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Model-Independent Control of a
Flexible-Joint Robot Manipulator
Flexibility at the joint of a manipulator is an intrinsic property. Even “rigid-joint” robots,
in fact, possess a certain amount of flexibility. Previous experiments confirmed that joint
flexibility should be explicitly included in the model when designing a high-performance
controller for a manipulator because the flexibility, if not dealt with, can excite system
natural frequencies and cause severe damage. However, control design for a flexible-joint
robot manipulator is still an open problem. Besides being described by a complicated
system model for which the passivity property does not hold, the manipulator is also
underactuated, that is, the control input does not drive the link directly, but through the
flexible dynamics. Our work offers another possible solution to this open problem. We use
three-layer neural networks to represent the system model. Their weights are adapted in
real time and from scratch, which means we do not need the mathematical model of the
robot in our control algorithm. All uncertainties are handled by variable-structure con-
trol. Backstepping structure allows input efforts to be applied to each subsystem where
they are needed. Control laws to adjust all adjustable parameters are devised using
Lyapunov’s second method to ensure that error trajectories are globally uniformly ulti-
mately bounded. We present two state-feedback schemes: first, when neural networks are
used to represent the unknown plant, and second, when neural networks are used to
represent the unknown parts of the control laws. In the former case, we also design an
observer to enable us to design a control law using only output signals—the link posi-
tions. We use simulations to compare our algorithms with some other well-known tech-
niques. We use experiments to demonstrate the practicality of our algorithms.
�DOI: 10.1115/1.3117185�

Keywords: flexible-joint robot, backstepping, intelligent control, nonlinear systems, out-
put feedback, variable-structure control, neural networks
Introduction
Motion control of the flexible-joint robot manipulator is an in-

eresting and practical problem for several reasons. First, joint
exibility exists in most manipulators. It arises from driving com-
onents such as actuators, gear teeth, or transmission belts. In
ome applications, the designers incorporate flexible joints into
heir products intentionally to absorb impact force and to reduce
amage to the parts from accidental collision. Second, control
esigners should explicitly include joint flexibility in their design
ecause joint resonant frequencies, which are located within the
ontrol bandwidth, can be excited and cause severe oscillations.
he experiment conducted by Sweet and Good �1� suggested that
esigners should consider joint flexibility in both modeling and
ontrol design.

Controller design of a two-link flexible-joint robot manipulator
s challenging for two main reasons. First, its Euler–Lagrange

odel is much more complicated than the model of a rigid-joint
r one-link flexible-joint robot manipulator. Second, the number
f degrees of freedom is twice the number of control inputs. The
ontrol inputs do not directly act on the links. Instead, the control
nputs directly act on the motors that connect to the links via
exible-joint dynamics. This results in the loss of some important
tructural properties that apply for rigid-joint robot manipulators,
uch as the matching property between nonlinearities and the in-
uts, and passivity from inputs to link velocities.

Some well-established control designs have been developed for
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flexible-joint robot manipulators. Spong �2� transformed the dy-
namic model of the flexible-joint manipulator into the standard
singular perturbation model, by using link position as the slow
variable and joint torque as the fast variable. The controller is a
composite of slow and fast control. The slow-control input, which
adds damping to the system, drives the closed-loop system to a
quasisteady-state system that has the structure of a rigid-joint ma-
nipulator. Then, the fast-control input can be designed using avail-
able techniques for the rigid-joint manipulator. To avoid having to
measure the joint torque signal, Nicosia et al. �3� described how to
design an observer. Ge �4� derived an alternative singular pertur-
bation model by using the tracking error of the motor shaft as the
fast variable. Ge et al. �5� extended the work of Ge �4� to the case
where model uncertainties exist in the system. They used radial
basis function networks to estimate unknown functions, and used
a discontinuous variable-structure controller to provide the closed-
loop system with robustness for the estimation errors.

Under the assumption that the kinetic energy of the motor is
due mainly to its own rotation, the flexible-joint robot manipulator
model is feedback linearizable by static feedback control laws, as
in the work of Spong and Vidyasagar �6�. De Luca and Lucibello
�7� relaxed this assumption, and applied the so-called dynamic
feedback linearization method to a more general robot manipula-
tor model.

Brogliato et al. �8� compared three types of controllers: a con-
troller developed from a decoupled model, a backstepping con-
troller, and a passivity-based controller. For the first type, they
decoupled the robot manipulator model by using the filtered error
of link position and motor position error as variables. They also
discussed a backstepping controller when model parameters are

unknown but can be made to appear linearly with respect to
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nown functions. The passivity-based controller was designed to
hape the closed-loop total energy to a desired value to achieve
assivity.

Some of the more recent works have been performed by Huang
nd Chen �9�, Park �10�, Subudhi and Morris �11�, and Schaffer
nd Hirzinger �12�. Huang and Chen �9� presented experimental
esults on a one-link flexible-joint robot manipulator in the verti-
al plane. Park �10� used the feedback linearization method and a
akagi–Sugeno fuzzy system to replace model uncertainties. The
ork by Subudhi and Morris �11� contains good references on
exible-joint and flexible-link robot manipulators. The work by
chaffer and Hirzinger �12� contains some useful insights, which
ave been obtained from actually working with industrial robots.

Nevertheless, the control of a flexible-joint robot manipulator is
till an open problem. Over the past three decades, many research-
rs have come up with various techniques to control the trajectory
f a manipulator with flexible joints, but no single technique has
roved practical and useful enough to be applied in all situations.

Under some reasonable assumptions, a flexible-joint robot ma-
ipulator’s dynamic equations can be put in the nonlinear form
uitable to our proposed control system. In that case, a controller
an be configured so that its dynamic components are automati-
ally tuned to the dynamics of the actual robot. We accomplish
his by using neural networks to “learn” these dynamics in real
ime during operation.

