
Process Patterns for Web Engineering

Reza Babanezhad, Yusef Mehrdad Bibalan, Raman Ramsin
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

babanezhad@ce.sharif.edu, bibalan@ce.sharif.edu, ramsin@sharif.edu

Abstract—Web Engineering has been enriched with processes
and modeling languages that focus on the specific features of
web-based systems, taking into account the special
requirements and constraints that are associated with this
specific context.
Process Patterns, on the other hand, represent elements of
knowledge and experience in software engineering; they also
act as reusable method chunks that can be used for
constructing bespoke methodologies that are tailored to fit
specific project situations.
We propose a set of process patterns based on current web
development practices. A number of prominent web
development methodologies have been studied, and a set of
process patterns has been elicited through abstracting their
commonalities and identifying the essential activities required
in a web engineering endeavor. Furthermore, a web-based
systems development framework has been proposed that
organizes these patterns into a generic lifecycle. The process
patterns can be instantiated and assembled into a high-level
development process based on the generic framework
proposed.

Keywords–Web-Based Systems Development, Software
Development Methodology, Situational Method Engineering,
Process Pattern.

I. INTRODUCTION
Due to the rapid expansion and evolution of computer

networks and the Internet, Web-based systems have
expanded in scale and scope. Organizations face an
increasing need to address distribution requirements, and the
advent of the Web has provided a powerful medium for
tackling this issue. Using the web, however, requires
adherence to certain standards and communication protocols.
A Web-based system is a software-intensive system that is
based on technologies and standards of the World Wide Web
Consortium (W3C), and that provides Web-specific
resources through a Web browser [1]. These resources are
usually in the form of information content or services.

Although developing web-based systems by using
traditional software development methodologies has long
been the prevalent practice, such an approach tends to
overlook the special characteristics of Web-based systems
and projects, and quality suffers as a consequence. Some
important requirements of Web-based products are: context
sensitivity, high security, and maintainability in a continuous
sense. Moreover, Web development projects typically have

to cope with special constraints, such as limited time and
budget, changing organizational processes, competitive
pressure, and extreme volatility of requirements [2]. Over the
years, this has resulted in the advent of methodologies
specialized for Web-based development. Web Engineering
has thus become an important discipline in its own right.
Web development processes have special properties such as
short development cycles, flexibility, configurability,
attention to certain Web-specific non-functional
requirements, focus on organizational processes and their
mutability, attention to user variety, embracing requirements
volatility, explicit support for maintenance activities,
provisions for managing multitudes of small-sized teams,
and support for parallel and distributed development.

A software pattern is an abstraction that describes a
proven solution to a common problem in a certain software
development context. Similarly, software process patterns
are the results of applying abstraction to successful software
development activities and practices. Process patterns were
first defined as “the patterns of activity within an
organization (and hence within its project)” [3]; however, the
definition that is widely accepted today has been provided by
Ambler, who regards a process pattern as “a pattern which
describes a proven, successful approach and/or series of
actions for developing software” [4].

Ambler has also proposed a set of process patterns for
object-oriented development [4, 5], dividing them into three
categories based on granularity and abstraction level: Phase,
Stage and Task. A Task process pattern defines the steps
necessary for performing a specific, fine-grained task in a
project. A Stage process pattern depicts the steps in a single
project stage and can contain Tasks or other Stages. Stages
are often performed in an iterative manner. A Phase process
pattern corresponds to a coarse-grained phase of the
development lifecycle, and represents a number of
constituent Stages and their interactions. A generic process
framework can be created by organizing Phase process
patterns into a development lifecycle. Ambler has introduced
the Object-Oriented Software Process (OOSP) as a generic
process framework for object-oriented software
development. An object-oriented process can be generated
by instantiating this framework and its constituent Phase,
Stage, and Task process patterns.

Process patterns can thus be used as components for
building a methodology, especially in Situational Method
Engineering (SME), where a custom methodology is

2010 IEEE 34th Annual Computer Software and Applications Conference

0730-3157/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSAC.2010.55

477

2010 34th Annual IEEE Computer Software and Applications Conference

0730-3157/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSAC.2010.55

477

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357300688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

engineered based on the requirements of the development
situation at hand. In assembly-based SME [6], method
chunks/fragments are selected from a repository and
assembled in such a way as to satisfy project requirements
and/or organizational needs. Process patterns can be used as
method chunks; as an example, the OPEN Process
Framework (OPF) incorporates a library of reusable method
components, many of which are process patterns [7, 8].

