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BAFF is a potent B-cell survival factor, and it plays an essential role in B-cell homeostasis and B-cell function in the periphery.
Both normal and autoreactive B cells are BAFF dependent; however, excess BAFF promotes the survival, growth, and maturation
of autoreactive B cells. When overexpressed, BAFF protects B cells from apoptosis, thereby contributing to autoimmunity. Three
independent studies have shown higher BAFF levels in the circulation of MG patients. BAFF may play an important role in the
pathogenesis of MG. BAFF antagonists may well provide new treatment options for MG patients, particularly those patients with
thymic lymphoid follicular hyperplasia.

1. Autoimmune Myasthenia Gravis

Myasthenia gravis (MG) is a relatively uncommon disease,
with an estimated incidence of 100–200 per million in the
United States. It is a B-cell-mediated disease in which the
target autoantigen is the acetylcholine receptor (AChR) at
the postsynaptic membrane of the neuromuscular junction
[1–3]. Approximately 85% of patients with generalized MG
have circulating anti-AChR antibodies [4–6]. These anti-
bodies are responsible for the pathology of MG, leading to
impaired neuromuscular transmission and subsequent mus-
cle weakness that are due to fewer functional AChRs. Some
MG patients who are seronegative for anti-AChR have cir-
culating antibodies to muscle-specific kinase (MuSK) [7, 8].
Although these antibodies do not appear to fix complement,
MuSK-specific antibodies are pathogenic nevertheless [9–
12]. AChR-specific antibodies are heterogeneous in their
specificities and can bind to the various subunits of the AChR
[13]; however, most are specific for the α-subunit [14, 15].
Interestingly, the loss of functional AChRs leads to increased
expression of the α-subunit. It has been suggested that this
enhanced expression helps to drive the autoimmune re-
sponse [16–18].

Thymic abnormalities are found in patients with autoim-
mune MG. Approximately 70% of MG patients have thymic
follicular hyperplasia, 15% have thymomas, and the re-
mainder have a histologically normal thymus for their age.

The myasthenic thymus is implicated in initiating or perpet-
uating the disease process [19–23]. Hyperplasia is associated
with early onset of disease. Lymphoid follicular hyperplasia
primarily affects the thymic medulla. Germinal centers in
the thymic perivascular space are similar to those found in
lymph nodes. The presence of these germinal centers indi-
cates that B-cell activation and proliferation are occurring
within the myasthenic thymus. The fine specificities of anti-
AChR antibodies produced by thymic B cells are similar to
those found in patient sera, demonstrating that the thymic
B-cell repertoire is the same as that in the periphery [24, 25].
It is likely that peripheral blood B cells recirculate through
the thymic germinal centers, become activated or reactivated,
and their immunoglobulin genes undergo somatic hypermu-
tation and affinity maturation. Indeed, patients with thymic
follicular hyperplasia tend to have higher serum titers of anti-
AChR antibodies [26] and show evidence of enhanced B-cell
activation [27–29]. It is thought that the thymic germinal
center environment is providing signals that promote autore-
active B-cell survival, activation, and maturation. Yet, these
signals are not entirely known. In human MG, the germinal
center environment is providing the necessary signals for
AChR-specific B-cell survival [29]. Germinal centers within
the thymus have strong overexpression of CD23 [30]. CD23
is a multifunctional molecule; one of its roles is to promote
the survival and differentiation of germinal center B cells
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through a mechanism that involves upregulation of Bcl-2
[31–33]. In the MG thymus with follicular hyperplasia, ger-
minal center B cells do overexpress Bcl-2 [34, 35], an indi-
cator of enhanced survival. The overexpression of CD23 and
Bcl-2 provides strong evidence that the thymic germinal cen-
ter environment is promoting the survival and differentiation
of AChR-specific B cells. Clinical improvement following
thymectomy may be partially due to the removal of thymic
germinal centers [36, 37].

Cell cultures from peripheral blood, lymph node, and
thymus of MG patients produce AChR-specific antibodies in
vitro [38–44]. The frequency of immunoglobulin-secreting
cells in the MG thymus is higher than that in blood [45].
Thymic cell cultures also produce antibodies to tetanus
toxoid (TT) [44]. Since TT is not normally expressed in the
thymus, this is indirect evidence that peripheral blood-
derived TT-specific B cells circulate through the thymus. MG
patients clearly have AChR-specific B cells in the circulation.
AChR-specific B-cells are either absent (clonally deleted) or
anergic (nonresponsive) in healthy nonmyasthenics. There
is some evidence that AChR-specific B cells are present in
nonmyasthenic healthy subjects at a low frequency [46, 47];
yet, they are not pathogenic. Given appropriate signals, these
cells might become activated, leading to the production of
autoantibodies. The cellular and molecular signals that are
necessary for the induction of human MG are not known.
We do not fully understand the molecular signals that allow
autoreactive B cells to mature and persist. One such signal
is B-cell-activating factor (BAFF); its role in promoting the
survival and maturation of AChR-specific B cells has not
been studied.