In the work described in this paper, we have included both
heoretical and experimental studies of a trajectory-tracking task
f a two-link flexible-joint robot manipulator in the horizontal
lane. The experiments have been performed on a robot manipu-
ator in the Ruth and Joel Spira Laboratory, School of Mechanical
ngineering, Purdue University. The work is divided into state-

eedback control, when all states are available, and output-
eedback control, when only link angular positions are available.

Two distinctly different control strategies are explored here. In
he indirect method, three-layer neural networks are used to rep-
esent unknown plant functions, then, the control laws are de-
igned based on the estimated plant functions. In the direct
ethod, the control laws are designed first, then, three-layer neu-

al networks are used to represent the unknown parts in the con-
rol laws. Figure 1 shows the overall block diagram of the control
ystem for the indirect method. The following briefly describes
ow the overall system works. The observer is designed from
dentified plant functions from the identifier, control input from
he controller, and actual output from the actual plant. The iden-
ifier then takes the estimated states from the observer and com-
utes the identified plant functions. The controller uses estimated
tates from the observer and identified plant functions from the
dentifier in the control algorithm.

Our objective in designing a controller is to enable the output of
he plant to track a desired trajectory. The closed-form mathemati-
al model representing the plant is not required in the algorithm.
owever, to be able to design the controller, we need to assume

hat the actual plant is in a nonlinear state-space form. Three-layer

ig. 1 Overall control system block diagram for the indirect
ethod
eural networks are used to estimate the unknown plant functions.

41003-2 / Vol. 131, JULY 2009

 https://dynamicsystems.asmedigitalcollection.asme.org on 06/30/2019 Terms of 
When states are not measurable, an observer is added to the con-
trol system to estimate the unavailable states. Since uncertainties
arise from estimation processes and external disturbances,
variable-structure control is used as the robust controller to handle
the uncertainties. The learning process of the neural network is
performed online.

Using Lyapunov’s second method, the design parameters in-
cluding the neural networks’ weight-update laws are designed so
that the derivative of the Lyapunov function takes on some desired
values. Lyapunov’s second method is useful since it enables one
to determine stability without explicitly finding the solution.
Moreover, because uncertainties exist in the system, equilibrium
points are difficult to find or even if they are found, they may not
be located since they can be functions of uncertainties. Instead of
using stability theorems for equilibrium points, we use bounded-
ness theorems where boundedness of the error trajectory can be
evaluated. Various analysis techniques can be found in the book
by Khalil �13�.

The paper is organized as follows. Section 2 describes the robot
model and how it can be transformed into the applicable form.
Section 3 contains state-feedback control design. Section 4 ex-
tends the work in Sec. 3 by adding an observer to estimate the
state variables. Section 5 presents and compares simulation results
of our algorithm with other techniques. Section 6 discusses the
experimental setup and experimental results. The conclusions are
given in Sec. 7.

2 Robot Model
Even if we do not use the robot model in our control algorithm,

we still need to derive the robot model for two reasons. First, we
need to show that this type of robot possesses a model that, under
some mild assumptions, can be transformed into the strict-
feedback form and therefore is applicable to our control system.
Second, with the inclusion of actuator nonlinearities, such as
deadzone and backlash, the model is rather complete and is used
to represent the actual robot in the simulations in Sec. 5.

Figure 2 shows the two-link flexible-joint robot manipulator for
which we are designing the controller. The manipulator operates
in the horizontal plane and functions as follows. Input torque T1 is
applied to the first motor, which drives the first sprocket through a
chain. The sprocket is attached to the first link via the first tor-
sional spring, which provides joint flexibility. The second motor is

Fig. 2 Photograph of the two-link flexible-joint robot manipu-
lator in the laboratory
situated on the first link. Input torque T2 is applied to the second
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otor, which drives the second sprocket. The second sprocket is
ttached to the second link via the second torsional spring.

For the first link, �1 is the absolute angular position and, for the
econd link, �2 is the angular position relative to �1. For the first
otor, �3 is the absolute angular position and, for the second
otor, �4 is the relative angular position. For the first sprocket,

5=�3 /r is the absolute angular position and, for the second
procket, �6=�4 /r is the relative angular position, where r is the
ear ratio, which is the same for both joints. The four equations of
otion can be obtained from the Euler–Lagrange method and can

e expressed in the following format:

M�q1�q̈1 + V�q1, q̇1�q̇1 + F1�q̇1� + K1�q1 − q2� = 0

Jq̈2 + F2�q̇2� + Bq̇2 − K2�q1 − q2� = T �1�

here q1= ��1 ,�2�T, q2= ��5 ,�6�T= ��3 /r ,�4 /r�T, M�q1� is the link
nertia matrix, V�q1 , q̇1�q̇1 represents coriolis and centrifugal
erms, K1 and K2 are joint flexibility matrices, J represents the
nertia of motors and sprockets, B contains internal damping of
he torsional springs, F1�q̇1� and F2�q̇2� are viscous friction vec-
ors, and T= �T1 ,T2�T is the vector of applied motor torques.

2.1 Transforming Into the Strict-Feedback Form. By ne-
lecting the kinetic energy from the rotation of the first link and
ssuming that the internal damping of the torsional springs is
mall and motor angular velocities are large compared with link
ngular velocities, we can convert Eq. �1� into strict-feedback
orm. Defining the state vectors as x1=q1, x2= q̇1, x3=q2, and x4
q̇2, we obtain a model in the strict-feedback form as follows:

ẋ1 = x2

ẋ2 = f2 + g2x3

ẋ3 = x4

ẋ4 = f4 + g4T

y = x1 �2�

here y is the �measured� vector of link positions, and

f2 = − M�x1�−1�V�x1,x2�x2 + F1�x2� + K1�x1��

f4 = − J−1�F2�x4� + Bx4 − K2�x1 − x3��

g2 = M�x1�−1K1, g4 = J−1

2.2 Incorporating Actuator Nonlinearites. We use a friction
odel based on the work of Canudas et al. �14�

d�

dt
= �̇ −

��̇�

g��̇�
�

�0g��̇� = Fc + �Fs − Fc�e−��̇/�s�
2

F��̇� = �0� + �1
d�

dt
+ �2�̇ �3�

here �0, �1, �2, Fc, Fs, and �s are unknown parameters usually
btained from experiment. � is the average deflection of the

ristles at the microscale. �̇ is the relative angular velocity be-
ween the two surfaces. F is friction torque that comprises Cou-
omb friction, Stribeck effect, and viscous friction.