We propose a set of process patterns for Web
Engineering, extracted from Web systems development
processes and practices. Furthermore, a generic process
framework (at the lifecycle level) for Web-based systems
development is also introduced. This framework and its
constituent process patterns can be used for process
construction and evaluation. Web-based development
processes can be compared and assessed as to their
conformance to the proposed framework and patterns. The
process patterns can be imported into a Computer-Aided
Method Engineering (CAME) tool, where they can be
instantiated, tailored, and assembled by method engineers
into bespoke methodologies.

The rest of this paper is structured as follows: In Section
2, a brief review of seven Web development methodologies
is presented; Section 3 provides a description of the proposed
generic framework; in Section 4, the proposed process
patterns are defined in detail; in Section 5, the main
properties of the framework are discussed; Section 6
validates the process patterns through demonstrating how
they correspond to existing Web Development
methodologies; and Section 7 presents the conclusions as
well as suggestions for furthering this research.

II. A REVIEW OF PROMINENT WEB DEVELOPMENT
METHODOLOGIES

In order to elicit the target process patterns, a select set of
prominent Web development methodologies have been
studied in detail. In this section, seven methodologies of this
set are briefly reviewed. The main reasons for selecting these
methodologies are that they all offer novel features for Web
development, and that adequate resources and documentation
are available on their processes, thus facilitating their
analysis. The methodologies reviewed herein are:
XWebProcess, AWE, ICDM, WebHelix, MPM, OOHDM,
and the Conallen methodology [9].

XWebProcess [10] is an XP-based agile process for Web
development. This methodology extends the XP process [11]
by changing and adding certain activities. The Web-
development activities that have been incorporated are: Web
navigation and presentation design, Web testing, and Web
support. The main objective of the methodology is to build
high quality Web applications while using an effective
scheduling scheme.

AWE [12] is an agile process developed to address Web
development issues and requirements, such as short
development cycles, management of small and
multidisciplinary teams, and delivering the software along
with the data. Delivering software along with data means that
data should be prepared during development, unlike

traditional development where only software components
need to be delivered. Business analysis and evaluation of
legacy systems are considered as separate phases in this
methodology’s process.

ICDM is a framework for developing business Web-
based system. E-business systems have three main
properties: they are business-based, which means that they
should be defined by the business strategy, not the
implementation technology; they are customer-based, which
means that the requirements of external users should be
considered as pivotal; and they should be change-centric,
requiring that short development cycles and evolutionary
methods be used in their development, so that changes in
customer requirements are easily accommodated [13]. This
methodology tries to address these issues by incorporating
specialized activities, such as development of strategies, into
its process.

The objective of WebHelix [14] is to present a light and
effective way for developing Web-based systems. Some
major characteristics of the methodology’s process are:
support for prototyping, iterative-incremental model, and
minimal production of documents. An enhanced version of
this methodology was introduced in [15].

MPM [16] offers a process based on prototyping. This
methodology considers Web-based systems as organic
systems which need to be adapted continuously with their
environment. The methodology puts great emphasis on
maintenance activities. In the maintenance phase, all
activities that were executed in previous phases will be
repeated to satisfy new or modified requirements.

OOHDM [17] provides a model-based approach to Web
development. This methodology does not incorporate a
specific process model. Its process consists of five steps or
phases that can be performed based on an iterative-
incremental or prototyping development model. The
distinguishing feature of this methodology is its strong
emphasis on Web design, prescribed as consisting of three
design phases: conceptual design, navigational design, and
abstract interface design.

The Conallen methodology [9] is based on RUP [18] and
the Iconix Unified Process [19], and uses UML as its
modeling language. Like RUP, this methodology is use-case
driven and architecture-centric, and sports an iterative-
incremental process.

III. PROPOSED WEB-BASED SOFTWARE DEVELOPMENT
PROCESS (WBSDP)

Based on the processes studied, a generic process
framework for Web-based system development has been
developed, a detailed description of which will be provided
in this section; we will refer to the framework as the Web-
Based Software Development Process (WBSDP). The
framework provides a high level organization for the process
patterns proposed (Fig. 1). WBSDP consists of four phases:
Start-up, Construction, Transition, and Maintenance. These
phases are preformed serially, but each phase contains stages
which can be executed iteratively. In other words, WBSDP is
“serial in the large and iterative in the small” [4].

