

Downloaded

REView m

eerX
Proceedings of DETC’03
ASME 2003 Design Engineering Technical Conferences and

Computers and Information in Engineering Conference
Chicago, Illinois USA, September 2-6, 2003

DETC2003/DAC-48759

ANALYSIS OF SUPPORT VECTOR REGRESSION FOR APPROXIMATION OF COMPLEX
ENGINEERING ANALYSES

Stella M. Clarke
Department of Industrial & Manufacturing Engineering

The Pennsylvania State University
University Park, PA 16802 USA

Jan H. Griebsch
Doctoral Candidate

Lehrstuhl für Effiziente Algorithmen
The Technical University of Munich

Timothy W. Simpson1

Departments of Mechanical & Nuclear and
Industrial & Manufacturing Engineering

The Pennsylvania State University
University Park, PA 16802 USA

Proceedings of DETC�03
ASME 2003 Design Engineering Technical Conferences and

Computers and Information in Engineering Conference
Chicago, Illinois, USA, September 2-6, 2003

DETC2003/DAC-48759

brought to you by COetadata, citation and similar papers at core.ac.uk

provided by CiteS
ABSTRACT
A variety of metamodeling techniques have been

developed in the past decade to reduce the computational
expense of computer-based analysis and simulation codes.
Metamodeling is the process of building a “model of a model”
that provides a fast surrogate for a computationally expensive
computer code. Common metamodeling techniques include
response surface methodology, kriging, radial basis functions,
and multivariate adaptive regression splines. In this paper, we
present Support Vector Regression (SVR) as an alternative
technique for approximating complex engineering analyses.
The computationally efficient theory behind SVR is presented,
and SVR approximations are compared against the
aforementioned four metamodeling techniques using a testbed
of 22 engineering analysis functions. SVR achieves more
accurate and more robust function approximations than these
four metamodeling techniques and shows great promise for
future metamodeling applications.

Keywords: Support Vector Regression, Support Vector
Machines, Kriging, Response Surfaces, Metamodels

1. INTRODUCTION
Much of today’s engineering analysis requires running

complex and computationally expensive analysis and
simulation codes, such as finite element analysis and
computational fluid dynamics models. Despite continuing
increases in computer processor speeds and capabilities, the
huge time and computational costs of running complex
engineering codes maintains pace. A way to overcome this
1

1 Please direct all correspondences to tws8@psu.edu.

 From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Us
problem is to generate an approximation of the complex
analysis code that describes the process accurately enough, but
at a much lower cost. Such approximations are often called
“metamodels” in that they provide a “model of the model” [1].
Mathematically, if the inputs to the actual computer analysis
are supplied in vector x, and the outputs from the analysis in
vector y, then the true computer analysis code evaluates:

)(xfy = (1)

where f(x) is a complex engineering analysis function. The
computationally efficient metamodel approximation is:

)(ˆ xgy = (2)

such that: ε+= yy ˆ (3)

where ε includes both approximation and random errors.
There currently exists a number of metamodeling

techniques to approximate f(x) with g(x), such as polynomial
response surface models, multivariate adaptive regression
splines, radial basis functions, kriging, and neural networks,
and a recent comparison of the first four of these metamodeling
techniques can be found in Ref. [2]. All of these techniques are
capable of function approximation. In particular, although
neural networks are able to approximate very complex models
well, they have the two disadvantages of (i) being a “black
box” approach and (ii) having a computationally expensive
training process [3]. “Black box” means that little can be seen
and understood about the model, because an exact function is
not generated, only a trained “box” that accepts inputs and
returns outputs.
Copyright © 2003 by ASME

e: http://www.asme.org/about-asme/terms-of-use

https://core.ac.uk/display/357301164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tws8@psu.edu

Downlo
In this paper, Support Vector Regression (SVR) is
investigated as an alternative technique for approximating
complex, computationally expensive engineering analyses.
SVR is a particular implementation of Support Vector
Machines (SVM), a “principled and very powerful method that
in the few years since its introduction has already outperformed
most other systems in a wide variety of applications” [4]. In
many applications, SVMs are known to produce equally good,
if not better, results than neural networks, while being
computationally cheaper and producing an actual mathematical
function (i.e., no “black box”). Hearst [5] comments that “SV
learning is based on some beautifully simple ideas and provides
a clear intuition of what learning from examples is about” and
that SVMs “can lead to high performances in practical
applications.” In addition, Takeuchi, et al. [6] state that “SVMs
have been applied very successfully in the past to several
traditional classification tasks such as text classification.”
Other successful applications of SVMs have included
handwritten character and digit recognition, face detection, text
categorization, and object detection in machine vision [7].