We use a deadzone model, as given in the work of Tao and

okotovic �15�

ournal of Dynamic Systems, Measurement, and Control
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� = D�u� = �m−�u − d−� , u � d−

0, d− � u � d+

m+�u − d+� , u � d+ � �4�

where d−, d+, m−, and m+ are unknown numbers.
We use a backlash model, as in Ref. �16�

Ṫ = B�T,�, �̇� = �m�̇ if �̇ 	 0 and T = m�� − b+� or

if �̇ � 0 and T = m�� − b−�
0 otherwise

� �5�

where b−, b+, and m are unknown numbers.
Figure 3 depicts the overall plant model where u is our de-

signed control input, � is the output of the deadzone model in Eq.
�4�, and T is the output of the backlash model in Eq. �5�, which is
the input torque that actually drives the manipulator. Both � and T
usually cannot be measured directly. Note that, even though dead-
zone and backlash change the magnitude of the designed control
input u, the difference �u−T� is bounded.

The friction terms in the robot model �2� are F1�q̇1�
= �F��̇1� F��̇2��T and F2�q̇2�= �F��̇5� F��̇6��T, where F�·� is the
friction model given in Eq. �3�.

3 State-Feedback Control Design
We design controllers assuming that the actual robot model is

given by Eq. �2�. To be certain that the controllers can handle
external disturbances such as measurement noise or vibrations, we
intentionally add additive disturbances to each subsystem of Eq.
�2� to be

ẋ1 = x2

ẋ2 = f2�x̄2� + g2�x̄2��x3 + da2�x̄4��

ẋ3 = x4

ẋ4 = f4�x̄4� + g4�x̄4��u + da4�x̄4��

y = x1 �6�

where x̄i= 	x1 ,x2 , . . . ,xi
 and dai�x̄4�= �dai1 ,dai2�T are additive dis-
turbances that may depend on all states.

The actuator nonlinearities including deadzone and backlash
are added to model �6�. Note from Fig. 3 that we actually design
the control input u that goes into the deadzone model, not the
actual torque T that drives the robot. Deadzone model �4� and
backlash model �5� distinguish the designed control input u from
the actual input T. And because they are unknown, they are treated
as uncertainties.

3.1 Identifier. The diagram of a three-layer neural network is
given in Fig. 4. Suppose a scalar-valued continuous function
g�z1 ,z2 , . . . ,zn� :Rn→R is to be approximated. The neural net-
work has z1 ,z2 , . . . ,zn ,1 as inputs. Variables in the network can be
defined as follows:

¯ T n+1

Fig. 3 Deadzone, backlash, and friction models are incorpo-
rated into the dynamic model of the two-link flexible-joint robot
manipulator
Z = �z1,z2, . . . ,zn,1� � R

JULY 2009, Vol. 131 / 041003-3
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V = �v1,v2, . . . ,vl� � R�n+1�
l

vi = �vi1,vi2, . . . ,vi�n+1��T � Rn+1, i = 1,2, . . . ,l

S�VTZ̄� = �s�v1
TZ̄�,s�v2

TZ̄�, . . . ,s�vl
TZ̄�,1�T � Rl+1

W = �w1,w2, . . . ,wl,wl+1�T � Rl+1

g�W,V,z1,z2, . . . ,zn� = WTS�VTZ̄� � R

�•� can be any appropriate activation function that is a noncon-
tant, bounded, and monotonically increasing continuous function
see Theorem 3.1 in the book by Ge et al. �17��. In this work, a
igmoid function s�zi�=1 / �1+e−zi� , ∀zi�R is used. This network
s proved to be a universal approximator in a paper by Funahashi
18�, which means that any continuous nonlinear function,
�z1 ,z2 , . . . ,zn�, can be approximated by a three-layer neural net-
ork with some constant ideal weight matrices, W� and V�, some

ppropriate number of hidden-layer nodes, l, with arbitrarily small
pproximation error. The function can be written as

g�z1,z2, . . . ,zn� = W�TS�V�TZ̄� + �

here �����U is the approximation error with unknown �U	0,
rovided that g�·� is defined on a compact set �z. Note that the
oregoing statement is only to confirm the existence of ideal
eights and ideal number of hidden-layer nodes. The appropriate
umber of hidden-layer nodes, in practice, can be found from trial
nd error. The ideal weights generally are unknown. However, in
system identification application, the ideal weights are typically

ssumed constant and bounded.
Usually when three-layer neural networks are used in control

ystem design, the following two assumptions are required.
ASSUMPTION 1. Any smooth nonlinear function gi

��·��R can be
epresented by a three-layer neural network with some constant
deal weights Wi

� and Vi
� as

gi
��·� = Wi

�TSi�Vi
�TZ̄i� + �i �7�

here ��i���iU is the approximation error with unknown �iU
0.
ASSUMPTION 2. On the compact set �z, the ideal neural network

� �

Fig. 4 A three-layer neural network
eights Wi and Vi are constant and bounded by

41003-4 / Vol. 131, JULY 2009
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�Wi
�� � WiU, �Vi

��F � ViU

where WiU and ViU are unknown.

Since ideal weights are unknown, let Ŵ and V̂ be the estimates
of W� and V�, respectively. The estimate of the function g is given
by

ĝ�z1,z2, . . . ,zn� = ŴTS�V̂TZ̄�

The three-layer neural network is considered a nonlinearly param-
etrized network since the weights vij appear nonlinearly. Accord-
ing to Barron �19�, approximators that are nonlinear in their pa-
rameters can achieve the same level of approximation accuracy as
those that are linear and usually require fewer number of adjusting
parameters. However, since the parameters appear nonlinearly, the
parameter-tuning law is usually more complicated.