478478

Figure 1. Web-Based Software Development Process (WBSDP)

The Start-up phase includes the activities essential for
initiating a project. In Construction, software design,
implementation, and test will be performed. Transition
includes those activities which are needed for deploying the
developed system into user environment. Maintenance is
started after deployment, and as expected, consists of
maintenance and support activities. In order to correct the
errors detected during Transition, redesign and
reimplementation are necessitated; hence the backward arc
from Transition to Construction. Some changes requested
during Maintenance may need a change in system
architecture and scope; it should therefore be possible to
move from Maintenance to Start-up. Some of the changes
requested during Maintenance do not affect the system’s core
definition, and some others are just requirements that have
not been implemented because of time shortages or low
priority. In order to implement these types of requirements, a
transition from Maintenance to Construction has been
incorporated into the process.

Umbrella activities are also considered in the framework,
as elicited from the methodologies studied. These activities
are depicted on the arrow at the bottom of Fig. 1. Umbrella
activities are essential for proper project management, as
well as for quality assurance, risk management, and people
management.

IV. PROPOSED PROCESS PATTERNS
In this section, the process patterns proposed and

organized in the WBSDP are described in detail. Each Phase
process pattern is described in a separate subsection along
with its constituent patterns. Stages which are exclusive or
essential to Web development (shown as shaded boxes in
Fig. 1) are explained in more detail. Common stages, which
are the same as their counterparts in traditional processes, are
just touched upon; the interested reader is referred to [4, 5,
20] for more detailed descriptions on these. To present the
patterns, we use a concise version of the template suggested
by Ambler [4]. It should be noted that some patterns have
been designated as optional, as their inclusion in a Web
development process is not mandatory; indeed, many of the

existing Web development methodologies do not address
these optional activities in their processes.

A. Start-up Phase
This phase is the first phase of Web-based software

development, and as such, sets the stage for the main
development phases. At the beginning of this phase,
development teams do not have any essential information
about the system and the project. Much of the team’s
knowledge comes from previous experiences in similar
system development projects. Knowledge should be gained
on issues such as the main problems motivating the
development project, and the requirements and constraints
that should be addressed. The goal in this phase is to gain
familiarity with the system, and also to prepare for transition
to the Construction phase. This phase includes activities such
as: determination of system development goals and
objectives, determination of system development problems
and constraints, specification of core functional and non-
functional requirements, assessment and study of
organizational processes/strategies (and their improvement),
and determination of the main components of the system.
After managing the risks involved and determining a process
for the Construction phase, a plan is also prepared to guide
the software construction effort. These activities are
performed through the phase’s constituent stages, which are
described throughout the rest of this subsection.

Chartering. This stage initiates the Start-up phase. The

main intent of Chartering is to achieve basic familiarity with
the system, especially as to its scope and objectives. The
activities of this stage include: determination of the main
development goal, essential problems, current state and
desirable state of the organization, system scope and target
market, and assessment of the organization’s legacy systems
and determination of their main shortcomings. Feasibility
analysis should also be performed, and risks should be
identified. An early organizational business process model
may also be developed.

479479

Requirements Engineering. The goal of this stage is to
obtain detailed information about the problem domain in
order to identify core functional and non-functional
requirements. Functional requirements can be modeled by
use-case models or through specifying system operations.
Non-functional requirements, especially those related to Web
applications (such as security and usability), should also be
determined. If the organization is dependent on legacy
systems (which is the typical case), assessing and observing
these systems can be helpful in eliciting the requirements.

An initial problem domain model is usually developed as
an output of this stage. It typically consists of structural
object-oriented models (such as class diagrams) and/or
information models (such as entity-relationship diagrams).
Behavioral models can also be developed to highlight
significant interactions.

Prototyping is also conducted, mainly in order to help
determine the requirements and the risks involved; however,
these prototypes are usually thrown away once they have
served their purpose. As in all stages focused on
requirements elicitation and specification, system users
should get actively involved in the process.

Design in the Large. Constraints, objectives and

requirements have so far been determined, but there is no
overall view that describes how these constraints and
requirements should be realized. The intent of this stage is to
present a high level design which defines the architecture of
the system as presented from various viewpoints. Sub-
systems, major components, hardware architecture, and the
distribution of software components on hardware elements
should be determined. Constraints and non-functional
requirements should be considered in the development of the
architecture.