The SVM algorithm is a non-linear generalization of the
Generalized Portrait algorithm developed in Russia in the
sixties [8]. In its present form, the SVM was developed at
AT&T Bell Laboratories by Vapnik and co-workers in the early
nineties [9, 10]. Smola, et al. [8] acknowledge the success of
SVMs since this time and also add that “in regression and time
series prediction applications, excellent performances were
soon obtained.” The application of the support vector approach
to regression retains much of the elegance of SVMs but adds
the capability to approximate functions. Hence, in this paper
we investigate the performance of SVR in comparison to four
metamodeling techniques: kriging, response surfaces, radial
basis functions, and multivariate adaptive regression splines.

The remainder of this paper is as follows. First, an
overview of the four metamodeling techniques is given. In
Section 3, Support Vector Regression is introduced, beginning
with linear function approximations and later non-linear
approximations. A simple one-dimensional function
approximation example is presented for illustration purposes in
Section 3.3. A more thorough analysis is documented in
Section 4 wherein 22 different engineering analysis functions
are approximated using all five metamodeling methods
(including SVR). The approximation testbed is introduced, and
the method for comparing the techniques is explained, followed
by a discussion of the results. Section 5 contains closing
remarks and outlines future research in using SVR for function
approximation.

2. EXISTING METAMODELING TECHNIQUES
This section briefly overviews the four metamodeling

techniques against which SVR is compared: (1) response
surface methodology, (2) radial basis functions, (3) kriging, and
(4) multivariate adaptive regression splines. These methods
were chosen based on their current widespread use and because
algorithms for each method were readily available.

2.1. Response Surface Methodology
Response surface methodology (RSM) approximates

functions by using the least squares method on a series of
points in the design variable space. Low-order polynomials are
the most widely used response surface approximating functions
2

aded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Us
[11]. Equation (4) is a first-order polynomial that can be used
for approximating functions with little to no curvature.
Equation (5) is a second-order polynomial that includes all two-
factor interactions.

∑
=

+=
k

i
ixibby

1
ˆ 0 (4)

∑
=

∑
<
∑++∑

=
+=

k

i i j
jxixijbixiib

k

i
ixibby

1
2

1
0ˆ (5)

The constants (b0, bi, bii, bij) are determined by least squares
regression; more information can be found in Ref. [12].

2.2. Radial Basis Functions
Radial basis functions (RBF) attempt approximation by

using a linear combination of radially symmetric functions.
Mathematically, the model can be expressed as:

∑ −=
i

iay 0iXXˆ (6)

where ai is a real-valued weight and X0i is the input vector.
Radial basis functions have produced good approximations to
arbitrary contours. For example, they have been successfully
applied to electronic circuit simulation models [13] and the
construction of metamodels for a desk lamp example [14].

2.3. Kriging
The kriging model postulates a combination of a known

function and departures of the form:
y(x) = f(x) + Z(x) (7)

where y(x) is the unknown function of interest, f(x) is a known
polynomial function, which is often taken as a constant, and
Z(x) is called the correlation function and is a realization of a
stochastic process with mean zero and variance σ2, and nonzero
covariance. Flexibility in kriging is achieved through a variety
of spatial correlation functions, but the Gaussian correlation
function is most frequently used [15]. More information on
constructing kriging models can be found in Ref. [16].

2.4. Multivariate Adaptive Regression Splines
Multivariate adaptive regression splines (MARS) is a non-

parametric regression procedure that makes no assumption
about the underlying functional relationship between the
dependent and independent variables. Instead, MARS
constructs this relation from a set of coefficients and basis
functions that are determined from regression data. The input
space is divided into regions containing their own regression
equation; thus, MARS is suitable for problems with high input
dimensions, where the curse of dimensionality would likely
create problems for other techniques. More information on
MARS can be found in Ref. [17].

3. SUPPORT VECTOR REGRESSION
3.1. Linear Regression using SVR

There are two basic aims in SVR. The first is to find a
function f(x) that has at most ε deviation from each of the
targets of the training inputs. For the linear case, f is:
Copyright © 2003 by ASME

e: http://www.asme.org/about-asme/terms-of-use

Down
bxwx +⋅=)(f (8)

where ba ⋅ is the dot product between a and b.
At the same time we would like this function to be as flat

as possible. Smola, et al. [18] showed that choosing the flattest
function in the feature space leads to a smooth function in the
input space. Flatness in this sense means a small w in Eq. (8).
This second aim is not as immediately intuitive as the first but
is nevertheless important in the formulation of the optimization
problem used to construct the SVR approximation:

2

2
1 Minimize w

(9)