In our control system design, the lack of knowledge of ideal
weights is handled by the following lemma, which is taken di-
rectly from the book of Ge et al. �17�. The lemma approximates
the difference between the neural network output with ideal
weights and with estimated weights.

LEMMA 1. Let Ŵ and V̂ be the estimates of W� and V�, respec-

tively. Let the weight estimation errors be denoted by W̃=Ŵ

−W� and Ṽ= V̂−V�. Then, we have

ŴTS�V̂TZ̄� − W�TS�V�TZ̄� = W̃T�Ŝ − Ŝ�V̂TZ̄� + ŴTŜ�ṼTZ̄ + du

�8�
where

Ŝ = S�V̂TZ̄� � Rl+1

Ŝ� = diag	ŝ1�, ŝ2�, . . . , ŝl�,0
 � R�l+1�
�l+1�

ŝi� = s��v̂i
TZ̄� = �d�s�za��

dza
�

za=v̂i
Tz̄

� R, i = 1,2, . . . ,l

s�zi� = 1/�1 + e−zi�, ∀ zi � R

The residual term du is bounded by

�du� � �V��F�Z̄ŴTŜ��F + �W���Ŝ�V̂TZ̄� + �W��1 �9�

The symbol � • �F denotes the Frobenius norm, that is, given a
matrix A, the Frobenius norm is given by �A�F

2 = tr�ATA�=�i,jaij
2 .

Proof. Use the Taylor series expansion of S�V�TZ̄� about V̂TZ̄

and the facts that every element of the vector Ŝ−S�V�TZ̄� is
bounded by 1, 0�s��za��0.25, and �zas��za���0.2239, ∀za�R.
The proof can be done as shown in Chap. 3 of the book by Ge et
al. �17�. QED

Note that W̃ and Ṽ appear linearly in Eq. �8�. This is important

since from Assumption 2, Ẇ̃= Ẇ̂ and V̇̃= V̇̂, therefore the weight
adaptation laws can be designed using this linear structure.

3.2 Indirect Control Method. In this case, three-layer neural
networks are used to represent the unknown plant functions, and
control laws are designed based on these estimated plant func-
tions. The following assumptions are required to design this type
of controller.

ASSUMPTION 3. The additive disturbances daik, where i
=2,4 ;k=1,2, are bounded by �daik��daikU, where daikU are un-
known constants.

ASSUMPTION 4. There exist known constants gijkU	0 such that
�gijk�·���gijkU, ∀i=2,4 , ∀ j=1,2 , ∀k=1,2.

ASSUMPTION 5. The desired trajectory x1d is smooth, that is,
continuously differentiable.
ASSUMPTION 6. There exist unknown constants TiU	0 such that
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Ti−ui��TiU, ∀i=1,2.
The control objective is to make output y=x1 follow desired

rajectory x1d as closely as possible, while all the signals in the
losed-loop system remain bounded. For convenience, we drop
rguments of some functions where appropriate.

In backstepping design, we try to reduce the error between
ctual state and desired state of each subsystem. The tracking
rror is the error of the first subsystem. Let ei= �ei1 ,ei2�T=xi

xid , i=1, . . . ,4 be those errors. We proceed with the following
teps.

Step 1. Let the virtual control law of the first subsystem be

x2d = − c1e1 + ẋ1d = �x21d,x22d�T

here c1 is a design parameter. The time derivative of the error of
he first subsystem becomes ė1=e2−c1e1. Note that Assumption 5
s required for the derivative of x1d to exist.

Step 2. Let the virtual control of the second subsystem be

x3d = − ĝ2
−1�e1 + c2e2 + f̂2 − ẋ2d − u3dvsc� = �x31d,x32d�T

rom Eqs. �7� and �9� and Assumptions 3 and 4, we have

�duf2j
� + �� f2j

� + �
k=1

2

	�dug2jk
x3dk�
 + �

k=1

2

	��g2jk
x3dk�
 + �

k=1

2

	�g2jkda2k�


� K2j
�T2j

here

K2j
� = �Vf2j

� �F,�Wf2j

� �,�Wf2j

� �1 + � f2jU
+ �

k=1

2

	g2jkUda2kU
,

�
k=1

2

	�Vg2jk

� �F
,�
k=1

2

	�Wg2jk

� �
,�
k=1

2

	�Wg2jk

� �1
 + �
k=1

2

	�g2jkU

�T
e3 = − g2Ue2 − c3e3 + e4
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2j = �Z̄f2j
Ŵf2j

T Ŝf2j
� �F,�Ŝf2j

� V̂f2j

T Z̄f2j
�,1,

�
k=1

2

	�Z̄g2jk
Ŵg2jk

T Ŝg2jk
� x3dk�F
,�

k=1

2

	�Ŝg2jk
� V̂g2jk

T Z̄g2jk
x3dk�
,

�
k=1

2

	�x3dk�
�
The variable-structure control law is given by u3dvsc
= �u3dvsc1 ,u3dvsc2�T�R2, where

u3dvscj = − K̂2j
T ̄2j

̄2j =

⎣
⎢
⎢
⎢
⎡�Z̄f2jŴf2j

T Ŝf2j� �F

2

�
arctan� e2j

�2j
�Z̄f2jŴf2j

T Ŝf2j� �F�
�Ŝf2j� V̂f2j

T Z̄f2j�
2

�
arctan� e2j

�2j
�Ŝf2j� V̂f2j

T Z̄f2j��
2

�
arctan� e2j

�2j
�

�
k=1

2

	�Z̄g2jk
Ŵg2jk

T Ŝg2jk
� x3dk�F


2

�
·

arctan� e2j

�2j
�
k=1

2

	�Z̄g2jk
Ŵg2jk

T Ŝg2jk
� x3dk�F
�

�
k=1

2

	�Ŝg2jk
� V̂g2jk

T Z̄g2jk
x3dk�


2

�
·

arctan� e2j

�2j
�
k=1

2

	�Ŝg2jk
� V̂g2jk

T Z̄g2jk
x3dk�
�

�
k=1

2

	�x3dk�

2

�
arctan� e2j

�2j
�
k=1

2

	�x3dk�
� ⎦
⎥
⎥
⎥
⎤

�10�

�2j is a small positive design parameter, and K̂2j approximates
K2j

� . The time derivative of the error of the second subsystem
becomes
˙2 = ẋ2 − ẋ2d