The architecture is typically developed as a prototype,
which is gradually refined and completed. The tasks which
are performed in this stage focus on designing the
architecture of the system, application, software, and
information. The distributed architecture of network
hardware components is determined during System
Architecture Design. Application Architecture Design
determines the subsystems and main components which
constitute the system. Software components are determined
during Software Architecture Design; this architecture shows
the constituent Web servers and application servers, and their
relationships. This task is optional, since it is not needed for
simple systems. Information Architecture Design aims at
providing a sitemap which shows how information is made
accessible throughout the system.

The architecture defined in this stage is basic and should
be completed in downstream stages. If the Web system
communicates with other systems, the communication
technologies and middleware involved should also be
determined. The tasks which constitute this stage are shown
in Fig. 2.

Organizational Change. Introducing a Web system into

an organization may necessitate applying changes to its
business processes and strategies. In this stage, current

business processes and strategies are revised and updated
according to the specifications of the system under
development. It is therefore necessary to complete the
business process model which was initially produced during
the Chartering stage. Some special properties of Web
systems, such as distribution, may necessitate applying
extensive modifications to organizational business processes.

Migrating to e-business is a strategic decision for
business organizations. Introducing Web-based systems
tends to entail an organization-wide ripple effect. It can
therefore have a great impact on business strategies, even at
the enterprise level. The Organizational Change stage
addresses this issue as well. This stage is optional, however,
since certain Web-based systems (such as static and
document-centric systems) may have no effect on business
processes and organizational strategies.

Planning, and Process Selection. An initial architecture

has thus far been prepared, and the main functional and non-
functional requirements have been specified. This stage
intends to determine an overall plan and a development
process that will govern the development effort throughout
the Construction phase, with the ultimate aim of realizing the
requirements. During this stage, development teams are
formed, communication paths and mechanisms are
established, and management processes are determined. It is
important to note that unlike development teams in many
traditional methodologies, Web development teams are
multidisciplinary: people with widely varying skills, such as
programmers, analysts, graphic designers, and Web
interface/navigation designers, are members of the same
team. Therefore, inter-team and intra-team communication is
a critical issue.

Requirements are prioritized, tasks are assigned to
development teams and individuals, and a development
schedule is determined in this stage. Furthermore, tasks
which can be performed in parallel are identified, and
milestones are defined in order to facilitate project
monitoring and control.

A process model for the Construction phase should also
be determined in this stage; when developing a small and
stable system, a waterfall model may be chosen, whereas a
rapidly changing system will probably require an iterative
process. If an iterative process is chosen, the number and
duration of the iterations should also be estimated.

Figure 2. Design in the Large

480480

B. Construction Phase
The intention in this phase is to construct the system so that
the requirements are met. Detailed analysis of the problem
domain and the requirements, architectural and detailed
design of Web-specific artifacts, implementation, and testing
(verification and validation) are the most important activities
in this phase. Integration, if necessary, will also be
performed. The functionality of the system and the
realization of certain Web-related requirements is verified
and validated through applying testing-in-the-small
techniques.
The phase also includes a review stage, during which all
construction activities, artifacts, overall process model, and
plans, are reviewed and revised as required.

Planning. The Construction phase is executed based on
the process selected in the previous phase. The Planning
stage is only performed if an iterative process has been
chosen for the Construction phase. The aim of this stage is to
develop a detailed plan for the current iteration. The
requirements that should be implemented during the current
iteration are determined, implementation tasks are assigned
to teams and individuals, and an iteration schedule is
prepared.

Parallel execution of construction tasks by multiple
development teams is desirable, especially in Web-
development projects where a high degree of concurrency is
achievable; for example, navigation and interface design can
be performed in parallel with design and implementation of
the business logic. However, parallel construction requires
rigorous planning and scheduling so that proper coordination
is applied.

Analysis. The development teams have already obtained

basic knowledge about the problem domain. However,
building a software system requires a more detailed
analytical knowledge of the problem domain. This stage
intends to perform a detailed analysis of the problem domain,
and produce a descriptive model.

If an iterative process model is used for the Construction
phase, detailed analysis is only done on those parts of the
system which are focused upon in the current iteration.
Typically, the detailed problem domain model produced in
this stage accentuates the structural and behavioral aspects
that are relevant to the development effort undertaken in the
current iteration.