≤−+⋅

≤−⋅−

ε

ε

i

i

yb

by

i

i

xw

xw
 subject to

A key assumption in this formulation is that there exists a
function f(x) that can approximate all input pairs (xi, yi) with ε
precision; however, this may not be the case or perhaps some
error allowance is desired. Thus slack variables ξi and ξi

* can
be incorporated into the optimization problem to yield the
following formulation [19]:

∑
=







 ++

l

1

2 *
2
1 Minimize

i
iiC ξξw (10)











≥

+≤−+⋅

+≤−⋅−

0,

 subject to

*

*

ii

ii

ii

yb

by

ξξ

ξε

ξε

i

i

xw

xw

where the constant C > 0 determines the tradeoff between
flatness (small w) and the degree to which deviations larger
than ξ are tolerated (see Fig. 1), and ℓ is the number of samples.

x

x

x

x

+ε

-ε

x

x

x

x

x

x

ξ

ξ∗

Figure 1 - Accounting for Slack Variables

The optimization function and linear constraints in Eq. (10)
can be written as the Lagrangian function:
loaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of U
()

∑

∑

∑

∑

=

=

=

=







 +−







 −⋅−++−

+⋅+−+−







 ++=

l

l

l

l

1

1

1

1

2

**

**

*
2
1

i
iiii

i
iii

i
iii

i
ii

by

by

CL

ξηξη

ξεα

ξεα

ξξ

i

i

xw

xw

w

(11)

Through Lagrangian Theory, necessary conditions for α to
be a solution to the original optimization problem are:

0
1

* =





 −=∂ ∑

=

l

i
iibL αα (12)

0
1

* =





 −−=∂ ∑

=
ixw

l

i
iiwL αα (13)

0=−−=∂ iiCL
i

ηαξ (14)

0**
* =−−=∂ iiCL

i
ηαξ (15)

Substituting Eqs. (12-15) into Eq. (11) yields the optimization
problem in dual form:



















 −+






 +−

⋅





 −





 −−

∑∑

∑

==

=

ll

l

11

1,

**

**
2
1

 Maximize

i
iii

i
ii

ji
jjii

y ααααε

αααα ji xx

(16)

[]









∈





 −

=





 −∑

=

Cii

i
ii

,0

0
 subject to

*

*
1

αα

αα
l

From Eq. (13),

ixw ∑
=







 −=

l

1

*
i

ii αα (17)

and so the linear regression in Eq. (8) becomes:

bf
i

ii +⋅





 −=∑

=
xxx i

l

1

*)(αα (18)

Thus the training algorithm and the regression function f(x) can
be expressed in terms of the dot product xx ⋅i .

Transforming the optimization problem into dual form
yields two advantages. First, the optimization problem is now a
quadratic programming problem with linear constraints and a
positive definite Hessian matrix, ensuring a unique global
optimum. In addition, highly efficient and thoroughly tested
quadratic solvers exist. Second, the input data only appears in
the dot product, and regardless of the dimension of the input
3 Copyright © 2003 by ASME

se: http://www.asme.org/about-asme/terms-of-use

Downl
vector this dot product always yields a matrix. Effectively, the
computational complexity of high dimensional spaces is hidden
from the optimization problem and the regression function.

3.2. Nonlinear Regression using SVR
Another benefit of the dual form is that nonlinear function

approximations can be achieved by replacing the dot product of
input vectors with a nonlinear transformation on the input
vectors. This transformation is referred to as the kernel
function and is represented by k(x,x'), where x and x' are each
input vectors. Table 1 lists common kernel functions [20].
Importantly, the kernel function substitution maintains the
elegance of the optimization method for linear SVR.

Table 1 - Common Kernel Functions [20]

Linear xxxx, T ′=′)(k

Polynomial dk xxxx, ′⋅=′)(

Gaussian 











 ′−
−=′

2

2

2
exp)(

σ
xx

xx,k

Sigmoid ()ϑκ +′⋅=′ xxxx, tanh)(k
Inhomogeneous
Polynomial ()dck +′⋅=′ xxxx,)(

Applying the kernel function to the dot product of input
vectors, we obtain:

()



















 −+






 +−







 −





 −−

∑∑

∑

==

=

ll

l

11

1,

**

**
2
1

 Maximize

i
iii

i
ii

ji
jjii

y

k

ααααε

αααα ji x,x

(19)










∈

=





 −∑

=

],0[,

0
 Subject to

*

*
1

Cii

i
ii

αα

αα
l

Replacing the dot product in Eq. (18), the SVR approximation
becomes:

() bkf
i

ii +





 −=∑

=

l

1

*)(x,xx iαα (20)

The kernel function k(xi,x) can be precomputed, and the results
are stored in the kernel matrix, K= ()()n

ji
k

1, =ji x,x .