= � f21 − W̃f21
T �Ŝf21 − Ŝf21� V̂f21

T Z̄f21� − Ŵf21
T Ŝf21� Ṽf21

T Z̄f21 − duf21

� f22 − W̃f22
T �Ŝf22 − Ŝf22� V̂f22

T Z̄f22� − Ŵf22
T Ŝf22� Ṽf22

T Z̄f22 − duf22

�
+ �g211 − W̃g211

T �Ŝg211 − Ŝg211� V̂g211
T Z̄g211� − Ŵg211

T Ŝg211� Ṽg211
T Z̄g211 − dug211 �g212 − W̃g212

T �Ŝg212 − Ŝg212� V̂g212
T Z̄g212� − Ŵg212

T Ŝg212� Ṽg212
T Z̄g212 − dug212

�g221 − W̃g221
T �Ŝg221 − Ŝg221� V̂g221

T Z̄g221� − Ŵg221
T Ŝg221� Ṽg221

T Z̄g221 − dug221 �g222 − W̃g222
T �Ŝg222 − Ŝg222� V̂g222

T Z̄g222� − Ŵg222
T Ŝg222� Ṽg222

T Z̄g222 − dug222

�x3d

− e1 − c2e2 + u3dvsc + g2da2 + g2�x3 − x3d� .
Step 3. Let the virtual control law of the third subsystem be

x4d = − g2Ue2 − c3e3 + ẋ3d = �x41d,x42d�T

here

g2U = g211U g212U

g221U g222U
�

he time derivative of the error of the third subsystem is given by

˙

Step 4. Let the desired control law be

u = − ĝ4
−1�e3 + c4e4 + f̂4 − ẋ4d − u5dvsc� = �u1,u2�T

The time derivative of the error of the last subsystem, ė4, can be
derived similar to Step 2.

Since the designed control input u differs from the input torque
T that actually drives the robot, there is an extra term, g4�T−u�, in
the ė4 equation. However, the difference is bounded according to

Assumption 6 and will be treated as an uncertainty, which will
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ppear as an extra term �k=1
2 	g4jkUTkU
 in K4j

� .
Since K4j

� does not appear in the control law, the variable-
tructure control law, u5dvsc, remains similar to Eq. �10� by replac-
ng x3dk with uk, f2 with f4, and g2 with g4.

We use the following �-modification weight-update laws:

Ẇ̂fij = �wfij��Ŝfij − Ŝfij� V̂fij
T Z̄fij�eij − �wfijŴfij�

V̇̂ fij = �vfij�Z̄fijŴfij
T Ŝfij� eij − �vfijV̂fij�

Ẇ̂gijk = �wgijk��Ŝgijk − Ŝgijk� V̂gijk
T Z̄gijk�x�i+1�dkeij − �wgijkŴgijk�

V̇̂gijk = �vgijk�Z̄gijkŴgijk
T Ŝgijk� x�i+1�dkeij − �vgijkV̂gijk�

K̇̂lj = �Klj�̄ljelj − �KljK̂lj�

here �wfij ,�vfij ,�wgijk ,�vgijk ,�Klj 	0; i=2,4; j=1,2; k=1,2;
nd l=1, . . . ,4. The �	0 terms in the update laws are design

ariables and are used to prevent Ŵ, V̂, and K̂ from growing
nboundedly by maintaining their values around their initial
alues.

Using the Lyapunov function

V = �
i=2,4

��
j=1

2

�
k=1

2

� 1
2W̃gijk

T �wgijk
−1 W̃gijk + 1

2 tr�Ṽgijk
T �vgijk

−1 Ṽgijk��

+ �
j=1

2

� 1
2W̃fij

T �wfij
−1 W̃fij + 1

2 tr�Ṽfij
T �vfij

−1 Ṽfij��� + �
i=1

4  1
2ei

Tei

+ �
j=1

2

� 1
2 K̃ij

T�Kij
−1 K̃ij��

nd the following facts:

2W̃TŴ = �W̃�2 + �Ŵ�2 − �W��2 � �W̃�2 − �W��2

2tr	ṼTV̂
 = �Ṽ�F
2 + �V̂�F

2 − �V��F
2 � �Ṽ�F

2 − �V��F
2

2K̃TK̂ = �K̃�2 + �K̂�2 − �K��2 � �K̃�2 − �K��2

0 � ��� − �
2

�
arctan��

�
� � 0.2785�, ∀ � � R �11�

nd after some straightforward but lengthy derivation, we obtain
he derivative of the Lyapunov function as

V̇ � − �V + �

here �	0 and ��0. We refer the reader to Ref. �20� for more
etails and for the definitions of � and �.
From this point on, using standard nonlinear system analysis

echniques, as described in the text by Khalil �13�, it can be shown

hat the error trajectories, e, K̃, W̃, and Ṽ, are globally uniformly
ltimately bounded.