Web Design. The aim of this stage is to present a design

model for the Web-based system. As shown in Fig. 3, this
stage includes four principal substages: Server-side Design,
Presentation Design, Navigation Design, and Content
Design. Two optional tasks can also be performed in this
stage: Prototyping, and Assessing Similar Web Pages.
Prototyping can be used in all the four principal substages as
well. Studying and assessing similar Web Pages can help
enrich the design produced. The four principal substages will
be further explained throughout the rest of this subsection.

Figure 3. Web Design

 Server-side Design. The aim of this stage is to
transform problem domain models to solution domain
models by designing the server-side logic. Architectural and
information models are mainly used for this purpose; the
models are usually refined and updated during the course of
this stage. This stage is very similar to its design counterpart
in traditional processes, and will therefore not be elaborated
further.

Content Design. The aim of this stage is to determine

and design the contents of the Web pages in detail. The
constituent tasks are depicted In Fig. 4.

Content Specification determines the contents of each
page. During Content Provision, the contents are designed as
presentable objects. Client-side Logic Design determines the
processing logic executed by clients, typically implemented
by using script language or applets. This sort of logic is
usually very straightforward, typically just involving the
application of simple checks and verifications. Transaction
Specification specifies the transactions that are managed by
the page, the events that trigger them, and the data
interchanged with Web servers. We can also have a Content
Model for Web pages whose contents are generated
dynamically. In this model, each dynamic page element is
related to one or more server-side entities.

Navigation Design. In Web engineering, it is not enough

to just design the contents of the Web pages; it is also
necessary to specify how the information contained in the
Web pages can be accessed through traversing the pages.
This stage intends to design these access paths.

Figure 4. Content Design

481481

The most important task in the Navigation Design stage
is Link Specification. During this task, the relationships
between Web pages are determined, and multidimensional
content is generated via using links. In dynamic pages, a
Navigation Model is produced based on the content model.
The Navigation Model determines the dynamic links and the
relationships with entities of the logic layer. Page Access
Specification specifies the links through which a page is
made accessible. Page Location indicates the location of a
page as related to the site. The site map is updated and
refined during this stage. Fig. 5 shows the constituent tasks
of this stage.

Presentation Design. This stage intends to determine how
information entities and links should be presented in Web
pages. During this stage, the presentation aspects of Web
pages are designed, and the constituent GUI elements, such
as menus, windows, buttons, and images, are specified. The
tasks of this stage are depicted in Fig. 6.
During the Layout Design task, different page templates are
designed and the mechanism for applying them is specified.
It is also determined how information entities and links can
be represented by GUI elements. Triggering events, which
start the transactions specified in Content Design, are
assigned to GUI elements. The dynamic parts of the pages
are determined, and suitable mechanisms are selected for
implementing them.
Users should be involved and in close contact with interface
designers during Presentation Design. User-interface-
dependent non-functional requirements, such as usability and
context sensitivity, are very important in this stage, and
should be stringently observed.

Implementation. In this stage, the system (or part of it,
as planned for the current iteration) is implemented. The
implementation effort focuses on the information objects
determined during Content Design, and the GUI elements
specified during Presentation Design.

Implementing the GUI layer is typically performed by
using an appropriate language, such as HTML. After
implementation, integration is typically performed to
consolidate the increment produced with the system built so
far. Tools are extensively used during this stage of the
development process.

Figure 5. Navigation Design

Figure 6. Presentation Design

Web Test in the Small. The system (or parts of it) has
been developed, and verification and validation should now
be performed in order to ensure the correctness, validity, and
adequate quality of the parts implemented thus far. This
stage includes two constituent substages, as shown in Fig. 7.

Functional Test in the Small contains activities that verify
the realization of the functional requirements and the server-
side logic (much similar to the Test in the Small stage of
OOSP [4]).

Web-Specific Test in the Small focuses on verifying and
validating the Web-related parts of the system (designed
during the Web Design stage).

Other common activities, such as using test tools,
generating test documents, and analyzing test results, are also
performed during this stage. Users should actively participate
in all Web-specific testing activities. The two substages of
this stage are further explained throughout the rest of this
subsection

Functional Test in the Small. The functional

requirements that have been implemented should be verified
and validated in this substage. This substage intends to test
those parts of the system which implement the processing
logic, often installed on servers.

Unit testing is typically performed on each operation or
method. Regression testing and integration testing is
performed as and when required. Test tools and test-driven
development environments can be extensively used in this
stage.