2. BAFF and B Cells

B-cell-activating factor (BAFF), also known as B-lymphocyte
stimulator (BLyS), is a member of the tumor necrosis factor
(TNF) superfamily: TNFSF 13b [48, 49]. Myeloid cells (neu-
trophils, monocytes, macrophages, and myeloid-derived
dendritic cells) are the primary producers of soluble BAFF
[50–53]. A membrane-bound form of BAFF is also expressed
on the surface of myeloid cells. Full-length BAFF is a 285
aa type II transmembrane protein. Within the extracellular
domain, BAFF contains a furin consensus cleavage site. A
furin family protease cleaves the membrane form of BAFF to
generate soluble BAFF (sBAFF), which contains the extracel-
lular 152 amino acids (aa 134–285). sBAFF is a homotrimer,
and it interacts with its receptors in its trimeric form [54–56].

BAFF transgenic animals exhibit hypergammaglobuline-
mia, lymphoproliferation, B-cell hyperplasia, splenomegaly,
and develop autoimmune disease with manifestations that
are similar to those in systemic lupus erythematosus [57, 58].
As they age, BAFF transgenic mice also have a propensity to
develop B-cell lymphomas [57]. In BAFF-deficient animals,
there is a marked reduction in the B-cell compartment with
depletion of marginal zone and follicular B cells. Defects in
peripheral B-cell maturation are accompanied by hypogam-
maglobulinemia [59, 60]. Therefore, BAFF plays an essential
role in B-cell homeostasis. It is a potent survival factor for
B cells, and it plays an essential role in the maintenance

and maturation of peripheral B cells [61–65]. BAFF regulates
follicular B-cell numbers. Long-lived plasma cells are also
dependent on BAFF for their survival [66, 67]. BAFF dif-
ferentially regulates Bcl-2 family members in a manner con-
sistent with prosurvival and attenuation of apoptosis. These
antiapoptotic effects are mediated by upregulation of Bcl-2
and inhibition of Bim [68–71]. When overexpressed, BAFF
protects B cells from apoptosis, thereby contributing to auto-
immunity and malignancy.

Because BAFF is a crucial and potent factor for the
survival and growth of B cells, both normal and autoreactive
B cells compete for available BAFF. BAFF levels appear to
regulate the survival threshold for B cells. Autoreactive B
cells are poorly competitive for survival and they appear to
be more dependent on BAFF for their survival [72–75].
An environment of excess BAFF promotes the survival and
maturation of autoreactive B cells, thereby breaking immune
self-tolerance. Therefore, BAFF levels can alter the selection
of autoreactive B cells [76].

BAFF costimulates B-cell activation/proliferation via the
B-cell receptor (BCR) or via CD40, and it mediates the sur-
vival of these activated B cells [48, 49]. Furthermore,
coupling of BCR signaling and BAFF-R expression has been
demonstrated [77, 78]. This leads to the intriguing concept
that follicular B-cell selection, activation, and survival are
linked. Therefore, the type and strength of signals that are
received via the BCR, CD40, and receptors for BAFF affect
and control the fate of B cells, whether they are normal or
autoreactive [79–81]. Interestingly, a recent study demon-
strates that interleukin-17 (IL-17) may also synergize with
BAFF to enhance the survival and maturation of human
B cells [82]. The important role of BAFF in the home-
ostasis and function of peripheral B cells is predominantly
dependent on sBAFF. The role of membrane-bound BAFF
is not clear. It may serve an accessory function, or it may
be involved in bidirectional communication through reverse
signaling mechanisms, as has been shown for other members
of the TNF superfamily [83, 84].

Three independent studies have shown that serum BAFF
levels in patients with MG are significantly higher than those
in nonmyasthenic control subjects [85–87]. However, there
is no association between the serum BAFF level and the
extent or severity of disease. This is not surprising as previous
studies have shown that there is no correlation between the
serum titer of anti-AChR antibodies and disease severity
[26, 88]. There is a trend for BAFF levels to be higher in
patients who are seropositive for AChR-specific antibodies
[85, 86]. In the myasthenic thymus with lymphoid follicular
hyperplasia, macrophages express BAFF [89].

