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ABSTRACT 

 

In photorefractive sight correction, pre-operational computations of to-be-ablated layers are usually based on 

information about cornea shape that is one of the causes of aberrations. To obtain high-quality results of operation, 

contributions to aberrations of other origins are to be taken into account. Technique of eye-aberration mapping has been 

investigated, we called retina ray-tracing. It consists in directing into the eye a narrow beam, scanned (translated) in parallel 

to itself. Computer controls trajectory of scanning. Beam projection (spot of light) is formed on the retina. Aberrations result 

in varying position of the spot on retina in the course of scanning. Deviations from initial position are measured and 

reconstructed into wave aberration function. Mathematical relations, using Zernike polynomial expansions, were found to 

transform these data into necessary cornea shape correction with ablation technologies. In our experimental setup, we used 

the technique of acousto-optic scanning with frame time less than 10 ms for 65 sensed points. Eye-aberration mapping is 

realized with optical power resolution 0.1 diopter. 

 

Key words: photorefractive sight correction, retina ray-tracing, acousto-optic scanning, Zernike polynomials, ablation 

technology, eye-aberration mapping, wave aberration function. 

 

1. INTRODUCTION 

 

Two major factors are to be taken into account when studying eye aberrations: cornea shape and refraction distribution 

inside an investigated eye. Cornea shape measurement is one of the well-known problems for medical instrumentation  1, 2, 3. 

Studies of eye non-homogeneity attracted attention of ophthalmologists earlier 4. In the last years, new technology has been 

proposed, based on wave-front measurements using principles of adaptive optics  5, 6. In this work, we study another 

approach called retina ray-tracing technique 7. 

 

It is based on initial information about local aberrations yielding from local non-homogeneity, this information being 

generalized into wave-front deformation function, or wave aberration function, that is represented in polar pupil coordinates. 

It contains information on variable part of refraction, size and shape of the blur spot on retina and its intensity distribut ion, 

accommodation depth, physical sight acuity. Important from the practical point of view is information necessary to make 

computations of the required correction of the cornea shape in photorefractive sight operations based on laser ablation, that  

must take into consideration not only initial cornea shape, but also all other factors, including refraction non-homogeneity 

inside the eye. 

 

2. CONCEPT OF RETINA RAY-TRACING TECHNIQUE 

 

Fig. 1 illustrates main concepts of the technique 7. Initial laser beam is shaped (due to square stop 8) to have rectangular 

(quadrate) cross-section and is scanned over the studied area (elements 6, 7, 8, 1, 9, 10). Alignment and control subsystem 

consists of elements 2, 3, 11   20. It is responsible for alignment of the line of sight relative to the optical axis, and correct 

setting of the working distance. Signal detection and its preliminary amplification is done by the elements 12, 5, 21, 22. 

Computer 23 is processing all the information and controls measurement procedures. Positioning of optical components (1 

 5) is clear from the positions of their front and back foci points (F1  F5). 

 

Laser beam is positioned consecutively into the specific sites of the lattice shown in fig. 2. Image of a laser spot, 

projected onto the eye fundus, is formed by objective lens 5 in the plane of coordinate-sensitive photodetector 21, having 

four quadrants. It produces four output signals (U1  U4), containing information about the position of light spot on           
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eye fundus (fig. 3). If image centroid coincides with the center of photodetector's coordinate system, then equilibrium must 

take place: U1 = U2 = U3 = U4. Otherwise, transversal shift of the centroid results in shift signals: 
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Operations (1), (2) are performed with computer 23, controlling and synchronizing also analog-to-digital converter 22 and 

deflector 7. 
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Fig. 1. Functional structure of the instrument 

 

Mark 19 forms an image for fixating patient’s sight. Mark 17 is needed to form an autocollimator image of the cornea 

surface. Patient's eye is considered to be centered and adjusted to the working distance along axis z, only if patient has 

fixated his sight onto the image of the mark 19. 
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Fig. 2. System of polar coordinates for eye investigations 

 

Once the eye centering procedure has been finished, measurements begin running. Laser beam scans through all the 

specific sites of the lattice, starting from point 0 and finishing with outer ring. Scanning is performed by deflector 7. The total 

time of scanning through the whole lattice is 0.01 sec. 
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Fig. 3. Light spot displacement in the plane of photodetector 

 

Quantity of specific sites (knots) in the lattice is defined by necessary spatial resolution ( and  in polar 

coordinates). Transition time of the beam from one position to another is less than 1.5  10-5 sec. Spot of light on eye bottom 

will have transversal displacements xi and yi along corresponding axes, if optical system of an eye has aberrations. These 

displacements related to initial point are as follows: 
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where  =  а0
’ / f5

’ , а0
’ is axial distance from back principal plane to the retina, f5

’ is back focal distance of objective lens 5. 

