
 ���

Chapter XIII
Software Modeling Processes:

UML–xUML Review

Roy Gelbard
Bar-Ilan University, Israel

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

Applications require short development cycles and constant interaction with customers. Requirement gath-
ering has become an ongoing process, reflecting continuous changes in technology and market demands.
System analysis and modeling that are made at the initial project stages are quickly abandoned and become
outmoded. Model driven architecture (MDA), rapid application development (RAD), adaptive develop-
ment, extreme programming (XP), and others have resulted in a shift from the traditional waterfall model.
These methodologies attempt to respond to the needs, but do they really fulfill their objectives, which are
essential to the success of software development? Unified modeling language (UML) was created by the
convergence of several well-known modeling methodologies. Despite its popularity and the investments that
have been made in UML tools, UML is not yet translatable into running code. Some of the problems that
have been discovered have to do with the absence of action semantics language and its size. This chapter
reviews and evaluates the UML evolution (UML2, xUML), providing criteria and requirements to evalu-
ate UML and the xUML potential to raise levels of abstraction, flexibility, and productivity enhancement.
At the same time, it pinpoints its liabilities that keep it from completely fulfilling the vision of software
development through a continuous exactable modeling process, considered to be the future direction for
modeling and implementation.

INtrODUctION

In his book, Evitts describes the beginnings of
UML tools (Evitts, 2000). The context prompting
the development of UML was the increasing com-
plexity of software which began in the 90s, when
technologies (tools) that could deal with a network

and information-driven world did not yet exist. In
1991, Malone and Rockart described expectations
that would soon emerge from all quarters. They
noted that whenever people work together, there
is a need to communicate so as to make decisions,
allocate resources, and provide and receive products
and services at the right time and place. However,

��0

Software Modeling Processes

in the early 90s, methodologies were rarely sup-
ported, either by common modeling tools, traditional
methodologies (based upon process charts, ERD,
and DFD), or object oriented methodologies. The
semi-standard development process, the “water-
fall,” was convenient, albeit unperfected, whereas
object-oriented provided none of these comforts,
and the general opinion was that very few of its
efforts had any real advantages over mainstream
approaches.

In early 90s, the rise of Java, the standardization
of C++, the birth and rebirth of CORBA, and the
emergence of pattern languages for software design
attracted a great deal of attention and popularity
to UML. In June 1996, Rational released the 0.9
revision of UML, and then later on January 1997,
Rational’s 1.0 spec reached the market. In September
1997, Rational’s UML 1.1 was combined with the
OMG’s UML proposal to create the final product
that was called UML 1.0.

The current chapter evaluates the extent to which
the UML can be used to support the modeling
process, providing not only better communication
among system analysts and developers. Primarily,
it examines productivity enhancement through
generating capabilities of wider range of software
elements based upon modeling definitions.

bAcKGrOUND rEVIEW

A. From UML 1 to UML 2.0

The scope of the UML has recently broadened. It
is no only longer used to describe software sys-
tems, but now also business processes. With the
service-oriented architect (SOA) and model driven
architecture (MDA) initiatives, it has evolved to
describe and automate business processes (activ-
ity diagram is a UML variation of the traditional
process diagram), as well as become a language for
developing platform-independent systems.

Earlier versions of the UML standard did not
describe what it meant to support the standard. As

a result, UML tool vendors were free to support
incomplete UML features, and converting models
from one tool to another was often extremely dif-
ficult, if not impossible.

UML 2.0 defines 38 compliance points (Ambler,
2004; Bjorkander & Kobryn, 2003). A compli-
ance point is an area of UML, such as use cases.
All implementations are required to implement a
single compliance point, the kernel. The other 37
compliance points are currently optional. Evaluating
modeling tools in light of these compliance points
helps clarify which model elements are supported,
and to what extent. For each compliance point, there
are four compliance options. A compliance option
determines how compliant a given implementation
is. The four options are as follows:

• No compliance—the implementation does not
comply with the syntax, rules, and notation
for a given compliance point.

• Partial compliance—the implementation
partially complies with the syntax, rules, and
notation for a given compliance point.

