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Abstract: 
This paper proposes a model for mining frequent patterns in large databases by implementing a matrix approach. 
The whole database is scanned only once and the data is compressed in the form of a matrix. The frequent 
patterns are then mined from this compressed database which brings efficiency in data mining, as the number of 
database scans is effectively less than two. The computation time is reduced as some of the patterns are mined 
simultaneously and searching is minimized. Appropriate mathematical operations are designed and performed 
on matrices to achieve this efficiency. 
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1. Introduction 

Data mining has been recognized as promising field of database research due to its wide and significant 
applications in industry. It is a key step in the knowledge discovery process in large databases (Han et. al.2001). 
It consists of applying data analysis and discovery algorithms that under limitation of acceptable computational 
efficiency produce a particular enumeration of patterns over the data (Fayyad et al. 1996). 
  
Due to massive amount of data generated from business transactions, there arose a need for an efficient 
algorithm to discover new interesting patterns from these databases in order to derive new information and 
knowledge for effective decision making. One of the important problems of data mining is to discover 
association rules from the database. A key component in association rule mining problem is to find all frequent 
itemsets. Many algorithms have been implemented for finding frequent patterns for data mining. In large 
databases the problem of mining frequent patterns gets multifold. Since the database needs to be scanned several 
times, efficient algorithms are required for mining frequent patterns. One of the important developments in area 
of association rule mining was development of Apriori (Agrawal et al. 1994) algorithm. It was improved by 
partition (Sarasere et al. 1995) and sampling (Toivonen et al. 1996), but both of these approaches were 
inefficient when the database was dense. PASCAL (Bastide et al.) is an optimization of Apriori but when all the 
candidate patterns are candidate key patterns, then the algorithm behaves exactly like Apriori. A huge 
calculation and a complicated transaction process are required during the two procedures. Therefore, the mining 
efficiency of the Apriori-like algorithms is very unsatisfactory when transaction database is very large (Hanbing 
et al. 2007).The matrix model proposes the most optimized approach with only one database scan and fast 
computation of frequent patterns. The algorithm transforms a transaction database into a boolean matrix stored 
in bits (Hanbing et al. 2007). This Boolean matrix is then further reduced to another matrix that is much smaller 
than the original one. This helps perform computations in a much fast and efficient manner, minimizing memory 
usage to a very large extent as compared to many other popular algorithms. 
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2. Proposed Model 

A matrix model has been proposed for mining frequent patterns in large databases. In this approach, the 
database is scanned only once. The number of interesting items and transactions determines the size of the 
matrix. Columns represent the items and the rows represent the transactions. The presence or absence of items in 
a transaction is stored as 1 or 0 respectively in a matrix initially. This data compressed in the form of matrix, is 
now the basis for mining all frequent patterns. The support counts of all 1-itemsets and 2-itemsets are mined 
simultaneously from this initial matrix, and stored in another matrix called reference matrix. Each item R[i][j] of 
this matrix used as reference matrix in later stages is the support count of the itemset {i,j} where i and j are the 
positions of rows and columns representing the interesting items. The diagonal elements of this matrix are the 
support count of all 1-itemsets and the elements lying above the diagonal are the support counts of all 2-
itemsets. This matrix further acts as a reference for mining all the other itemsets. Using this reference matrix, all 
the frequent 1-itemsets and frequent 2-itemsets along with their supports are stored in matrices F1 and F2 
respectively. Using apriori property, only the frequent kth patterns are joined to form k+1th itemets. Since all 
the k+1th itemsets are formed out of frequent kth items, all the proper subsets of k+1th item are frequent except 
the 2-itemset that is newly formed in the process of joining the two kth items. The support of this new subset is 
then read from the reference matrix. The minimum support of the three subsets i, e., the supports of the two kth 
items and the newly formed subset is then compared with the minimum support. If it is equal to or greater than 
the minimum support specified, it is stored in the matrix of frequent k+1th itemset Fk+1 along with its support. 
For example, let I1 and I2 be two items from the matrix of k-itemsets. I1 and I2 are joined if I1[1]=I2[1] and 
I1[2]=I2[2] and …. I1[k-2]=I2[1-2] and I1[k-1]<I2[k-1]. The support of {I1[k-1], I2[k-1]} is read from the 
reference matrix and if the minimum of the supports of {I1}, {I2} and {I1[k-1], I2[k-1]} is >= minsup, the 
itemset I1join I2 is frequent. This process is continued till all the frequent patterns are mined.  

