p

e
e

d
-u

p

Number of cores

Jacobi speedup vs number of cores

pthreads
samhita

Figure 12. Parallel speed-up vs number of cores for Jacobi. Speed-up is
relative to 1-core Pthread execution time.

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 32

S
p

e
e

d
-u

p

Number of cores

MD speedup vs number of cores

pthreads
samhita

Figure 13. Parallel speed-up vs number of cores for molecular dynamics
simulation. Speed-up is relative to 1-core Pthread execution time.

Figure 13 compares the strong scaling speed-up between
the Pthreads and Samhita implementation of a molecular dy-
namics application, which performs a simple n-body simula-
tion using the velocity Verlet time integration method. Both
implementations use a mutex variable to protect variables
that accumulate the kinetic and potential energies of the par-
ticles. Once again three barrier synchronization operations
are required per outer iteration. We see that the Samhita im-
plementation tracks the Pthread implementation very closely
within a node and continues to scale very well up to 32 cores.
This benchmark result clearly indicates that applications that
are computationally intensive (the computation per particle
is O(n)) can easily mask the synchronization overhead of
Samhita enabling the applications to scale very well.

IV. RELATED WORK

The shared memory programming model has been ex-
tended to heterogeneous platforms by extending the Par-
titioned Global Address Space (PGAS) [9] languages to

support heterogeneous architectures. An other approach is
by extending the commonly used OpenMP standard [10]
to support offload primitives that allow offloading loops
and parallel regions to be executed on the accelerator or
coprocessor. Another relatively new approach similar to
OpenMP is OpenACC [11], which provides a collection of
compiler directives to allow offloading of loops and regions
to an accelerator. For both OpenMP and OpenACC the
compiler has to perform additional work of ensuring that the
correct data is offloaded and present on the accelerator or
coprocessor before it can execute the code. This adds addi-
tional burden on the compiler apart from generating optimal
code that can run on the accelerators and coprocessors.

GMAC [12] is an asymmetric distributed shared mem-
ory model for heterogeneous platforms. It provides the
programmer with a very basic set of APIs to allocate
memory on the accelerator and allows the host to access
this allocated memory on the accelerator on demand. This
approach unburdens the programmer from the responsibility
for data movement. The asymmetric model allows the host
to read data from accelerator, but does not allow direct
write access. This asymmetric memory model makes the
programming model complicated as it does not resemble
the familiar shared memory programming model. Yan et
al. [13] present a shared memory system for heterogeneous
platforms. However, the system requires modification at the
operating system level, making it less portable for newer
architectures.

V. CONCLUSIONS

In this paper we present the architecture of Samhita and its
associated consistency model, regional consistency (RegC).
We evaluated Samhita and RegC using micro-benchmarks.
The evaluation shows that the overheads associated with
Samhita depend on false sharing, but the penalty can be
amortized if the application performs a reasonable amount
of computation. The synchronization cost depends on the
amount of data accessed in the ordinary region and on the
degree of false sharing.

We are currently working on porting Samhita for het-
erogeneous system that use Intel’s Many Integrated Core
(MIC) architecture. There are several opportunities presented
for further improving the performance on such systems.
Currently, Samhita performs all synchronization operations
using a manager. This adds additional overhead to the syn-
chronization cost, which also includes memory consistency
operations. Samhita on a single node system can avoid
contacting the manager for synchronization and reduce the
overhead associated with contacting the manager during
synchronization. Another orthogonal improvement would be
to implement a Samhita communication layer that takes
advantage of the Scalable Communication Interface (SCIF).
SCIF abstracts the communication between the host pro-
cessor and the Intel MIC device over the PCI express bus.

This will reduce the communication overheads by directly
communicating using the PCI express bus as opposed to
using a verbs proxy to communicate between the host and
the coprocessor.

REFERENCES

[1] L. Hochstein, V. R. Basili, U. Vishkin, and J. Gilbert, “A
pilot study to compare programming effort for two parallel
programming models,” Journal of System Software, vol. 81,
no. 11, pp. 1920–1930, November 2008.

[2] B. Ramesh, C. J. Ribbens, and S. Varadarajan, “Is it time
to rethink distributed shared memory systems?” in Proceed-
ings of the 17th International Conference on Parallel and
Distributed Systems (ICPADS), 2011, pp. 212–219.

[3] “Intel Xeon Phi coprocessor (codename knights cor-
ner),” http://software.intel.com/en-us/articles/intel-xeon-phi-
coprocessor-codename-knights-corner, accessed January 18,
2013.

[4] B. Ramesh, C. J. Ribbens, and S. Varadarajan, “Regional con-
sistency: Programmability and performance for non-cache-
coherent systems,” CoRR, Tech. Rep. 1301.4490, 2013.

[5] “OpenFabrics alliance,” https://www.openfabrics.org/, ac-
cessed January 18, 2013.

[6] C. Lattner and V. Adve, “LLVM: A compilation frame-
work for lifelong program analysis & transformation,” in
Proceedings of the 2004 International Symposium on Code
Generation and Optimization (CGO), 2004, pp. 75–.

[7] “POSIX threads,” http://www.opengroup.org/onlinepubs/
009695399/basedefs/pthread.h.html, accessed January 18,
2013.

[8] A. J. Dorta, C. Rodrı́guez, F. de Sande, and A. González-
Escribano, “The openmp source code repository,” in Pro-
ceedings of the 13th Euromicro Conference on Parallel,
Distributed and Network-Based Processing, 2005, pp. 244–
250.

[9] “Partitioned global address space (PGAS),” http://www.pgas.
org, accessed January 18, 2013.

[10] “Open multi-processing (OpenMP),” http://openmp.org/wp,
accessed January 18, 2013.

[11] “OpenACC directives for accelerators,” http://openacc.org/,
accessed January 18, 2013.

[12] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and
W. mei W. Hwu, “An asymmetric distributed shared memory
model for heterogenous parallel systems,” in Proceedings of
the 15th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), 2010, pp. 347–358.

[13] S. Yan, X. Zhou, Y. Gao, H. Chen, G. Wu, S. Luo, and
B. Saha, “Optimizing a shared virtual memory system for
heterogenous cpu-accelerator platform,” ACM SIGOPS Op-
erating System Review, vol. 45, no. 1, pp. 92–100, January
2011.