• Compliant compliance—the implementation
fully complies with the syntax, rules, and
notation for a given compliance point.

• Interchange compliance—the implementa-
tion fully complies with the syntax, rules,
notation, and XMI schema for a given compli-
ance point.

However, UML 2.0 does not address any of
UML 1.x’s significant deficiencies, namely the lack
of business rule Modeling, workflow modelling,
and user interface modeling, although there is
a business rule working group within the OMG.
Several methodologists have suggested approaches
to user interface flow modeling and design model-
ing using UML, but no official effort to develop a
common profile exists.

b. Executable UML (xUML)

xUML is a subset of the UML, incorporating action
language that allows system developers to build ex-

 ���

Software Modeling Processes

ecutable domain models and then use these models
to produce system source code. Hence, xUML is
an executable version of the UML.

The xUML process involves action specifica-
tion language (ASL) (Raistrick, Francis, Wright,
Carter, & Wilkie, 2004). The resulting models can
be independently executed, debugged, viewed, and
tested. Multiple xUML models can be assembled
together to form complex systems with their shared
mappings, expressed using ASL (Raistrick et al.,
2004). Executable models can then be translated into
target implementations. The execution rules of the
xUML formalism means that the same models can be
translated into a wide variety of target architectures
without introducing changes into the models.

The xUML model enables modeling indepen-
dency concerning hardware and software organi-
zation; in the same way typical, a compiler offers
independency concerning register allocation and
stack/heap organization. Furthermore, just as a
typical language, compiler makes decisions about
register allocation and the like for a specific ma-
chine environment, so a xUML model compiler
makes decisions about a particular hardware and
software environment, deciding, for example, to use
a distributed Internet model with separate threads
for each user window, HTML for the user interface
displays, and so on.

The xUML methodology suggests a system
partitioned into domains or subject matters (Miller
& Mukerji, 2003). Each domain is modelled sepa-
rately. Bridges are defined between domains, with
some requirements placed between one domain
and another and connector points defined for their
exchange of information. The various domains
and their dependency relationships are commonly
displayed using package diagrams.

According to the OMG MDA approach (Miller
& Mukerji, 2003), each xUML model is a plat-
form-independent model (PIM). The mappings
between such models are PIM-to-PIM mappings.
The translation approach makes use of PIM to
platform specific model (PSM) and platform spe-
cific implementation (PSI) mappings, in order to

achieve executable modeling, large-scale reuse, and
pattern-based design.

The xUML does not use all of the UML dia-
grams and constructs, as many are thought to be
redundant. The xUML is intended to precisely
model a system; any construct or building blocks
that could introduce ambiguity should be left out
of the model (Raistrick et al., 2004).

The most fundamental modeling diagrams
in xUML are the class and state chart diagrams.
Classes should be modeled with some degree of
precision. A state machine is attached to each class
to describe its dynamic behavior and lifecycle. In
other words, in xUML, each class is thought to
have a state machine that responds to events. Ac-
tions that are taken in response to events or about
a certain state are specified precisely using some
sort of action language. The specification 1.4 of the
UML includes the specification of action semantics
even though no concrete syntax for these semantics
is specified. Typically, the xUML tool will provide
an explanation about the action language syntax or
syntaxes that the tool can interpret.

Use case and activity diagrams are not an inte-
gral part of the xUML but they are recommended
as methods for gathering requirements before
the model is constructed. Activity diagrams are
employed to show the sequence of use cases and
branching possibilities. Collaboration and sequence
diagrams can be used to gain insight into the sys-
tem or in some cases for visualizing aspects of the
system after it has been built. They, too, are not
executable.

c. Model Driven Architecture (MDA)

Model driven architecture initiated by the object
management group OMG) aims to place models at
the core of the software development process, that
is, model driven architecture of both the system and
the software. The MDA claim can be regarded as a
mere recommendation for how the system should be
built, with little guarantee that the system will actu-
ally be built as specified. If some design decisions

���

Software Modeling Processes

have to be revised, and decisions are taken to build
the system differently during the implementation
phase, rarely are the design models updated to reflect
the decisions that make design models ineffective
in the same manner as static documents, which are
all ineffective as regards future maintenance.