3.3 Direct Control Method. In the direct method, the control
aws are designed first, and three-layer neural networks are then
sed to represent the unknown parts in the control laws. Assump-
ions 3–6 are required to design this type of controller together
ith the following assumption.
ASSUMPTION 7. The inverse matrices of gi , ∀ i=2,4, are posi-

ive definite.
By letting ei= �ei1 ,ei2�T=xi−xid , i=1, . . . ,4 be errors and pro-

eeding with similar steps to those in the indirect method, we
rrive at the following control laws:

˙ T
x2d = − c1e1 + x1d = �x21d,x22d�

41003-6 / Vol. 131, JULY 2009
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x3d = − e1 − c2e2 − Ŵ21
T S21�V̂21

T Z̄21�

Ŵ22
T S22�V̂22

T Z̄22�
� + u3dvsc = �x31d,x32d�T

x4d = − g2Ue2 − c3e3 + ẋ3d = �x41d,x42d�T

u = − e3 − c4e4 − Ŵ41
T S41�V̂41

T Z̄41�

Ŵ42
T S42�V̂42

T Z̄42�
� + u5dvsc = �u1,u2�T

and the weight-update laws

Ẇ̂ij = �wij��Ŝij − Ŝij� V̂ij
TZ̄ij�eij − �wijŴij�

V̇̂ij = �vij�Z̄ijŴij
TŜij�eij − �vijV̂ij�

K̇̂lj = �Klj�̄ljelj − �KljK̂lj�

where �wij ,�vij ,�Klj 	0; i=2,4; j=1,2; and l=1, . . . ,4.

4 Output-Feedback Control Design
Because the plant functions are unknown, we need to design an

observer from the neural network estimated plant functions. Re-
placing the plant functions in Eq. �6� with the estimated functions
and removing the additive disturbances, we have

�̇1 = �2

�̇2 = f̂2��̄2� + ĝ2��̄2���3�

�̇3 = �4

�̇4 = f̂4��̄4� + ĝ4��̄4��u�

� = �1

where �i is the state vector of the estimated system, �̄i

= 	�1 ,�2 , . . . ,�i
, and � is the output of the system. f̂ i and ĝi are

vectors and matrices of estimated functions. f̂ i j and ĝijk are given
as

f̂ i j = Ŵfij
T Sfij�V̂fij

T Z̄fij� � R, ĝijk = Ŵgijk
T Sgijk�V̂gijk

T Z̄gijk� � R

The mapping from actual states xi to output derivatives is given
by

ye=
��

ye11

ye12

ye13

ye14

ye21

ye22

ye23

ye24

� = �
y1

ẏ1

ÿ1

y�1

y2

ẏ2

ÿ2

y�2

�=
�

H�x̄4� = �
x11

�11�x̄2�
�12�x̄3�
�13�x̄4�

x12

�21�x̄2�
�22�x̄3�
�23�x̄4�

� = H1�x̄4�
H2�x̄4�

�

where y1 represents �measured� link 1 angle �1, and y2 represents
�measured� link 2 angle �2. Replacing the actual state xi with the

ˆ ˆ ˆ̄
estimated state xi, we have mapping H�x4� as
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�̂e=
��

�̂e11

�̂e12

�̂e13

�̂e14

�̂e21

�̂e22

�̂e23

�̂e24

�=
�

Ĥ�x̄̂4� = �
x̂11

�11�x̄̂2�

�12�x̄̂3�

�13�x̄̂4�
x̂12

�21�x̄̂2�

�22�x̄̂3�

�23�x̄̂4�

� = Ĥ1�x̄̂4�

Ĥ2�x̄̂4�
�, �̂e � R8

The nonlinear observer is given by

�
ẋ̂1

ẋ̂2

ẋ̂3

ẋ̂4

� = �
x̂2

f̂2�x̄̂2� + ĝ2�x̄̂2�x̂3

x̂4

f̂4�x̄̂4� + ĝ4�x̄̂4�u
� +  �Ĥ�x̄̂4�

� x̄̂4

�−1

�−1L�y − �̂�

�̂ = x̂1

here x̄̂i= 	x̂1 , x̂2 , . . . , x̂i
, �=block−diag��1 ,�2��R8
8, �i

diag��1 ,�2 , . . . ,�4�, � is a design parameter with 0���1,

�Ĥ�x̄̂4� /�x̄̂4� is the Jacobian of Ĥ with respect to x̂, and L
block−diag�L1 ,L2��R8
2, where Li= �l1 , l2 , l3 , l4�T is such that

4+ l1s3+ l2s2+ l3s+ l4 is a Hurwitz polynomial.
Using the observer above, it can be shown that the state esti-

ation error, �̃e= �̂e−ye, is globally uniformly ultimately bounded.
he proof is lengthy but can be found in Ref. �20�.
The virtual controls and the actual control are given by

x2d = − c1e1 + ẋ1d = �x2d1,x2d2�T � R2

x3d = − ĝ2
−1�g1Ue1 + c2e2 + f̂2 − ẋ2d − u3dvsc� = �x3d1,x3d2�T � R2

x4d = − g2Ue2 − c3e3 + ẋ3d = �x4d1,x4d2�T � R2

u = − ĝ4
−1�g3Ue3 + c4e4 + f̂4 − ẋ4d − u5dvsc� = �u1,u2�T � R2

here ei= x̂i−xid , ∀ i=1, . . . ,4. Note that we use estimated state
ˆi because the actual state is not available. The weight-update
aws and the variable-structure control laws are the same as those
f the state-feedback indirect control. The stability proofs also
ollow with minor modifications.

Simulation
We simulate two types of controllers that use the plant model in

heir control laws. They are computed torque control and model-
ased backstepping control. Computed torque control includes an
nverse dynamics model of the robot as well as a proportional-
ntegral-derivative �PID� feedback controller. The model-based
ackstepping control has the same algorithm as the indirect con-
roller in Section 3; however, the unknown functions, f i ,gi , i
2,4, are those obtained from system identification.
We also simulate four types of controllers that do not use the

lant model in their control laws. They are PID control, indirect
tate-feedback backstepping intelligent control, direct state-
eedback backstepping intelligent control, and output-feedback
ackstepping intelligent control. The last three control design
echniques are the ones proposed in this paper.