3. CXCL13, BAFF, and Notch

The chemokine CXCL13, also known as B-lymphocyte che-
moattractant (BLC), guides B cells to follicles in secondary
lymphoid organs [90, 91]. It has an important role in the
formation and maintenance of B-cell follicles. Both CXCL13
and BAFF are found in inflammatory sites where there is
lymphoid neogenesis [92]. A recent study demonstrates a
synergy between BAFF and CXCL13 [93]. This has profound



Autoimmune Diseases 3

implications for the formation of ectopic follicles and for B-
cell homeostasis. Ectopic B-cell follicles are found in the MG
thymus with lymphoid follicular hyperplasia. Both BAFF and
CXCL13 are expressed in the MG thymus, and CXCL13 over-
expression is found in the thymus with follicular hyperplasia
[89, 94, 95]. Thymic epithelial cells have also been shown to
produce CXCL13 in vitro [94]. This suggests that molecules
that are essential for B-cell recruitment, survival, and matu-
ration may be working in concert to drive the B-cell response
in the MG thymus with hyperplasia.

The Notch signaling pathway regulates cell fate during
lymphocyte development and differentiation. Notch signal-
ing affects the activation and maturation of B cells into
antibody-secreting plasma cells. Recent studies show that
the Notch signaling pathway may cooperate with the BAFF
pathway to protect B cells from apoptosis as they mature in
the germinal center [96–98].

4. BAFF Production

Within the immune system, the primary source of sBAFF
is the myeloid lineage. The signals that modulate BAFF ex-
pression are not fully understood. Resting monocytes consti-
tutively express a low level of membrane-bound BAFF; this
expression is upregulated by interferon-γ (IFN-γ), IFN-α,
and interleukin-10 (IL-10). These cytokines augment BAFF
expression in monocytes, macrophages, and dendritic cells.
Bacterial components such as lipopolysaccharide (LPS) also
upregulate BAFF expression [50, 51, 99]. Therefore, signals
from both the innate and adaptive immune response can
modulate BAFF production by myeloid cells. In vivo therapy
in human patients has shown that IFN-α and IFN-β upreg-
ulate BAFF expression in patients with melanoma and multi-
ple sclerosis, respectively [100, 101]. Interestingly, IFN-γ and
the type I interferons (IFN-α and IFN-β), which are known
to have opposite effects on myeloid cell function, have similar
effects on BAFF expression.

The role that cytokines may play in regulating the mye-
loid/B-cell interaction in MG has been largely ignored. My-
eloid cells play an important role in the development and
regulation of the T-cell-dependent anti-AChR antibody re-
sponse [102–104]. Furthermore, in one study that utilized
AChR-pulsed dendritic cells to tolerize B cells, tolerance
was associated with reduced BAFF expression [102]. Data
from experimental autoimmune myasthenia gravis (EAMG),
the animal model for human MG, show that IFN-γ and
IL-12 are necessary for disease induction [105–107]. These
results highlight the importance of TH1-type cytokines in
EAMG. However, cytokines made by TH2 and TFH cells are
also important for B-cell growth and differentiation [108–
110]. There are no studies that elucidate the influence of
these various cytokines on BAFF expression in MG, or their
influence on the survival and maturation of AChR-specific B
cells in the germinal center where B cells are in close contact
with BAFF-expressing dendritic cells.

Suppressor of cytokine signaling-1 (SOCS-1) plays a crit-
ical role in the negative regulation of IFN-γ signaling. In
SOCS-1-deficient mice, IFN-γ-stimulated dendritic cells are
hyperresponsive. SOCS-1 deficiency results in higher BAFF

production by dendritic cells and leads to systemic autoim-
mune-like disease in mice [111].

The autoimmune regulator (AIRE) gene is primarily ex-
pressed in the thymus in medullary cells and in the periphery
on antigen-presenting cells [112, 113]. AIRE plays a role
in both the central and peripheral immune self-tolerance
mechanisms for T cells. AIRE deficiency leads to higher
numbers of antigen-presenting cells [114]. AIRE-deficient
mice also have higher serum levels of BAFF than wild-type
mice, and this is associated with increased expression of
membrane-bound BAFF on the surface of dendritic cells.
Aging AIRE−/− mice have a similar phenotype to BAFF trans-
genic mice [115, 116]. As shown recently, AIRE−/− mice are
also susceptible to the induction of EAMG [117], and this
appears to be age related. Susceptibility is associated with
lower expression of AChR in the thymus and, presumably,
a failure to eliminate AChR-reactive T cells; that is, a failure
of central tolerance.