RAD and other agile methods are based upon
the same concept. The typical situations where
analysis and design models often end up serv-
ing their intended purpose rather poorly, has led
to iterative methods, having short iterations that
repeat all modeling steps from analysis up to
implementation.

Another MDA concept is platform indepen-
dency. As technology progresses at a fast rate, new
platforms are quickly introduced. Software writ-
ten for a certain platform has very little use when
transferred to other platforms—meaning most of
the software must then be rewritten from scratch.
If we were able to create a platform-independent
model that could be translated to fit diverse plat-
forms, many of the problems arising from platform
instability could be avoided.

The MDA approach is based upon separation
between a computation independent model (CIM),
which is a precise business model, stakeholder
oriented, uncommitted to specific algorithms or
system boundaries, also known as a domain model
and platform independent model, which is created
at the analysis phase of software development. The
PIM therefore is a long-term asset. A platform spe-
cific model is generated from the PIM in the design
phase with some degree of [automation] autonomy.
The PIM and the PSM concepts are not new, but the
way they are modeled is. According to the MDA,
there are four levels of modeling:

• M0—Objects living and interacting in a real
system.

• M1—Models that define the structure and
behavior of those objects. M1 models, on the
other hand, are written in a language. These
language constructs have to be defined some-
where.

• M2—Meta-models, or models about how
M1 models are built. For instance, at level
M2, one can find the UML meta-model, or a
model about how M1 models are written by
the language. Meta-models themselves have
to be written in a language—that is what the
level M3 stands for.

• M3—Meta-meta-modeling, defines how
meta-models for language modeling can be
built, or a language for meta-model refine-
ment.

Theoretically, we could continue this way un-
til we reach an arbitrary modeling level. In other
words, there could be level M4 defining a language
for M3, and level M5 from which M4 models are
instanced, and so on. However, the MDA initiative
defined that the M3 model is written with the M3
language, so there are no higher modeling levels,
and M3 language is the metadata object facility
(MOF), which is one of the OMG standards. The
MOF model is written in MOF itself. Meta-models or
models defining modeling languages are instances
of the MOF model and thus written in the language
defined by it. For instance, there is a meta-model
for UML and it is written according to the one
specified in the MOF model.

Another OMG standard is the XML metadata
interchange or XMI. XMI defines model coding
and meta-models in XML format. The standard
defines XML generating for any MOF compliant
language or meta-models. Moreover, because the
MOF meta-model is written in MOF, the MOF
meta-model itself can also be coded and exchanged
in XML, enabling any vendor to make built-in
variations or adaptations at the core of UML or
any modeling concept.

Profile (UML Profiles) is also an MDA stan-
dard. UML profiles are basically a way to define
UML dialects using UML standard extensibility
mechanisms (stereotypes, tags, etc.). A number
of profiles have been created or are being created
for some popular platforms; these profiles serve as
convenient PSM language for these platforms.

 ���

Software Modeling Processes

xUML is essentially related to MDA. xUML
can be thought of as one way of implementing the
MDA concept, with one notable exception (Raist-
rick et al., 2004). While MDA recommends that a
platform-independent model be transformed into
a platform-specific one before it is translated into
code, xUML skips this intermediate step. Most
xUML tools will translate models straight into code
without generating a platform-specific model. On
the other hand, the xUML model compiler can be
thought of as being analogous to a transformation
definition, where the rules about the transformation
are declared.

cOMPArIsON ANALysIs

The current chapter reviews and evaluates UML
evolution (UML2, xUML), providing criteria and
requirements to evaluate UML and the xUML po-
tential to raise levels of abstraction, flexibility, and
productivity enhancement, while pointing out the
disadvantages that prevent it from completely ful-
filling the vision of software development through
a continuous exactable modeling process.

The following table presents these requirements,
noting whether a requirement is supported or not.
Based on the following data, the missing pieces that
still need to be resolved in the upcoming versions
of UML can be determined.

The (+) and (–) symbols note the presence and
the absence of the relevant required feature.