Since the proposed techniques do not require the plant model in
heir control laws, the accuracy of the plant model does not affect
heir control performance. It is, therefore, interesting to see the

erformance of the model-independent control techniques when

ournal of Dynamic Systems, Measurement, and Control
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they are compared with the model-based control techniques, espe-
cially when uncertainties are present in the plant model. We
present this in Sec. 5.1.

After the model-independent techniques are compared with the
model-based techniques, the next interesting comparison would be
among the model-independent techniques. We present this in Sec.
5.2.

Section 5.3 presents a comparison between the output-feedback
backstepping intelligent control and the state-feedback backstep-
ping intelligent control.

5.1 Model-Independent Versus Model-Based Methods. In
this section, we compare the indirect state-feedback backstepping
intelligent control and the direct state-feedback backstepping in-
telligent control with computed torque control and model-based
backstepping control. Computed torque control and model-based
backstepping control use the plant model in their control laws;
therefore, their performance depends on the accuracy of the plant
model.

Design parameters are as follows. For indirect state-feedback
control, l=3, �wf =�vf =�wg=�vg=10, �k=1, ci=5, �wf =�vf
=�wg=�vg=�k=0.1, and �=1. For direct state-feedback control,
�wij =�vij =�kij =10, ci=10, �wij =�vij =�kij =0.2, and �=0.1. For
computed torque control, which includes a PID controller, the
control gains are kP=100, kI=100, and kD=100. For model-based
backstepping control, c1, c2, c3, and c4 are set to 3.0.

Because we want to focus on comparing controller perfor-
mance, we remove the deadzone and backlash from the true
model that represents the actual robot manipulator. We also re-
move external disturbances from the true model and set the force
saturation limits to �1 Nm in all cases.

Figure 5 shows the tracking performance of the four controllers.
In all cases, the plant model is intentionally corrupted to have its
stiffness and damping at 80% of their actual values. When the
plant model does not perfectly match the actual model, as is com-
mon in practice, we see the deterioration in the performance of the
computed torque and model-based backstepping controllers. Note
that the model uncertainties do not affect the performance of the
direct and indirect backstepping controllers simply because they
do not use the plant model in their algorithms. Moreover, the
computed torque control performance seems to degrade more than
that of the model-based backstepping control. This is because the
computed torque control uses the plant model twice in its control
algorithm. First, the plant model is used to compute desired motor
trajectories from desired link trajectories. Second, the plant model
is used as the inverse dynamics to cancel the nonlinearities in the
actual model.

5.2 Comparison Among Model-Independent Techniques.
Performance of PID control alone heavily depends on proper ad-
justment of the controller’s gains. In this comparison, the follow-
ing gains were used: kP=1, kI=1, and kD=1. This leads to the
tracking results shown in Fig. 6�a�. When we change the ampli-
tude of the desired trajectory from 0.6 rad to 1.25 rad and again
apply the same PID control that produced the result in Fig. 6�a�,
we see that the system goes unstable, as shown in Fig. 6�b�, which
means the PID controller’s gains must be redesigned. Another
example is when we intentionally corrupt the actual robot model
by multiplying the damping matrix by 0.8. Without redesigning,
the PID control system went unstable, as shown in Fig. 6�c�.

Meanwhile, the direct state-feedback control can handle the
amplitude range from 0.6 rad to 1.25 rad and the change in damp-
ing without having to be redesigned, as shown in Fig. 6�d�.

5.3 State-Feedback Versus Output-Feedback Controllers.
To evaluate the tracking performance of our proposed controllers
when there are uncertainties in the actual robot model, we let the
external disturbances in Eq. �6� be

T
da2 = �0.001 randn�2,1��
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da4 = �0.01 sin��1�̇1�,arctan��1�̇2��T

here “randn�2,1�” represents a 2
1 vector of pseudorandom
umbers. We also included actuator nonlinearities, which are fric-
ion model �3�, deadzone model �4�, and backlash model �5�, in
he actual robot model.

For output-feedback control, we used the following parameters:
wfi=�vfi=�wgi=�vgi=10, �ki=1, ci=15, �wfi=�vfi=�wgi=�vgi
�ki=0.1, �ij =0.1, �=0.1, Lj = �16,91,216,180�T, ∀i=2,4, and
j=1,2.
Figure 7 contains the scatter plots showing deadzone and back-

ash. Figure 8 shows the first link’s tracking performance in four
ases: �a� using actual states and neural network estimated plant
unctions, �b� using estimated states and actual plant functions, �c�
sing actual states and actual plant functions, and �d� using esti-
ated states and estimated plant functions. We see that the track-

ng performance of the proposed controllers �indirect state-
eedback in case �a� and output-feedback in case �d�� is
omparable to that of the ideal case �case �c�� when actual states
nd actual plant functions were used.

Experiment

6.1 Experimental Setup. Figure 2 depicts the two-link
exible-joint robot for which we have designed controllers. There

ig. 5 Tracking performance comparison: „a… and „b… direct
tate-feedback, „c… and „d… indirect state-feedback, „e… and „f…
omputed torque, and „g… and „h… model-based backstepping
re four optical encoders for two link and two motor positions.

41003-8 / Vol. 131, JULY 2009
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Angular velocities are obtained from the Euler method �̇i�k+1�
= ��i�k+1�−�i�k�� / ts, where ts is sampling period. Two current
amplifiers supply current to the two motors.

Figure 9 depicts the overall experimental setup. There are two
desktop computers acting as host and target. The target computer
contains the data acquisition board, receives the position signals
from the encoders, and sends the controller output signals to the
power amplifiers. The host computer runs the main software,
which is used to interface with users and to monitor the activities
in the target computer, activities such as reading the encoders, and
the controller output signals. The host computer is also used to
upload the program to the memory of the target computer.

Each encoder transmits two signals—the continuous trains of
two square waves called channel A and channel B. The phase
difference of the two signals is used to tell the direction of the
rotation, whether clockwise or counterclockwise. The two signals
connect to the data acquisition board through the digital input
port. A software program is written to convert the two signals into
angular position.