A set of measured values yi , xi is used to find wave aberration function of eye's optical system. 



 

3. WAVE-FRONT DISTORTIONS 

 

Let А be an object point, located on the line of sight of an ideal eye. Its image (point А’), formed by optical system of 

an ideal eye, will be located at the intersection point of an homocentric beam (fig. 4a). This point is also a center of spherical 

wave front WE, shown in fig. 4a as a sphere tangential to the eye's cornea. 
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Fig. 4. Wave-front distortions 

 

A real eye, having defects in its optical system, distorts homocentricity (fig. 4.1b). As a result, wave front WA will 

deviate from sphericity. Fig. 4.1c represents wave front deviation W, being a distance between surfaces WE and WA along 

radius of the sphere WE. If intersection point of the surface WE with line of sight z at a plane perpendicular to the axis z is an 

origin of orthogonal coordinate system, then W for small aperture angles a’ may be described as a function       W=W(y, x). 

In polar system (,), it can be represented as W = W(,), where y = cos , x = sin . Function W is wave aberration 

function of an optical system and is related to geometrical transversal ray aberrations y’, x’ in a simple way8: 
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where n’ is refraction index of vitreous (space of image). On the other hand, it is common to express functions W(x, y) and 

W( ) in terms of power series expansion: 
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Zernike orthogonal polynomial expansion is preferable in our case for two reasons. First, according to the Nijboer's 

classification, coefficients Cnm and polynomials n
m

R ( )  characterize both an order and type of aberration. For example, 

when m = 0, wave function describes spherical aberration caused by defocusing (n = 2), or spherical aberration of the third 

order (n = 4), and so on. When m = 1, we obtain distortion (n = 1), primary coma (third order coma, n = 3), and so on. Index 

m = 2 is present at astigmatism from lower to higher orders. Thus, non-zero index at Cnm certifies the fact of corresponding 

aberration, while the value Cnm itself permits computation of this aberration. Second, approximation of the function W(,) 

in terms of Zernike polynomials, based on the results of measurement of transversal beam translation on retina, is more 

accurate. 

 

It should be noted, that expression (6) is used for description of wave aberrations of centered optical systems with axial 

symmetry. As far as transversal aberration function and wave function are even relatively the coordinate , (sin m) 

expansion terms are absent in expression (6). Optical system of a real eye has not an axial symmetry. That is why, functions 

of transversal aberrations and wave aberrations are not even relatively the coordinate , that is proved by numerous 

experimental investigations. Thus, W(,) expansion in terms of Zernike orthogonal polynomials may be written as follows 9: 
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where coefficients Cynm and Cxnm have the same physical meaning, but represent non-symmetry of aberration function in 

orthogonal directions. 

 

4. ZERNIKE POLYNOMIALS AND TRANSVERSAL ABERRATIONS 

 

Since Zernike polynomials are given in polar system of coordinates, corresponding transformation must be made with 

function W(y, x) and partial derivatives. Let us consider this procedure in more details. 

 

It is well known, that replacement of variables x = x(, ), y = y(, ) in the function W = W(x, y) means, that following 
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we obtain the following system of equations 
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from which one can get, according to Kramer's rule, 
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Finally, 
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Substituting (9) and (10) into (5), we obtain 
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According to equations (7) and (8), partial derivatives of the wave front function W(,), expressed in terms of Zernike 

polynomials, will have the following form: 
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Making substitutions in expressions (11) and (12) from (13), (14), and (15), we obtain equations, where transversal 

aberration values are on the left side, and polynomial expansions in terms of coordinates ,  - on the right side. Expressions 

(11) and (12) give dependencies of the polynomial coefficients Cynm
 and Cxnm

 on the values of y’, x’, determining wave 

aberration function W(, ) of the optical system of an eye, and enabling evaluation of the contribution of any aberration, 

computation of the cornea profile to be ablated, etc. 