Required Feature UML 2 xUML

1 Visualization + +

2 System Specification + +

3 System Documentation + +

4 Automatic Update - +

5 System Construction + (Partial) +

6 Code Generation + (Partial) +

7 Standardization + +

8 Modeling of classes with attributes,
operations, and relationship + (Enhanced)

+ (Different relationships between
classes in diagrams, state machine
associated to each class)

9 Modeling of states and behavior of
individual classes + + (though the modeling is for a

higher tier)

10 Modeling of packages of classes and
their dependencies + + (Extended to domains)

11 Modeling of system usage scenarios + (Enhanced) + (Enhanced)

12 Modeling of object instances with
actual attributes in a scenario + (Enhanced) + (Enhanced)

13 Modeling of actual behavior of inter-
acting instances in a scenario + (Enhanced) + (Enhanced)

14 Modeling of distributed component
deployment and communication + (Enhanced) + (Enhanced)

15 Modeling of exceptions + +

16 Extension: Stereotypes + +

17 Extension: Profiles + (Enhanced) + (Enhanced)

Table 1. Requirements for executable software model

continued on following page

���

Software Modeling Processes

Requirements UML 2 xUML

18 Extension: meta-model + +

19 Modeling test cases + +

20 Scalability and precision of diagrams + (Enhanced but still
partial)

+ (Limited support by available
tools)

21 Gap reduction between design and
implementation - + (PIM, PSM)

22 Multiple views of the system + +

23 Domain, platforms, and process
customization + + (PIM, PSM)

24 Supporting visualization of user
interfaces - -

25 Supporting logical expressions
required for business logic, detailed
definition, and design

- -

26 Supporting organization and authori-
zation structures - -

27 Supporting processes and workflow
simulation - -

28 Supporting technical requirements

29 Ability to represent the relation-
ship between the design and specific
platform

- + (PSM)

30 Describing structural and behavioral
issues in a way that is easier to survey
than in ordinary textual programming
languages

+
+ (Enhanced functionality and action
specification language, i.e., ASL,
support)

31 Affecting translation into code:
1. Compiler is fast and reliable
2. Generated code is fast and robust

- + (PIM, PSM)

32 Generating diagrams from code

+

N/a (We always work on the model
itself—all updates done on model
and the code is generated from the
model)

33 Possibility to under-specify unwanted
or unavailable properties still to be
defined

- + (PSM)

34 Possibility to transfer UML models
between models - + (partial)

35 Possibility to transfer UML models
from one target language to another - + (PSM)

Table 1. continued

FUtUrE trENDs: cUrrENt UML
AND xUML HOLDbAcKs

As shown in the table, there are major areas of
analysis which are not yet covered by the UML,

such as user interface, business logic, organization
and authorization structured, and so forth. Some
of these areas are not adequately supported by the
object oriented methodology itself, while others are
mainly technical issues not methodological ones,

 ���

Software Modeling Processes

such as affecting translation into code (require-
ment 31).

 The current deficiencies of UML and xUML
are listed.

1. One basic deficiency is language inability to
support real-life facts and components that
have to be defined and established in the sys-
tem. This includes supporting visualization of
user interfaces, logical expressions required
for business logic and its detailed definition and
design, organization and authorization struc-
tures, processes and workflow simulation, and
technical requirements (such as performance,
response time, etc.). Until we are able to do so,
no system can be fully constructed. UML 2
provided enhanced diagrams, but the language
was still not fully expressive. Therefore, there
are still major significant pieces of code that
must be hand-written or revised. There is no
doubt that ideally, the entire system should be
able to be constructed at the click of a button,
but this cannot happen until the language is
fully expressive. Until this happens, there is
not much benefit in using xUML.

Further UML steps should address this is-
sue and enable system analysts to define entire
business functionality, interface components, and
technical requirements. This is easier to state than
to implement.