For the software, we use LABVIEW 7.1, LABVIEW REAL-TIME MOD-

Fig. 6 Tracking performance: „a… PID with 0.6 rad amplitude,
„b… PID with 1.25 rad amplitude, „c… PID with corrupted model,
and „d… direct state-feedback with 1.25 rad amplitude and cor-
rupted model
Fig. 7 Scatter plots showing deadzone and backlash
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LE, and LABVIEW FPGA MODULE to perform hardware-in-the-loop
xperiments. The data acquisition board is National Instruments’
CI-7831R.

6.2 System Identification. For the purposes of generating a
imulation model of the robot, and for the model-based control
esigns, system identification was performed using input and out-
ut signals from the actual robot. To focus only on getting the
alues of the robot parameters and to avoid the complexity from
he discontinuous nonlinear terms, we did not incorporate the ac-
uator nonlinearities in Eqs. �3�–�5� into the model when we per-
ormed the system identification. The parameter values of the fric-
ion model, the deadzone model, and the backlash model were
btained separately by approximation from the physical properties
f the robot hardware.

The robot model �2� can be rearranged as a linear regression
quation whose right-hand side contains known terms and whose
eft-hand side contains the product of known terms and unknown
lant parameters. The unknown plant parameters were obtained

ig. 8 Tracking error comparison: „a… actual states and esti-
ated plant, „b… estimated states and actual plant, „c… actual

tates and actual plant, and „d… estimated states and estimated
lant
Fig. 9 Diagram showing overall experimental setup

ournal of Dynamic Systems, Measurement, and Control
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from the linear least-square method. The reader can consult Ref.
�20� for details of the system identification. The result is given by

M�q1� =  0.201 + 0.06 cos �2 0.0266 + 0.03 cos �2

0.0266 + 0.03 cos �2 0.0266
�

J = 0.017 0

0 0.014
�, B = 5.66 
 10−4 0

0 5.66 
 10−4 �
V�q1, q̇1� =  0 − 0.03�2�̇1 + �̇2�sin �2

0.03�̇1 sin �2 0
�

K1 = 0.4 0

0 0.4
�, K2 = 0.075 0

0 0.075
�

Approximating from the physical properties of the robot hard-
ware, the deadzone and backlash models have the following pa-
rameters. For deadzone model �4�, we have d−=−0.1, d+=0.1, and
m−=m+=1. For backlash model �5�, we use b−=−0.1, b+=0.1, and
m=1. The parameters in friction model �3� have the following
values: �0=0.01, �1=0.1, �21=0.02 �for shoulder motor�, �22
=0.056 �for elbow motor�, Fc=10, Fs=20, and �s=0.1.

6.3 Experimental Results. We implemented direct and indi-
rect state-feedback controllers using the following design
parameters.

For the indirect state-feedback control,

�wij = �vij = �kij = 0.0001, ci = 13 0

0 29
�

�wij = �vij = �kij = 0.1, � = 1

For the direct state-feedback control,

�wij = �vij = �kij = 0.0001, ci = 4.4 0

0 3.5
�

�wij = �vij = �kij = 0.1, � = 1

All initial values are set to zeros. Sampling period is 10 ms. The
desired trajectories of both the first link and the second link are
obtained by passing a square wave signal of amplitude 5 and 20 s
period into the filter 1 / �s+2�3. Figure 10 shows experimental re-
sults. Both link angular positions �1 and �2 are able to follow their
desired trajectories quite closely.

7 Conclusions
Our proposed model-independent control techniques—direct

state-feedback backstepping intelligent control, indirect state-
feedback backstepping intelligent control, and output-feedback
backstepping intelligent control—are shown to be effective in
controlling a system that is too complicated to be modeled accu-
rately by physical laws. These control techniques have overcome
the limitations of traditional adaptive control and offline-learning
intelligent systems. Unlike traditional adaptive control, where
structures of the unknown functions are required, the neural net-
work has its own structure that has been proved to approximate
any continuous functions with arbitrary accuracy causing it to be
applicable to more extensive problems. Using a nonlinear ob-
server, the control system can also be designed from the output
signal.

By using online learning, our control system has shown to de-
liver a fast-enough response to be implemented successfully in a
trajectory-tracking task of a robot manipulator. Experimental re-
sults have shown that these techniques can be applied to a com-
plicated system, such as the two-link flexible-joint robot manipu-
lator.

We consider a trajectory-tracking task of a two-link flexible-

joint robot manipulator in the horizontal plane. The second motor
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s attached to the first link, and its shaft does not share the same
xis with the axis of rotation of the second link. This setting is
ifferent from the shared-axis cases commonly treated in the ex-
sting literature.

For state-feedback control, we are able to control the trajectory

ig. 10 Experimental results in 90 s. Indirect state-feedback
ontrol: „a… first link position and „b… second link position. Di-
ect state-feedback control: „c… first link position and „d… sec-
nd link position.
f the robot manipulator effectively using link angular position,

41003-10 / Vol. 131, JULY 2009
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link angular velocity, motor angular position, and motor angular
velocity. For output-feedback control, we are able to control the
trajectory of the robot manipulator effectively using only link an-
gular position.

In the indirect control algorithm, the ĝi
−1 term can cause singu-

larity. Some projection algorithms given in Ref. �20� can be used
to avoid this problem. Note that the direct control algorithm does
not have the inverse terms and hence avoids this problem.

Actuator nonlinearities, such as deadzone and backlash, are
handled effectively by our control system. These actuator nonlin-
earities usually exist in practice, and controller implementation
usually requires additional sensors to measure their magnitude.
Our control algorithm only requires their magnitude to be
bounded; we do not need additional sensors.

Since all the weights are adjusted on-line, the algorithm re-
quires a certain level of computational power, which reflects the
sampling rate. However, in our application, the computational re-
quirement of the algorithm is not more than what is achievable by
an industrial controller board.
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