In order to guarantee a unique optimal solution to the
quadratic optimization problem, this kernel matrix must be
positive definite. The kernel functions presented in Table 1
yield positive definite kernel matrices [4]. Thus by using the
kernel matrix, nonlinear function approximations can be
achieved while maintaining the simplicity and computational
efficiency of linear SVR approximations.

Now that the theory behind SVR has been presented, we
can begin to investigates the application of SVR to engineering
analyses. First, a simple one-dimensional example is presented
4

oaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use
next for illustration purposes, and then a testbed of more
realistic engineering problems is discussed in Section 4.

3.3. A Simple One-Dimensional Example
This section illustrates the application of SVR to a one-

dimensional example, which means that the length of each
input vector is only one. The function to be approximated
comes from Su and Renaud [21] and is shown in Fig. 2. The
five training points noted in the figure are used to fit the SVR.

Figure 2 – Eighth-Order Test Function [21]

The exact eighth-order function is given by:

∑
=

−−=
9

1

)1()900()(
i

i
ii xaxf (21)

where:
a1 = -659.23, a2 = 190.22, a3 = -17.802, a4 = 0.82691,
a5 = -0.021885, a6 = 0.0003463, a7 = -3.2446 x 10-6,
a8 = 1.6606 x 10-8, a9 = -3.5757 x 10-11

The Matlab code developed by Steve Gunn was used to execute
the SVR algorithm [22]. Figure 3 shows a flowchart of the
implementation, which is discussed as follows.

As seen in Fig. 3, the kernel matrix is first calculated from
the training points. Using the Gaussian kernel function
presented in Table 1 for each combination of input vectors, the
following kernel matrix is obtained:























=

0000.18749.05858.03003.01178.0
8749.00000.18749.05858.03003.0
5858.08749.00000.18749.05858.0
3003.05858.08749.00000.18749.0
1178.03003.05858.08749.00000.1

K

This matrix is used in the quadratic optimization problem
stated in Eq. (19). The resulting solution yields all the variables
required to calculate the approximating function. The vector of
differences of Lagrange multipliers is:



























=−

229.4055
647.1798-

999.9999
924.0233-
433.8411

*
ii αα
Copyright © 2003 by ASME

: http://www.asme.org/about-asme/terms-of-use

Down
Figure 3 - Flowchart of the SVR Algorithm

The difference of Lagrange multipliers is then used with
the training points to calculate the weight vector,

ixw ∑
=







 −=

l

1

*
i

ii αα , and the offset, b. The offset b is

calculated using Karush-Kuhn-Tucker conditions (see Ref. [23]
for more details), and all of these variables are then substituted
into Eq. (20) to yield the SVR approximation, f(x).

The radius of the Gaussian kernel was manually optimized
to a value of 9.7 for the given training data. This involved
continually updating the Gaussian radius and running the SVR
algorithm until the root mean square error (RMSE) was close to
minimum. Figure 4 shows the SVR function approximation
compared to the actual function. We can see a very close fit
between the SVR approximation and the actual function within
the range of the training data, but the fit starts to deteriorate
outside of this range as one might expect.

Kernel Function
(Gaussian)

Training Points

Calculate Kernel Matrix
k(xi, xj)

Quadratic Optimization
Problem

See Eq. (19)

Difference of
Lagrange Multipliers

Calculate offset b using so-called
Karush-Kuhn-Tucker conditions

Calculate weight vector, w
 See Eq. (17) i

i
ii xw ∑

= 



 −=

l

1

* αα

Function Approximation
bxxxf i

i
ii +




 −= ∑

=

.*)(
1

l

αα
5

loaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use
Figure 4 - Fit of 1D Function by SVR

To assess the accuracy of these results, the three error
equations in Table 2 are calculated, where nerror is the number of
random test points used, yi is the actual function value and iŷ
is the predicted value from the function approximation method.
For comparison, the response surface and kriging models
constructed in Ref. [24] are included in this assessment. The
resulting errors for SVR, second-order RS model and kriging
are listed in Table 3, based on 16 evenly spaced test points
between 920 and 945. The SVR method has achieved the
lowest error measures in all three categories; hence, SVR
provides a very accurate approximation for this 1D example.