2. The action semantics for the UML is a seman-
tic standard alone, not a syntactic standard.
This was, presumably a marketing decision,
enabling vendors to supply either AMD-CASE
tools or development tools, which already
contained fully-realized action languages
with proprietary syntaxes. One point of view
maintains that syntax does not matter; how-
ever, it is easy to see that competing syntaxes
may constrain the ability of xUML to acquire
growth rates. On the other hand, because ac-
tion languages exist at such a high level of

abstraction, they do not require such sharp
learning curves as those of third generation
languages. Therefore, after learning one ac-
tion language syntax, modellers could easily
learn another, as they would, in essence, be
dealing with the same semantic set.

Further UML steps should address this issue
in order to enable language and API transparency,
and put aside political interests. Again, this is easy
to say, but very complicated to apply, not so much
because of technical reasons, but rather as a result
of “human factors.”

3 The original intent of the system analyst is
impaired and lost in translation, when translat-
ing the UML model to PIM and then to PSM.
The resulting code is sometimes awkward.
Meta-models allow for the easy addition of
new concepts. However, they do not ensure
that these concepts will make semantic sense
or that the different meta-models, such as UML
profiles, will be consistent or orthogonal, with
no contradictions with the original.

Further UML steps should be directed towards
integrity validation mechanisms, as developers
are “developing-oriented” not “version compar-
ing-oriented,” which is quite a cumbersome and
tedious task.

4. Moreover, the modeller tends to focus not only
on the properties s/he is modeling (Rumpe,
2002), but also on execution efficiency.
Therefore, the resulting code must include
functionality and business accuracy, as well
as performance and efficiency.

Further UML steps should be directed towards
supporting optimizing models and tools.

5. When using code generators that map UML to
a target language, the semantics of the target
language as well as its notational capabili-

���

Software Modeling Processes

ties tend to become visible on the UML level
(Rumpe, (2002). For example, missing mul-
tiple-inheritance in Java may restrict xUML
to single inheritance as well. Furthermore,
the language’s internal concurrency concept,
message passing or exception handling may
impose a certain dialect on xUML. This will
cause UML dialects to be semantically in-
compatible. In particular, it will not be easy
to make it possible to transfer UML models
from one target language to another.

Further UML steps should address precise
model transformation.

6. Last but not least are “model debugging”
and the traceability-closure problem, that
is, analysis error detection and closure be-
tween requirements and model components.
Although the model, at the modeling stage,
is only an outline, it has to be checked, de-
bugged, optimized, and tested. Moreover, it
has to enable detailed tracing in light of all
requirements (both business and technical).

Further UML steps should be directed at
“model debugging” and full traceability-closure,
which has a huge impact not only on each one of
the development cycles, but also over the entire
system’s life cycle.

cONcLUsION

The vision of generating an entire system at a
single click is still not a reality, as is the vision of
fully expressive modelling, which is also still not
available. Furthermore, current field studies have
shown that UML does not fulfill the “modelling
vision” we all wish for. Dobing and Parsons studied
“How UML is used” (Dobing & Parsons, 2006),
and Davies, Green, Rosemann, Indulska, and Gallo
published “How do practitioners use conceptual
modeling in practice?” (Davies et al., 2006). Both

found the same trends, namely that UML diagrams
are not clear enough to users or to developers, and
recommend that additional demonstrative methods
should be employed. Modeling of business logic,
user interfaces, requirements (such as performance,
response time, etc.), and other system components
are still not fully available. The same goes for
“model debugging” and detailed tracing and closure,
which are crucial to the modeling stage. Technical
aspects are also crucial in order to ensure usability
and performance, but this seems to be a temporal
issue rather than a conceptual one.

In light of the mentioned, the vision of gener-
ating an entire system by a single click will take
place if and only if modelling languages, theories,
and methodologies can overcome their conceptual
limitations. In the IT domain, technical limitations
are usually temporal, whereas conceptual limita-
tions can lead to a dead-end.

AcKNOWLEDGMENt

I would like to thank David Belostovsky and Daphna
Tsur for their contribution to this work.

rEFErENcEs

Ambler, S. W. (2004, March). What’s new in UML 2.
Software Development Online Magazine. Retrieved
December 2006, from http://www.sdmagazine.
com/documents/s=815/sdm0402i/

Bjorkander, M. (2000). Graphical programming
using UML and SDL. Computer, 33(12), 30-35.