Figure 7. Web Test in the Small

482482

Web-Specific Test in the Small. The content,
navigation, and presentation elements that have been
implemented (at least in part) are verified and validated
during this substage.

Special attention is given to verification and validation of
the design and layout of GUI elements, links, dynamic
aspects of Web pages, and context sensitivity issues.
Realization of non-functional requirements, such as usability,
is meticulously tested.

During content testing, content accuracy and client-side
logic are verified and validated. For each of the Web pages,
transactions which start from other pages and end at the
current page are tested for correctness. The main tasks of this
stage are depicted in Fig. 8. A variety of test documents are
produced as the output of this substage.

Review. A review is performed at the end of the

Construction phase, and also at the end of each stage and
iteration, in order to assess the work completed so far.
During stage reviews, stage artifacts are scrutinized, plans
and schedules are revisited and checked against the actual
progress of the project, and the problems which have
occurred during the stage are discussed and resolved.

In a phase or iteration review, in addition to stage review
issues, the Construction process is scrutinized for possible
deficiencies, and changes are made to the process as needed.
The requirements which have not been implemented are
determined, and provision is made for their implementation
in later iterations by making the necessary changes to the
plans and schedules.

C. Transition Phase
The whole system or parts of it have been designed and

implemented during the Construction phase, ready to be
delivered to the end-user. The Transition phase includes
activities for deploying Construction artifacts into the user
environment.

Activities such as large-scale (system- or subsystem-
wide) verification and validation, training, deployment, and
tuning, are performed during this phase. Errors detected
during this phase can be corrected in this phase, or can be
relegated back to the Construction phase if extensive rework
is required. Deployment can be performed iteratively, or just
once at the very end of the development effort.

The stages of this phase are further explained throughout
the rest of this subsection.

Figure 8. Web-Specific Test in the Small

Test in the Large. A set of functional and non-functional
requirements have been implemented in the increment
produced, and thorough testing is required before
deployment can commence. This stage aims at large-scale
verification and validation of the increment, or if the system
is a small one, the whole system.

The main focus is on testing server-side logic, thus
treating the Web system like a traditional system, totally
ignorant of the Web-specific aspects. Acceptance testing and
system testing are the main types of tests performed in this
stage.

Web Test in the Large. This stage intends to verify that

the developed product satisfies Web-specific functional and
non-functional requirements. The tasks of this stage are
depicted in Fig. 9. User interface artifacts are checked to
ensure that user interface elements function and interact in an
orderly and correct fashion, customizable pages work
properly and can be customized easily, and the user interface
is suitably displayed on different devices. Another issue to be
tested is the context sensitivity of Web pages: the user
interface should be adjusted and presented according to the
user’s location, time zone, culture, and special needs. Web-
specific non-functional requirements such as security,
performance, usability, and scalability are tested. Complex
transactions, and the dynamic pages which are generated as a
result of a transaction, are also tested for inaccuracies and
inconsistencies.

Rework. This stage aims at removing the errors

discovered during previous stages. In this stage, errors will
be assessed, and if error correction is straightforward,
corrections are made to the code. If error correction requires
extensive redesign, correction is relegated to the
Construction phase.

Deployment. This stage aims at system conversion:

ultimate deployment of the Web application into the user
environment. Traditional deployment activities, such as
training, installation of the hardware/software platform,
documentation, and data conversion are performed as in any
other type of software development project. Furthermore,
Web-specific deployment activities, such as installation of
network hardware, application servers, and Web servers, are
also performed.

Figure 9. Web Test in the Large

483483

D. Maintenance Phase
Now that the Web-based system has been successfully

put into production, support and maintenance activities
should commence. System maintenance is the main goal of
this phase. The main activities of this phase include:
modifying the system to keep it free of malfunctions,
performing system operation and support activities, and
conducting special maintenance activities necessary for Web
systems. The stages of this phase are further detailed
throughout the rest of this subsection.

Traditional Maintenance. This stage contains the

typical activities performed for maintaining software
systems. Operational and support activities are also
performed in this stage. Preventive, adaptive, corrective, and
perfective maintenance activities are performed. For
complex changes, it is necessary to restart the development
cycle; a return is therefore made to the Start-up or
Construction phases, depending on the type and scale of the
change requested.