Table 2 - Error Measures for Accuracy Assessment
Name Equation

Max. Absolute Error (MAE) max. | ii yy ˆ− |, i = 1, ..., nerror

Average Absolute Error
(AAE) ∑ =

−errorn
i ii

error
yy

n 1
ˆ1

Root Mean Square Error
(RMSE)

error

n
i ii

n

yyerror∑ =
−

1
2)ˆ(

Table 3 - Error Comparisons between Approximation
Methods for 1D Example

Error SVR RSM Kriging
MAE 2.044 3.134 2.507
AAE 0.4356 1.911 0.776

RMSE 0.8266 2.155 1.004

4. APPROXIMATION TESTBED AND COMPARISON
The testbed of engineering analyses used to benchmark

SVR against other approximation methods is listed in the
Appendix. This testbed was initially created in Ref. [24] to
compare the predictive capability of kriging models. The 22
functions to be approximated are derived from five engineering
problems typically used to test optimization algorithms: a two-
bar truss [25], a three-bar truss [25], a two-member frame [26],
a helical compression spring [27], and a welded beam [28].
Copyright © 2003 by ASME

: http://www.asme.org/about-asme/terms-of-use

Down
4.1. Training and Testing Procedure
The procedure used to train and test each approximation

technique is summarized as follows:
• Step 1 - Generate training data and test data
• Step 2 - Construct approximations using training data
• Step 3 - Compare the accuracy and robustness of each

approximation
Step 1 - Generate training data and test data: To minimize

interactions between metamodel type and the choice of
experimental design, six different sets of training data were
generated for each function using six different experimental
designs as listed in Table 4. A review and detailed comparison
of these experimental designs can be found in Ref. [29]. The
number of training points generated for each problem (n1) is
also shown. Since there are six sets of training data for each of
the 22 functions, a total of 6x22=132 function approximations
are constructed using each approximation technique.

Table 4 – Generation of Training Data and Test Data
Training Points (n1)

Experimental Design Used to
Generate Training Data

2 Variable
Problems

3 Variable
Problems

4 Variable
Problems

Central Composite Design [12] 13 15 25
Inscribed CCD [12] 13 15 25
Hammersley Sampling [30] 13 15 25
Latin Hypercube Design [31] 13 15 25
Orthogonal Latin Hypercube [32] 13 15 25
Uniform Design [33] 13 15 25

Test Points 1000 1500 2000

Additional test data is generated as shown in Table 4 using
a Latin Hypercube Design. The number of test points is very
large to ensure a thorough analysis of the accuracy of the
resulting approximation throughout the performance space.

Step 2 - Construct approximations using training data:
Every training data set is submitted to each metamodeling
algorithm to generate a function approximation. For SVR,
Steve Gunn’s Support Vector Machine Matlab code [22] is
implemented as in the one-dimensional example (see Fig. 3).
For kriging, RSM, RBF and MARS, Fortran algorithms from
Ref. [24] were utilized. Thus, five algorithms were employed
to test each of the five approximation techniques.

Step 3 - Compare the accuracy and robustness of each
approximation: Additional test data is used to test the accuracy
of the function approximation generated by each of the five
metamodeling techniques. For a given function and a given
metamodel, the inputs of the test data are submitted to the
function approximation generated in Step 2. The outputs are
the predicted values of the original function according to the
corresponding metamodeling technique. The difference
between each predicted value, iŷ , and the actual function
value, yi, is calculated as the error for that test point.

As in the one-dimensional example, three error measures
are calculated to assess accuracy: (1) RMSE, (2) MAE, and (3)
AAE, see Table 2. The RMSE gives an indication of how
accurate the approximation was overall, while the maximum
error can reveal the presence of regional areas of poor
approximation; however, due to the different magnitudes of the
22 test functions, these error statistics enable comparisons of
6

loaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Us
algorithms only within each function. It is desirable to compare
the effectiveness of each algorithm across all of the functions
so that conclusions can be drawn. A common normalized
statistic is the correlation coefficient (R-squared); however, it is
only suited for linear approximations. Although correlation
coefficients have been devised for non-linear approximations
(see Ref. [34]), they apply only to simple functions and not the
complex equations in the testbed. Thus to enable comparisons
of SVR to the four other metamodeling techniques, the average
percentage differences in error values between each algorithm
and SVR is computed. In this manner, the error in the SVR
approximations becomes the benchmark to which all other
metamodels are compared. Positive percentage values imply
that the corresponding approximation had larger errors than
SVR, while negative values imply that the approximation had
smaller errors.

The robustness of an approximation method is indicated
by the variance between its error values across different sample
sets [2]. The capability to continually repeat a function
approximation with similar accuracies (i.e., similar errors)
increases the reliability of the results and the robustness of the
approximation method. To test for robustness, SVR is again
used as a benchmark to examine the robustness of each
approximation technique, and the standard deviation is
computed to indicate robustness using the following steps:
1. For a given approximation technique, find the standard

deviation of each error (i.e., RMSE, MAE, AAE) across
the six different training sets for each function.

2. Normalize each standard deviation against the standard
deviation for SVR for the same function. This normalized
standard deviation (Norm_Std_Dev) is calculated as:

Norm_Std_Dev =
SVRfor Dev. Std.