 

5. COMPUTATION OF POLYNOMIAL COEFFICIENTS 

 

Values of y’ and x’ are functions of retina ray-tracing coordinates (, ), or coordinates of crossing the retina by a 

ray. Having measured y’ and x’ at each specific site of a lattice, described by its coordinates k, k, where k = 1....q (in our 

case q = 65), we get the data for left part of equations (11), (12). Thus, we have a system of 2q linear equations relatively the 

coefficients Сynm and Сxnm . The number of polynomial terms is defined by accuracy necessary for description of the function 

W(, ). In other words, the number of coefficients Cynm and Cxnm is determined by values of n and m. 

 

The number of unknowns Сynm and Сxnm in above mentioned system of 2q equations may be not equal to 2q. As a rule, 

it is smaller. Therefore, the task of wave-front interpolation is transformed into the task of approximation, that may be solved 

using least-square method. These coefficients can be found by multiplying corresponding matrices  12: 
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 = А is a matrix of numerical 

coefficients for unknowns Сymn , Cxmn in the system of s = 2q linear equations, based on expressions (11) and (12); АT is a 

transposed matrix А; E is a unit matrix, F is a column matrix of measured transversal aberrations y’ and x’, containing s 

elements. Matrix А is to be calculated only once for all given combination of numbers m and n. Diagonal matrix with weight 

coefficients may be used instead of matrix E, reflecting degree of confidence to the accuracy of aberration measurements. 

All matrix operations according to the expression (16) are computerized. 

 

6. APPLICATION AND RESULTS 

 

In our practical application, measurements with the instrument of fig. 1 are oriented on cornea profile computations 

necessary for highly accurate photorefractive operation of keratectomy, including Lasik operation 13. Having measured 

values yi , xi , we use them to find wave aberration function W(, ) of eye's optical system and polynomial coefficients 



Cynm
 and Cxnm

. This function describes wave front increment, caused by aberrations, and is responsible for point image 

formation (fig. 5a). 
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Fig. 5. Computation of ablation profile: 1 - cornea shape before correction, 2 - cornea profile after correction 

 

To compensate for distortions occurring in the eye due to aberrations, theoretically two ways are possible. First one 

could consist in building up the cornea in its thickness r (fig 5b) dependent on coordinates () 14: 
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The second solution, that we use in our practice, consists in cornea upper layer ablation with excimer (or other type) 

laser in the circular zone with its diameter D, at the periphery of which r*( , )  = 0  (fig. 5c). We get it as 

 

 r r
W D

k

*( , ) ( , )
( . , )

,   
 

 
 05

0

 (18) 

 

where k n D
r

D
rc0

2 2

2

2

24
1

4
    . 

For nc = 1.376, r = 7.98 mm and variations of  from 0 to 3 mm, denominator in (17) varies insignificantly within the 

limits from 0.376 to 0.397 correspondingly, that can be regarded as constant. At D = 6 mm,  k0 = 0.397. 

 

7. DISCUSSION AND CONCLUSIONS 

 

Integral action of cornea shape and eye refraction non-homogeneity, leading to image distortions, has been studied 

using the technique called retina ray-tracing. Initial information on light spot displacements on retina is reconstructed into 

wave aberration function. This function is used for computations of necessary cornea ablation to correct the sight. 

 

We have got accuracy of aberration measurement equivalent to optical power deviation as high as 0.1 diopter. Limiting 

factors are photodetector noise, and corresponding signal-to-noise ratio that is restricted by maximal allowable light intensity 

on retina. Polar system of coordinates is optimal, as far as circular shapes are studied. Our investigations showed, that wave 

aberration function of an eye is rather plain. It means that limited number of measurements is needed to reconstruct the 

function. We use 65 points in 4 circles (16 in each) plus central point. Interpolation algorithms have been developed for its 

reconstruction. 



 

We plan to continue our theoretical and experimental studies to optimize measurement errors and computation 

procedures from the point of view of polynomial length. We plan also to reconstruct in optimal way other ophthalmologic 

parameters of an eye, necessary to estimate its functions, and to choose right strategy in eye treatment and, particularly, in 

sight correction. Influence of eye aberrations in peripheral zone is also of interest, its study is in the scope of our future work. 
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