Web Maintenance. Web systems need additional

activities for maintenance. As shown in Fig. 10, this stage
includes four main Web-specific maintenance tasks. The
Manage Content task includes activities for adding new
content to the Web pages, or updating them. Web pages
which are not updated frequently enough are considered
inaccurate and old, thus losing their appeal. Making periodic
quality checks, especially aiming at assessing critical issues
such as security and performance, is essential. If the target of
maintenance is a business system, and user notification is
considered important, issues such as advertising in other
sites, registering in search engines, and sending newsletters,
should be addressed. Maintaining network hardware is also
of utmost importance.

V. CHARACTERISTICS OF WBSDP
As mentioned earlier, WBSDP is the result of extracting

and organizing process patterns from a multitude of Web
development processes. In this section, we present some of
the important characteristics of this framework. These
characteristics, as listed below, address the essential
requirements of Web development:

• Generating processes based on different process
models: Processes instantiated from WBSDP can be
based on different process models, such as iterative-
incremental, RAD, and prototyping.

Figure 10. Web Maintenance

• Attention to process selection: There is a specific

stage in the Start-up phase to select a process for the
Construction phase; WBSDP is therefore flexible.

• Supporting agility: Properties such as embracing
change, user involvement, continuous review, and
frequent releases make the WBSDP capable of
accommodating agile processes.

• Adequate consideration for project initiation
activities: Misunderstanding the user’s requirements
and overlooking initial analysis are the two main
reasons for the failure of Web projects; in WBSDP,
initiation is performed in a dedicated phase.

• Attention to organizational issues: A stage has been
dedicated to analyzing business processes and
strategies, and modifying them accordingly.

• Architecture-centricity: The initial architecture of the
system will be developed before Construction, and
non-functional requirements are considered during
architectural design.

• Specification of Web-specific activities as separate
stages: examples include: Web Design, Web Test,
and Web Maintenance.

VI. REALIZATION OF PROPOSED PROCESS PATTERNS IN
WEB-BASED METHODOLOGIES

Completeness and adequate coverage of the proposed
process patterns needs to be assessed by demonstrating that
each phase of the studied Web-based methodologies is
indeed covered by the process patterns proposed. Table 1
shows the correspondence between the patterns proposed and
the seven methodologies studied. The comparison shows that
the proposed framework and patterns do indeed provide
adequate coverage of Web engineering activities.

VII. CONCLUSIONS AND FUTURE WORK
We have proposed a set of process patterns and a process

framework for Web engineering. To generate these patterns,
the processes of a select set of Web development
methodologies have been studied, and subprocesses which
are common among many methodologies have been
extracted as patterns. These patterns were then organized into
a generic process framework. To assess the completeness
and adequate coverage of the proposed process patterns, the
activities of the seven methodologies have been mapped to
the phases and stages of the proposed framework.

This research can be furthered by completing the
framework and customizing it for each and every type of
Web system. Task process patterns should be further refined
and detailed, thus facilitating the use of the framework and
patterns in real SME projects. Another strand of research can
focus on developing an extension framework for adding
Web-development support to traditional development
processes.

ACKNOWLEDGEMENT
We wish to thank Iran Telecommunications Research

Center (ITRC) for sponsoring this research.

484484

TABLE I. REALIZATION OF PROPOSED PROCESS PATTERNS IN STUDIED METHODOLOGIES

Methodologies Phases Corresponding Stage Process Patterns

XWEBProcess

Explore Chartering, Design in the Large
Define and Review Requirements Requirements Engineering, Design in the Large
Planning Planning and Process Selection
Develop Analysis, Web Design, Implementation, Web Test in the Small
Web testing Web Test in the Large
Production Deployment
Web Support Maintenance (especially Web Maintenance)

AWE

Business Analysis Chartering, Organizational Change
Requirements Analysis Requirements Engineering
Design Web Design, Review
Implement Implementation, Web Test in the Small
Test Test in the Large, Web Test in the Large
Evaluation Chartering, Test in the Large, Web Test in the Large
Deploy Web Application Deployment

ICDM

Strategy Development Organizational Change, Chartering
Requirement Analysis Requirements Engineering
Architecture Design in the Large
Design Web Design
Implementation Implementation

WebHelix

Business Analysis Chartering
Planning Planning and Process Selection, Design in the Large
Analysis Requirements Engineering, Analysis
Design Web Design, Planning
Code Implementation
Test Web Test in the Small, Web Test in the Large, Test in the Large
Evaluation Review
Deploy Deployment
Maintain Maintenance