SVRfor Dev. Std. TechniqueGiven for Dev. Std. −

3. Average Norm_Std_Dev across all functions for a given
metamodel.

The normalized standard deviation reflects the variance in the
error for a given approximation technique, relative to SVR. A
positive value indicates a greater variance than SVR and hence
lower robustness, while a negative value indicates a lower
variance than SVR and a more robust approximation method.

4.2. ANALYSIS OF RESULTS
4.2.1. Accuracy Results
Figure 5 shows the percentages by which average error

values were higher than the corresponding error value for SVR.
These percentage differences have been averaged over all 22
approximated functions. Except for the overall maximum error
for kriging, SVR has achieved lower average error values (i.e.,
RMSE, average error, and maximum error) compared to the
four other approximation techniques. As previously mentioned,
lower overall RMSE values represent good global function
approximation across the performance space, while lower
overall maximum error values reflect the absence of poorly
approximated regions in the performance space. Thus the
results imply that kriging models avoid areas of poor
approximation, but they do not perform as well globally as the
SVR approximations. In general, SVR has outperformed the
four other approximation techniques, giving lower overall error
values. Kriging achieved the next best overall performance,
followed by MARS, RSM, and finally RBF. These trends are
Copyright © 2003 by ASME

e: http://www.asme.org/about-asme/terms-of-use

Down
consistent with those observed in Ref. [24], but we note that
RBF has performed much better in other studies [2,14]. We are
still investigating why this has occurred.

Percentage Higher Overall Error Values than SVR

-40.0

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

RMSE
Max Error
Avg Error

RMSE 14.2 41.1 87.1 74.0

Max Error -36.7 28.3 74.2 44.9

Avg Error 16.6 34.4 89.3 77.9

Kriging MARS RBF RSM

Figure 5 - Comparisons of Errors Between
Metamodeling Techniques

4.2. Robustness Results
Figure 6 presents the normalized standard deviations of the

errors for each approximation technique, relative to SVR. All of
the relative standard deviations have positive values, indicating
large variance between error values for each technique, relative
to SVR. Hence, the results indicate that SVR is the most robust
of the five approximation techniques, reinforcing the validity of
the error values obtained in Figure 5. Kriging is the second
most robust method. The variance between errors for RSM is
very large, when measured relative to SVR, indicating very
inconsistent performance. This could be reflective of the fact
that RSM is most suitable for linear approximations only,
performing well in these cases and poorly in nonlinear cases.
The relatively high robustness of SVR was followed by kriging,
MARS, RBF, and finally RSM.

Percentage Higher Overall Standard Deviation of Error Values than SVR

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

RMSE 2.6 15.5 73.9 770.2
Max Error 2.5 29.8 71.3 483.3
Avg Error 4.2 18.7 78.4 663.3

Kriging MARS RBF RSM

Figure 6 - Comparisons of Standard Deviations of
Errors between Metamodels
7

loaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of U
5. CONCLUSIONS AND FUTURE WORK
In conclusion, the theory behind SVR has been presented

and shown to possess the desirable qualities of mathematical
and algorithmic elegance and producing an actual
approximating function as opposed to a trained “black box”. In
comparison to four common approximating techniques, SVR
had the best overall performance for the testbed of 22
engineering analysis functions. Only kriging out-performed
SVR in the category of average lowest maximum error. The
strong performance of the SVR approximations was reinforced
through relatively small variances between error values,
indicating that SVR also yields a more robust approximation.

The SVR implementation employed produced successful
results; however, better results using SVR are anticipated
through increased attention to the SVR algorithm itself and the
model parameters selected. The Matlab algorithm with which
the SVR results were obtained is not as efficient as other
available algorithms, but it could easily be manipulated. Other
SVM and SVR algorithms exist, such as SVMlight and
mySVM <http://www-ai.cs.uni-dortmund.de/>, which are
available in C and are more efficient than the relatively slower
Matlab implementation; however, users are limited in the
amount of “tweeking” they can do. A better solution would be
to code an entire SVR algorithm in C, employing a
commercially available quadratic solver such as LOQO [35].

In addition, the SVR implemented in our experiments
consistently used a Gaussian kernel function and a constant
precision value, ε. Optimizing these parameters during training
will improve results in most cases. For example, data
suspected to be polynomial will probably be modeled more
accurately with the use of a polynomial kernel function instead
of a Gaussian one; however, the optimal choice for the kernel
function is still an area of active research. Theoretically, any
symmetric function that results in a positive definite kernel
matrix can be used. The radius of the Gaussian kernel function
was also manually optimized in this study for each function.
Adopting a method to automatically optimize this radius (such
as the simulated annealing algorithm in kriging [16]) could
further improve the results.