2.1.  Proposition 

Let α, β ∈ Fk i.e., α and β be two frequent k-itemsets with α = (i1,…, ik_1, ik), β = (i1,…, ik_1, i*k) and ik < 
i*k. Now, α ∪ β = (i1,….,ik_1,ik,i*k) is the candidate frequent k+1-itemset. Now, α ∪ β has a subset γ = (α - β) 
∪ (β - α) i.e., {ik, i*k} whose support was not taken into consideration while calculating the supports for α or β. 
Therefore, its support is to be fetched from the reference matrix. Hence, sup(α ∪ β)=min[sup {α}, sup {β}, sup 
{γ}] is the support of α ∪ β. For example, let α={B,C,E} and β={B,C,F} be the two frequent 3-itemsets. Then 
(α-β)={E} and (β-α)={F}. Then α and β forms the candidate 4-itemset{B,C,E,F}. In this process, the newly 
formed subset γ is{E,F}. The support of {E,F} is read from the reference matrix R and the support of 
{B,C,E,F}=min [{B,C,E},{B,C,F},{E,F}]. The detailed method is presented below. 

2.2. Method 

2.2.1  Transforming Transaction Database to Boolean Matrix 

The mined transaction database is T, having n transactions and d items. Let T={T1,T2,…,Tn} be the set of 
transactions and I={I1,I2,…,Id}be the set of items. We set up a Boolean matrix Mn*d. Scanning the transaction 
database T, if item Ij is in transaction Ti, where 1=j=n,1=i=d, the element value of Mij is ‘1,’ otherwise the 
value of Mij is ‘0.’. 

2.2.2. Generating the set of frequent 1 and 2-itemsets 

The Boolean matrix Mn*d is scanned and support counts of all 1 and 2-itemsets are computed and stored in a 
reference matrix Rd*d. 

2.2.3. Pruning the reference matrix 

The Boolean matrix Mn*d is scanned and support counts of all 1 and 2-itemsets are computed and stored in a 
reference matrix Rd*d. 

2.2.4. Generating the set of frequent k-itemsets 

Frequent k-itemsets are generated as per the proposition mentioned above. The proposed algorithm MatPat 
discovers all frequent patterns. 

3. Algorithm 

Algorithm: MatPat (Finds frequent patterns by counting inference using matrix) 
Input: Reference matrix, R; minimum support threshold, min_sup. 

Divya Bhatnagar et al. / International Journal of Engineering Science and Technology (IJEST)

ISSN : 0975-5462 Vol. 4 No.02 February 2012 668



 

Output: F1,…,Fn, all frequent itemsets in T. 
Method: 
CreateR(T); 
GetF1(R); // Create frequent 1 patterns 
GetF2(R); // Create frequent 2 patterns 
GetFn(R); // Create frequent 3 to n patterns 
 
Procedure GetF1 
Input: Reference matrix, R; minimum support threshold, min_sup. 
Output: F1 
Method: 
for each row in R 
add row to F1 // row is the item 
add R[row][row] to F1 // R[row][row] is support 
 
Procedure GetF2 
Input: Reference matrix, R; minimum support threshold, min_sup. 
Output: F2 
Method: 
for each row in R 
for each column >row 
if (R[row][col]>=min-sup) // Get frequent 2 patterns. 
{ 
sup2=R[row][col] 
add itemset to F2 
add sup(itemset) to F2 
} 
 
Procedure GetFn (Add frequent 3 to n pattrens) 
Input: Reference matrix, R; min. support threshold, min_sup. 
Output: F3,….Fn. 
Method: 
for each k-itemset from k=3 to n 
{ for each itemset l1 ∈ Fk-1 
for each itemset l2 ∈ Fk-1 
if ( f1 [1] = f2 [12] ) ^ ( f1 [2] = f2 [2] ) ^…..^ ( f1 [ k-2] = f2 [k-2] ) ^ (f1 [ k-1] < f2 [k-1]) then 
supk= min(sup{f1},sup{f2},sup{f1[k-1],f2[k-1]}); 
if (supk>=min-sup) 
add itemset to Fk 
add sup(itemset) to Fk } 
 
Procedure CreateR (To create a reference matrix R). 
Input: Transaction matrix, M ; 
Output: R, frequent itemsets in T. 
Method: 
for each row t in M //t is a row in M 
for each col i in M //i is a column in M 
{ 
if (M[t][i]==1) 
{ 
R[i][i]++; 
for each col+1 j in M 
if (M[t][j]==1) 
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R[i][j]++; 
} 
} // R[i][j] is the support 
 

4. Running Example 

We illustrate the algorithm on the following dataset for minsup = 3/5(Hongyan et al.). Generate a matrix M of 
size 5 by 6 from T as shown below. 
 

Generate a reference matrix R from M as shown below by scanning all the rows of M. Each time we visit a row, 
we compute the support counts of 1 and 2-itemsets appearing in that row. For example, in the first row, if the 
first column has a 1, then it adds 1 in R[1][1]  incrementing the support count of A. Then the subsequent 
columns are visited and if an item is present, it is supposed to be present with A and the support of this item 
with A is incremented in R. 
 