Bjorkander, M., & Kobryn, C. (2003). Architect-
ing dystems with UML 2.0. IEEE Software, 20(4),
57-61.

Davies, I., Green, P., Rosemann, M., Indulska, M.,
& Gallo, S. (2006). How do practitioners use con-
ceptual modeling in practice? Data &Knowledge
Engineering, 58(3), 358-380.

 ���

Software Modeling Processes

Di Nitto, E., Lavazza, L., Schiavoni, M., Tracanella,
E., & Trombetta, M. (2002). Deriving executable
process descriptions from UML. In Proceedings
of the 24th International Conference on Software
Engineering (pp. 155-165).

Dobing, B., & Parsons, J. (2006). How UML is used.
Communication of the ACM, 49(5), 109-113.

Evitts, P. (2000). A UML pattern language. New
Riders Publishing.

Fei, X., Levin, V., & Browne, J. C. (2001). Model
checking for an executable subset of UML. In Pro-
ceedings of the 16th International Conference on
Automated Software Engineering (pp. 333-336).

Fowler, M. (2003). UML distilled: A brief guide to
the standard object modeling language (3rd ed.).
Addison Wesley.

Hölscher, K., Ziemann, P., & Gogolla, M. (2006).
On translating UML models into graph transfor-
mation systems. Journal of Visual Languages &
Computing, 17(1), 78-105.

HongXing, L., YanSheng, L., & Qing, Y. (2006).
XML conceptual modeling with XUML. In Pro-
ceedings of the 28th international conference on
Software engineering (pp. 973-976).

Jia, X., Steele, A., Qin, L., Liu, H., & Jones, C.
(2007). Executable visual software modeling—The
ZOOM approach. Software Quality Journal, 15(1),
27-51.

Liu, L., & Roussev, B. (2006). Management of
the object-oriented development process. Idea
Group.

Miller, J., & Mukerji, J. (2003, May). MDA guide.
OMG Organization. Retrieved December 2006,
from http://www.omg.org/mda/mda_files/MDA_
Guide_Version1-0.pdf

Raistrick, C., Francis, P., Wright, J., Carter, C., &
Wilkie, I. (2004). Model driven architecture with
executable UML. Cambridge.

Rumpe, B. (2002). Executable modeling with
UML—A vision or a nightmare? (Tech. Rep.). Mu-
nich University of Technology. Retrieved December
2006, from http://www4.in.tum.de/~rumpe/ps/
IRMA.UML.pdf

Seidewitz, E. (2003). Unified modeling language
specification v1.5. IEEE Software, 20(5), 26-32.

Thomas, D. (2004). MDA: Revenge of the modelers
or UML Utopia?. IEEE Software, 21(3), 15-17.

KEy tErMs

Agile Software Development: A conceptual
framework for undertaking software engineering
projects that embraces and promotes evolution-
ary change throughout the entire life cycle of the
project.

Executable UML (xUML): A software engi-
neering methodology that graphically specifies a
deterministic system using UML notations. The
models are testable and can be compiled, trans-
lated, or weaved into a less abstract programming
language to target a specific implementation. Ex-
ecutable UML supports MDA through specification
of platform independent models (PIM).

Model-Driven Architecture (MDA): A
software design approach launched by the object
management group (OMG) in 2001.

Object Management Group (OMG): A con-
sortium, originally aimed at setting standards for
distributed object-oriented systems, and is now
focused on modeling (programs, systems, and busi-
ness processes) and model-based standards.

Platform-Independent Model (PIM): A model
of a software or business system that is indepen-
dent of the specific technological platform used to
implement it.

Rapid Application Development (RAD): A
software development process developed initially

���

Software Modeling Processes

by James Martin in the 1980s. The methodology
involves iterative development, the construction of
prototypes, and the use of computer-aided software
engineering (CASE) tools.

Software Engineering: The application of a
systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of
software.

System Modeling: An abstraction or conceptual
representation used for system illustration.

Unified Modeling Language (UML): A stan-
dardized specification language for object model-
ing. UML is a general-purpose modeling language
that includes a graphical notation used to create an
abstract model of a system,