ACKNOWLEDGMENTS
We gratefully acknowledge support from the U.S.

Department of Transportation and the Federal Transit
Administration. This work was conducted as part of the
development of a web-based information management system
for storing, displaying, and analyzing bus test data.

REFERENCES
[1] Kleijnen, J. P. C., 1987, Statistical Tools for Simulation
Practitioners, Marcel Dekker, New York, NY.
[2] Jin, R., Chen, W., and Simpson, T. W., 2001, “Comparative
Studies of Metamodeling Techniques under Multiple Modelling
Criteria,” Journal of Structural Optimization, 23(1), pp. 1-13.
[3] Kinnebrook, W., 1994, Neuronale Netze. Oldenbourg
Verlag, München.
[4] Cristianni, N., and Shawe-Taylor, J., 2000, An Introduction
to Support Vector Machines and other Kernel-based Learning
Methods, Cambridge University Press, Cambridge, UK.
[5] Hearst, M.A., 1998, “Trends controversies: Support vector
machines,” IEEE Intelligent System, 13(4), pp. 18-28.
Copyright © 2003 by ASME

se: http://www.asme.org/about-asme/terms-of-use

Download
[6] Takeuchi, K., Collier, N., 2002, “Use of Support Vector
Machines in Extended Named Entity,” CoNLL-2002, Taipei,
Taiwan.
[7] Dumais, S.T., Platt, J., Heckerman, D., Saharni, M., 1998,
“Inductive Learning Algorithms and Representations for Text
Categorization,” Proceedings of ACM- CIKM98, pp. 148-155.
[8] Smola, A. J., and Schölkopf, B., 1998, “A Tutorial on
Support Vector Regression,” NeuroCOLT2 Technical Report
Series, NC2-TR-1998-030, Berlin, Germany.
[9] Vapnik, V., and Lerner, A., 1963, “Pattern Recognition
Using Generalized Portrait Method.” Automation and Remote
Control, 24.
[10] Vapnik, V, and Chervonenkis, A., 1964, A Note On One
Class of Perceptrons, Automation and Remote Control, 25.
[11] Simpson, T. W., Peplinski, J., Koch, P. N. and Allen, J. K.,
2001, "Metamodels for Computer-Based Engineering Design:
Survey and Recommendations," Engineering with Computers,
17(2), pp. 129-150.
[12] Myers, R. H., Khuri, A. I., and Carter, W. H., 1995,
Response Surface Methodology: Process and Product
Optimization Using Designed Experiments, John Wiley &
Sons, New York, NY.
[13] Tu, C. H., and Barton, R. R., 1997, “Production Yield
Estimation by the Metamodel Method with a Boundary–
focused Experiment Design,” Design Theory and Methodology
Conference – DTM’97, ASME, Paper No. DETC97/DTM3870.
[14] Meckesheimer, M., Barton, R. R., Simpson, T. W.,
Limayem, F. and Yannou, B., 2001, "Metamodeling of
Combined Discrete/Continuous Responses," AIAA Journal,
39(10), pp. 1955-1959.
[15] Sacks, J. Welch, W.J., Mitchell, T.J., Wynn, H.P., 1989,
“Design and Analysis of Computer Experiments.” Statistical
Science, 4(4), pp. 409-435.
[16] Simpson, T. W., Mauery, T. M., Korte, J. J. and Mistree,
F., 2001, "Kriging Metamodels for Global Approximation in
Simulation-Based Multidisciplinary Design Optimization,"
AIAA Journal, 39(12), pp. 2233-2241.
[17] Friedman, J.H., 1991, “Multivariate Adaptive Regression
Splines,” The Annals of Statistics, 19(1), pp. 1-141.
[18] Smola, A. J., Schölkopf, B., and Müller, K. R., 1998, “The
Connection Between Regularization Operators and Support
Vector Kernels,” Neural Networks, 11, pp. 637-649.
[19] Vapnik, V., 1995, The Nature of Statistical Learning
Theory, Springer, New York, NY.
[20] Schölkopf, B., Smola A.J., 2002, Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and
Beyond. MIT Press, Cambridge, MA.
8