MPM

Basic System Requirements Requirements Engineering
Architectural Decision Design in the Large
Building and Deploying Initial Version Analysis, Web Design, Implementation, Web Test, Deployment
Deve-maintenance Maintenance, Construction

OOHDM

Requirements Gathering Requirements Engineering

Conceptual Design Content Design, Server-Side Design

Navigational Design Navigation Design

Abstract Interface Design Presentation Design

Implementation Implementation

Conallen
Methodology

Analyze Business and Perceived Problems Chartering
Develop Domain Model Requirements Engineering, Analysis
Analyze the Understood Problem Requirements Engineering, Chartering
Develop Vision Document Chartering
Develop Project Plan Planning and Process Selection
Iterate Construction
Deploy System Deployment
Maintenance Maintenance

485485

REFERENCES
[1] G. Kappel, B. Pröll, S. Reich and W. Retschitzegger, ”An

Introduction to Web Engineering,” In Web Engineering: The
Discipline of Systematic Development of Web Applications, G.
Kappel, B. Pröll, S. Reich, and W. Retschitzegger, Eds., John Wiley
& Sons, 2006, pp. 1-22.

[2] A. McDonald and R. Welland, “Web Engineering in Practice,” Proc.
Workshop on WWW10, 2001, pp. 21-30, doi: 10.1.1.73.4099.

[3] J.O. Coplien, “A Generative Development Process Pattern
Language,” In Pattern Languages of Program Design, ACM Press/
Addison-Wesley, 1995, pp. 187–196.

[4] S.W. Ambler, Process Patterns: Building Large-Scale Systems Using
Object Technology, Cambridge University Press, 1998.

[5] S.W. Ambler, More Process Patterns: Delivering Large-Scale
Systems Using Object Technology, Cambridge University Press,
1999.

[6] J. Ralyté, R. Deneckere and C. Rolland, “Towards a generic model
for situational method engineering,” Proc. International Conference
on Advanced Information Systems Engineering (CAiSE’03), Jun.
2003, pp. 95-110, doi: 10.1007/3-540-45017-3_9.

[7] B. Henderson-Sellers, “Method Engineering for OO Systems
Development,” Communications of the ACM, vol. 46, no. 10, Oct.
2003, pp. 73–78, doi: 10.1145/944217.944242.

[8] OPF Repository, available at: http://www.opfro.com.
[9] J. Conallen, Building Web Applications with UML, Addison Wesley,

2002.
[10] A. Sampaio, A. Vasconcelos, and P. Sampaio, “Design and Empirical

Evaluation of an Agile Web Engineering Process,” Proc. 18th

Brazilian Symposium on Software Engineering (SBES’04), 2004, pp.
194-209.

[11] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change, Addison-Wesley, 2004.

[12] A. McDonald and R. Welland, “Agile Web Engineering (AWE)
Process,” Technical Report TR-2001-98, University of Glasgow,
Scotland, 2001, doi: 10.1.1.63.6832.

[13] C. Standing, “The requirements of Methodologies For developing
Web applications,” In Web-Engineering: Principles and Techniques,
W. Suh, Ed., Idea Group, 2005, pp. 261-280.

[14] G. Whitson, “WebHelix: Another Web Engineering Process,”
Computing Sciences in Colleges, vol. 21, no. 5, May 2006, pp. 21-27,
doi: 10.1109/52.730844.

[15] N. Subramanian and G. Whitson, Software engineering for modern
web applications: Methodologies and technologies, IGI Global, 2008.

[16] J.Q. Chen, and R.D. Heath, ”Web Application Development
Methodologies,” In Web-Engineering: Principles and Techniques, W.
Suh, Ed., Idea Group, 2005, pp. 76-96.

[17] G. Rossi and D. Schwabe, ”Model-Based Web Application
Development,” In Web Engineering, E. Mendes, and N. Mosley, Eds.,
Springer, 2005, pp. 303-333, doi: 10.1007/3-540-28218-1_10.

[18] P. Kruchten, The Rational Unified Process: An Introduction,
Addision-Wesley, 1999.

[19] D. Rosenberg and K. Scott, Use Case Driven Object Modeling with
UML: A Practical Approach, Addison-Wesley, 1999.

[20] J. Ralyté, S. Brinkkemper, and B. Henderson-Sellers, Eds.,
Situational Method Engineering: Fundamentals and Experiences,
Springer, 2007.

486486