5. Functional BAFF Receptors

Three functional receptors for BAFF have been identified.
They are BCMA (B-cell maturation antigen, TNFRSF 17,
CD269), TACI (transmembrane activator and cyclophilin li-
gand interactor, TNFRSF 13b, CD267), and BAFF-R (BAFF
receptor, BR3, TNFRSF 13c, CD268). Both BCMA and TACI
can also bind to the BAFF-related molecule APRIL (a pro-
liferation-inducing ligand). The BAFF-R binds BAFF exclu-
sively. Cell-surface expression of the receptors is primarily
restricted to B cells [118], although activated and memory
T cells are reported to express TACI and BAFF-R [119, 120].

BAFF-R-deficient mice have a marked reduction in the B-
cell compartment and lack both marginal zone and follicular
B cells [121, 122]. B-lymphopenic A/WySnJ mice have a mu-
tant signaling-deficient form of the BAFF-R. They have a
similar phenotype to that of BAFF-deficient mice. They
exhibit a loss of peripheral B cells and decreased levels of
circulating immunoglobulins [123–126]. Data on receptor
expression in humans and mice show that the BAFF-R is the
predominant receptor on circulating B cells [120]. In B cells,
the prosurvival signals of BAFF are mediated by the BAFF-R.

TACI-deficient mice have a higher number of hyperre-
sponsive B cells in the periphery, they develop autoimmune
disease, they exhibit lymphoproliferation, and they de-
velop lymphoma [127–129]. The interaction of BAFF with
TACI appears to deliver inhibitory signals such that signaling
through TACI decreases the size of the B-cell pool. For
humans, the role of TACI is more ambiguous. On the one
hand, TACI expression is upregulated after B-cell stimula-
tion, and TACI is found primarily on marginal zone B cells
and on CD27+ memory B cells [130]. TACI appears to be a
negative regulator/terminator of the B-cell response. On the
other hand, in humans, TACI mutations are associated with
immunoglobulin deficiency [131–133]; TACI mutations are
associated with familial combined variable immunodefi-
ciency (CVID) and with selective IgA deficiency. This would
appear to suggest that TACI plays a positive role in terminal
B-cell differentiation.
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BCMA-deficient mice lack an obvious phenotype [60,
134]. BCMA expression is restricted to the end stages of
B-cell differentiation. BCMA expression is upregulated in
germinal center cells and in plasmablasts, and it serves an
essential survival and maturation function as B cells differ-
entiate into plasma cells [66, 67, 135].

The signals that regulate the cell-surface expression of
BAFF-R, TACI, and BCMA are not known. Mature human
B cells, at all stages of differentiation, express one (or more)
of the BAFF-binding receptors and are BAFF dependent
[136, 137]. The BAFF-R is the main receptor that mediates
BAFF signals in naı̈ve B-cells. Following activation, and dur-
ing differentiation, BAFF-R expression is down-modulated
while TACI expression is upregulated. BCMA expression is
upregulated at the terminal stages of B-cell differentiation
and appears to be restricted to antibody-producing cells. A
recent study demonstrates that IL-17 may synergize with
BAFF, to enhance the survival and maturation of human B
cells [82]. This study demonstrates the potential involvement
of IL-17 in B-cell biology, and highlights the potential for
other cytokine signals to enhance or antagonize BAFF-medi-
ated signaling. BAFF levels, and the interaction of BAFF with
its three receptors, regulate peripheral B-cell homeostasis and
function and regulate the immune self-tolerance of B cells
[118, 138–140]. Dysregulation of this signaling alters periph-
eral immune self-tolerance and leads to the development of
autoimmune disease.

In autoimmune MG, in the myasthenic thymus with
lymphoid follicular hyperplasia, germinal center B cells ex-
press the BAFF-R in close proximity to BAFF-expressing
macrophages [89]. In the circulation, one study shows that
the frequency of B cells that express the BAFF-R is higher
in patients with MG [141]. However, in another study, there
is no difference between MG patients and healthy controls
in the percentage of B cells that express BAFF-R, TACI, or
BCMA [142].