ed From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Us
[21] Su, J. and Renaud, J. E., 1997, "Automatic Differentiation
in Robust Optimization," AIAA Journal, 35(6), pp. 1072-1079.
[22] Gunn, S.R., 1997, Support Vector Machines for
Classification and Regression. Technical Report, Image Speech
and Intelligent Systems Research Group, University of
Southampton, UK.
[23] Markowetz, F., 2001, Support Vector Machines in
Bioinformatics, Diploma Thesis in Mathematics, University of
Heidelberg, Germany.
[24] Simpson, T. W., 1998, "A Concept Exploration Method
for Product Family Design," Ph.D. Dissertation, G.W.
Woodruff School of Mechanical Engineering, Georgia Institute
of Technology, Atlanta, GA.
[25] Schmit, L. A., 1981, "Structural Synthesis—Its Genesis
and Development," AIAA Journal, 19(10), pp. 1249-1263.
[26] Arora, J. S., 1989, Introduction to Optimum Design,
McGraw-Hill, New York, NY.
[27] Sandgren, E., 1990, "Nonlinear Integer and Discrete
Programming in Mechanical Design Optimization," Journal of
Mechanical Design, 112(2), pp. 223-229.
[28] Ragsdell, K. M. and Phillips, D. T., 1976, "Optimal Design
of a Class of Welded Structures Using Geometric
Programming," Journal of Engineering for Industry, Series B
98(3), pp. 1021-1025.
[29] Simpson, T. W., Lin, D. K. J. and Chen, W., 2001,
"Sampling Strategies for Computer Experiments: Design and
Analysis," International Journal of Reliability and
Applications, 2(3), pp. 209-240.
[30] Kalagnanam, J. R. and Diwekar, U. M., 1997, "An
Efficient Sampling Technique for Off-Line Quality Control,"
Technometrics, 39(3), pp. 308-319.
[31] McKay, M. D., Beckman, R. J. and Conover, W. J., 1979,
"A Comparison of Three Methods for Selecting Values of Input
Variables in the Analysis of Output from a Computer Code,"
Technometrics, 21(2), pp. 239-245.
[32] Owen, A. B., 1992, "Orthogonal Arrays for Computer
Experiments, Integration and Visualization," Statistica Sinica,
2, pp. 439-452.
[33] Fang, K.-T., Lin, D. K. J., Winker, P. and Zhang, Y., 2000,
"Uniform Design: Theory and Application," Technometrics, 42,
pp. 237-248.
[34] Cameron, A.C. and Windmeijer, F.A.G., 1997, "An R-
squared Measure of Goodness of Fit for some common
Nonlinear Regression Models", Journal of Econometrics, 77,
pp. 329-342.
[35] Vanderbei, R. J., 1999, “LOQO user's manual (Version
3.10)”, Optimization Methods and Software, 12, pp. 485-514.
Copyright © 2003 by ASME

e: http://www.asme.org/about-asme/terms-of-use

Downloaded From:
APPENDIX: APPROXIMATION TESTBED FOR COMPARING METAMODELING TECHNIQUES

Problem
Input

(Design)
Variables

Output
(Response)
Variables

Function to be Approximated

W W(x) = 2ρπDT(B2 + H2)1/2

g1 g1(x) =
TDH

HBP
HB

TDE
π

π 2/122

22

222)(
)(8

)(+−
+

+

2-bar Truss [25]
t

D

Section C-C’

H
2P

B B

C

C’

D
H

g2 g2(x) = σy - TDH
HBP

π

2/122)(+

W* W(x) =)22(21 AAN +ρ

g1
g1(x) = 20,000 –













+
− 2

121

2

1 22
1

AAA
A

A

g2 g2(x) = 20,000 – 2
121

1

22
2000,20

AAA
A

+

2
V

ar
ia

bl
e

Pr
ob

le
m

s

3-bar Truss [25]

N

x

P1P2

α
α
αα

α
α

A1 A2 A3 A1
A2

g3 g1(x) = 15,000 2
121

2

22
000,20

AAA
A

+
−

V* V(x) = 2L(2dt + 2ht - 4t2)

g1 g1(x) = (σ1
2 + 3τ2)1/2

2-member Frame [26]
d
h
t

g2 g2(x) = (σ2
2 + 3τ2)1/2

V* V(x) = π2Dd2(N + 2)/4

g1 g1(x) = S - 8CfFmaxD/(πd3)

g2* g2(x) = lmax - lf

g3* g3(x) = δpm - δ

g4* g4(x) = (Fmax - Fload)/K - δw

g5* g5(x) = Dmax - D - d

3
V

ar
ia

bl
e

Pr
ob

le
m

s

Spring [27]

N
D
d

g6* g6(x) = C - 3

F* F(x) = (1 + c3)h2l + c4tb(L + l)

τ τ(x) = [(τ’)2 + 2τ’τ’’cosθ + (τ’’)2]1/2

σ σ(x) = 6FL/(bt2)

P











−=

α
α EI

L
t

L
EIPc)

2
(1013.4)x(2

4
V

ar
ia

bl
e

Pr
ob

le
m

Welded Beam [28]

B

A

L

F

h

F

b

l t

h
l
t
b

DEFL











−=

α
α EI

L
t

L
EIPc)

2
(1013.4)x(2
9 Copyright © 2003 by ASME

 https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