 
Delete D as it is infrequent. Now since there are 5 frequent 1-items, we get a square matrix R of size 5 by 5. 
Now all other patterns will be mined from this compressed data. 

 
Fig. 1.  Transaction Database and corresponding Boolean Matrix 

 
Fig.2. Reference Matrix 

 
Fig. 3. Reduced Reference Matrix
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The diagonal elements in R store the support counts for frequent 1-itemsets. Searching these diagonal elements, 
we delete the row and column for infrequent 1-itemset. Thus frequent 1-itemset F1 = ({A},{B},{C},{E},{F}) 
and F2 = ({A,C}, {A,E}, {B,C}, {B,E}, {B,F}, {C,E}, {C,F},{E,F}). For mining we use row and column 
positions to read the support of an item. Thus support count of items in F1 are read from R as sup(A) = R[1][1], 
sup(B) = R[2][2], sup(C) = R[3][3], sup(E) = R[4][4], and sup(F) = R[5][5]). Similarly, supports counts of 2-
itemsets are computed in F2. Therefore, F1 and F2 are stored as follows. 

 

Fig.  4. F1 and F2 showing all frequent 1- itemsets and 2- itemsets respectively. 
 
For example, first two rows of F2 are be joined to get a 3-itemset {A,C,F} i.e., {1,3,6}. The proper subsets of 
{1,3,6} are {1,3},{1,6} and {3,6}. The support counts of {1,3} i.e., {A,C} and {1,6} i.e., {A,F} are known and 
now the support of only {3,6}i.e., sup (C,F) is to be found. Since, the sup(C,F) is stored in the reference matrix  
as R[3][6], it is read from R which is 4. Therefore, min(sup({1,3},sup{1,6}, sup{3,6}) is the support count for 
{1,3,6}. As it comes out to be 3, which is equal to the min-sup, the 3-itemset {1,3,6} is frequent and stored in F3 
along with its support. In this way we get F3 as follows: 

Fig. 5. F3 showing all frequent 3-itemsets. 

Here, {B, C, E} and {B, E, F} form the new itemset {B, C, E, F}. The supports of {B, C, E} and {B, E, F} is 
known. The support of only the new 2-itemset {E, F} is required. It is then read from R. Following the previous 
procedure, we get F4 as shown below. 

Fig.  6.  F4 showing frequent 4- itemset. 
 
Since there is only one pattern in F4, no further patterns are generated. 
 
 
 

  

 

Divya Bhatnagar et al. / International Journal of Engineering Science and Technology (IJEST)

ISSN : 0975-5462 Vol. 4 No.02 February 2012 671



 

5. Conclusion 

In this paper, a frequent pattern mining model based on matrix is proposed. The model scans the transaction 
database only once. Since it stores all transaction data in bits, it needs less memory space and can be applied for 
mining large databases. We evaluate the designed algorithm MatPat against Apriori and PASCAL. In both of 
these algorithms, a database pass is made whenever a support count is required. Unlike PASCAL where 
database is to be accessed until all the new candidate patterns are not key patterns, MatPat accesses the database 
only once. Also, in PASCAL, if the data is weakly correlated, the number of frequent patterns is small as 
compared to the total number of patterns, and in most cases all frequent patterns are also key patterns (Bastide et 
al.). 
       In this matrix model the support of all the frequent 1-itemsets and 2-itemsets is counted in only the first 
database scan after which the database will not be scanned any more. The support counts of all the higher 
itemsets will be read from the available reference matrix. Unlike PASCAL, in case of weakly correlated 
datasets, the matrix model does not change its behavior. 
 
Let us look at the time complexity of the apriori algoithm. Considering the row-wise storage where T≈ d2nτ, 
and including the dependence on the data size we get the time complexity of apriori: T = O(d2n). In case of the 
column-wise storage scheme T = O(dn) (Markus et al.). MatPat generates all frequent 1 and 2–itemsets 
simultaneously by examining all n transactions. All other frequent k-patterns, n>k>2 are generated from the 
reference matrix of size m, where m is the total number of frequent 1-items. Therefore, the time complexity of 
MatPat is O(n). The following table compares MatPat with Apriori and Pascal. 
 

Table  1.  A comparative chart 

 

 

 
 
 
MatPat discovers the patterns faster and performs very efficiently.  It is easy to implement and it can give very 
good results especially in large databases. Some important areas where this algorithm can be applied are data 
stream mining and incremental data mining. It can also be implemented on distributed databases and parallel 
processing can be applied to make it faster. Further, the storage requirement can be reduced if the algorithm 
generates the reference matrix directly from the database thus eliminating the need of transaction matrix. Thus 
the proposed model presents a novel and efficient technique for mining frequent itemsets in large databases. 
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Measures Apriori PASCAL MatPAt 
No. of database passes 4 2 1 
Support counts from database 19 10 0 
Time Complexity O(d2n) / O(dn) O(dn) O(n) 
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