6. Signaling via BAFF-R

The BAFF-R is expressed on all peripheral B cells, and it
binds BAFF exclusively. Signaling downstream of the BAFF-
R leads to B-cell survival through activation of NF-κB
[138]. Activation of the NF-κB transcription factor normally
proceeds either through the canonical pathway which is de-
pendent on NEMO (NF-κB essential modulator), or through
the alternate pathway which is NEMO independent [143].
Both pathways have been shown to be utilized in BAFF-
R signaling [144–147]. However, engagement of BAFF-R
leads to weak activation of the classical NF-κB1 pathway
and potent activation of the alternate NF-κB2 pathway.
Recent studies show that the BAFF-R has a single TNF re-
ceptor-associated factor- (TRAF-) binding site that is specific
for TRAF3. In the absence of BAFF ligand, TRAF3 binds to
the NF-κB-inducing kinase (NIK) and targets NIK for prot-
eolysis, thereby inhibiting the alternative NF-κB2 pathway.
In the presence of BAFF, engagement of the BAFF-R leads
to recruitment and binding of TRAF3, thereby terminat-
ing TRAF3-mediated degradation of NIK, subsequently
increasing NIK levels and activating the alternative NF-κB2

pathway [148–153]. NF-κB2 is known to upregulate various
prosurvival molecules, including Bcl-2.

7. BAFF and T Cells

In vitro, BAFF costimulates human T-cell activation, which
has been shown to be mediated by the BAFF-R [120, 154]. In
vivo, BAFF transgenic animals exhibit enhanced cutaneous
delayed-type hypersensitivity (DTH) responses, which are
considered to be classical TH-1-mediated immune responses
[155]. BAFF may also play a role in TH-17-mediated immune
responses. In mouse models of collagen-induced arthritis,
both T and B cells are necessary for disease induction and
progression. When Lam et al. use shRNA to silence the
BAFF gene, intra-articular injection of shRNA suppresses the
development of disease by inhibiting the generation of plas-
ma cells and TH-17 cells [156]. Furthermore, in a compar-
ison of wild-type and IL-17−/− mice, recombinant BAFF
exacerbates disease in the wild-type animals, but not in
the IL-17−/− animals. These studies highlight the previously
unrecognized role of BAFF in T-cell-mediated immune
responses.

8. BAFF Pathway-Targeted Therapy

BAFF levels, and the extent of signaling through BAFF-R,
TACI, or BCMA, regulate B-cell function and B-cell toler-
ance. BAFF plays a role in a diverse array of human B-cell
diseases that include autoimmunity, malignancy, and immu-
nodeficiency [157]. Four different antagonists of the BAFF
pathway have been developed for clinical use thus far. The
first is an anti-BAFF neutralizing antibody (LymphoStat-B,
Belimumab) [158]. The second is anti-BAFF-R [159], which
blocks the interaction of BAFF with the BAFF-R and also kills
BAFF-R expressing cells. The third is the decoy receptor BR3-
Fc, which is a humanized fusion protein of the extracellular
domain of human BAFF-R with the Fc portion of human
IgG1 [160]. Because BAFF, but not APRIL, binds to the
BAFF-R, these three antagonists offer a method of selective
BAFF blockade. The fourth antagonist is TACI-Ig (Ataci-
cept), a fusion protein of the extracellular domain of human
TACI with the Fc portion of human IgG1 [161]. TACI-Ig
offers a nonselective method of BAFF blockade, because it
would interfere with both BAFF and APRIL signaling.

The efficacy of Belimumab has been examined in sys-
temic lupus erythematosus (SLE) and rheumatoid arthritis
(RA) patients [162, 163]. Belimumab is now FDA approved
for SLE. Two phase III trials have met their primary end-
points. They show that Belimumab is clinically effective by
reducing flare rates and reducing disease activity in patients
with SLE. A phase II trial in RA has shown that, although
Belimumab decreases the levels of rheumatoid factor, its
clinical efficacy is mild compared to the TNF antagonist
drugs that are currently available. Thus, Belimumab is no
longer tested in RA. Clinical trials of Atacicept are ongoing in
patients with SLE and RA [164, 165]. Because BAFF blockade
deprives B cells from an obligate survival factor, the effect
of BAFF blockade appears to be mediated mainly via B-
cell depletion. Mature B cells, at all stages of differentiation
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(from naı̈ve to plasmablast), are dependent on BAFF and are
potentially susceptible to BAFF blockade. BAFF itself may be
therapeutic in primary immunodeficiencies that affect the B-
cell compartment [166], and BAFF may be used to enhance
the efficacy of vaccines aimed at boosting the humoral im-
mune response [167, 168].

Some MG therapies may also affect BAFF levels. Glu-
cocorticoid effects on B cells may involve pathways that
decrease BAFF levels [169], and intravenous immunoglob-
ulin preparations contain some antibodies with both BAFF
and APRIL specificities [170]. BAFF may play an important
role in the pathogenesis of MG. Because BAFF levels regulate
B-cell tolerance, BAFF antagonists may benefit patients with
MG by increasing the apoptosis of autoreactive B cells. BAFF
antagonists may provide new treatment options for MG
patients, particularly for early-onset patients with thymic
hyperplasia.
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